28 results on '"Mylène Ogliastro"'
Search Results
2. Variation in the susceptibility of urban Aedes mosquitoes infected with a densovirus
- Author
-
Aurélie Perrin, Anne-Sophie Gosselin-Grenet, Marie Rossignol, Carole Ginibre, Bethsabée Scheid, Christophe Lagneau, Fabrice Chandre, Thierry Baldet, Mylène Ogliastro, and Jérémy Bouyer
- Subjects
Medicine ,Science - Abstract
Abstract Urban Aedes mosquitoes are vectors of many viruses affecting human health such as dengue, chikungunya and Zika viruses. Insecticide resistance and environmental toxicity risks hamper the effectiveness of chemical control against these mosquito vectors. Alternative control methods, such as the use of mosquito-specific entomopathogenic viruses should be explored. Numerous studies have focused on evaluating the potential of different densoviruses species as biological control agents. However, knowledge on the extent of inter- and intra-specific variations in the susceptibility of Aedes mosquitoes to infection by different densoviruses remains insufficient. In this study, we compared infection and mortality rates induced by the Aedes albopictus densovirus 2 in different strains of Aedes albopictus and Aedes aegypti mosquitoes. The two Aedes species were different in terms of susceptibility to viral infection. Under laboratory conditions, Aedes albopictus densovirus 2 appeared more virulent for the different strains of Aedes aegypti tested than for those of Aedes albopictus. In addition, we also found significant intra-specific variation in infection and mortality rates. Thus, although even if Aedes albopictus densoviruses could be powerful biocontrol agents used in the management of urban Aedes populations, our results also call into question the use of single viral isolate as biocontrol agents.
- Published
- 2020
- Full Text
- View/download PDF
3. Can Virus-like Particles Be Used as Synergistic Agent in Pest Management?
- Author
-
Caroline Deshayes, Anne-Sophie Gosselin-Grenet, Mylène Ogliastro, Bruno Lapied, and Véronique Apaire-Marchais
- Subjects
virus-like particles ,synergistic agent ,intracellular calcium ,insecticide ,pest management ,Microbiology ,QR1-502 - Abstract
Among novel strategies proposed in pest management, synergistic agents are used to improve insecticide efficacy through an elevation of intracellular calcium concentration that activates the calcium-dependent intracellular pathway. This leads to a changed target site conformation and to increased sensitivity to insecticides while reducing their concentrations. Because virus-like particles (VLPs) increase the intracellular calcium concentration, they can be used as a synergistic agent to synergize the effect of insecticides. VLPs are self-assembled viral protein complexes, and by contrast to entomopathogen viruses, they are devoid of genetic material, which makes them non-infectious and safer than viruses. Although VLPs are well-known to be used in human health, we propose in this study the development of a promising strategy based on the use of VLPs as synergistic agents in pest management. This will lead to increased insecticides efficacy while reducing their concentrations.
- Published
- 2022
- Full Text
- View/download PDF
4. Characterisation of the Viral Community Associated with the Alfalfa Weevil (Hypera postica) and Its Host Plant, Alfalfa (Medicago sativa)
- Author
-
Sarah François, Aymeric Antoine-Lorquin, Maximilien Kulikowski, Marie Frayssinet, Denis Filloux, Emmanuel Fernandez, Philippe Roumagnac, Rémy Froissart, and Mylène Ogliastro
- Subjects
insect pest ,agroecosystem ,viral metagenomics ,virus diversity ,biocontrol ,Microbiology ,QR1-502 - Abstract
Advances in viral metagenomics have paved the way of virus discovery by making the exploration of viruses in any ecosystem possible. Applied to agroecosystems, such an approach opens new possibilities to explore how viruses circulate between insects and plants, which may help to optimise their management. It could also lead to identifying novel entomopathogenic viral resources potentially suitable for biocontrol strategies. We sampled the larvae of a natural population of alfalfa weevils (Hypera postica), a major herbivorous pest feeding on legumes, and its host plant alfalfa (Medicago sativa). Insect and plant samples were collected from a crop field and an adjacent meadow. We characterised the diversity and abundance of viruses associated with weevils and alfalfa, and described nine putative new virus species, including four associated with alfalfa and five with weevils. In addition, we found that trophic accumulation may result in a higher diversity of plant viruses in phytophagous pests compared to host plants.
- Published
- 2021
- Full Text
- View/download PDF
5. Characterization of alfalfa virus F, a new member of the genus Marafivirus.
- Author
-
Lev G Nemchinov, Sarah François, Phillipe Roumagnac, Mylène Ogliastro, Rosemarie W Hammond, Dimitre S Mollov, and Denis Filloux
- Subjects
Medicine ,Science - Abstract
Viral infections of alfalfa are widespread in major cultivation areas and their impact on alfalfa production may be underestimated. A new viral species, provisionally named alfalfa virus F (AVF), was identified using a virion-associated nucleic acid (VANA) metagenomics-based approach in alfalfa (Medicago sativa L.) samples collected in Southern France. The nucleotide sequence of the viral genome was determined by de-novo assembly of VANA reads and by 5'/3' RACE with viral RNA extracted from enriched viral particles or with total RNA, respectively. The virus shares the greatest degree of overall sequence identity (~78%) with Medicago sativa marafivirus 1 (MsMV1) recently deduced from alfalfa transcriptomic data. The tentative nucleotide sequence of the AVF coat protein shares ~83% identity with the corresponding region of MsMV1. A sequence search of the predicted single large ORF encoding a polyprotein of 235kDa in the Pfam database resulted in identification of five domains, characteristic of the genus Marafivirus, family Tymoviridae. The AVF genome also contains a conserved "marafibox", a 16-nt consensus sequence present in all known marafiviruses. Phylogenetic analysis of the complete nucleotide sequences of AVF and other viruses of the family Tymoviridae grouped AVF in the same cluster with MsMV1. In addition to 5' and 3' terminal extensions, the identity of the virus was confirmed by RT-PCRs with primers derived from VANA-contigs, transmission electron microscopy with virus-infected tissues and transient expression of the viral coat protein gene using a heterologous virus-based vector. Based on the criteria demarcating species in the genus Marafivirus that include overall sequence identity less than 80% and coat protein identity less than 90%, we propose that AVF represents a distinct viral species in the genus Marafivirus, family Tymoviridae.
- Published
- 2018
- Full Text
- View/download PDF
6. Interaction of a Densovirus with Glycans of the Peritrophic Matrix Mediates Oral Infection of the Lepidopteran Pest Spodoptera frugiperda
- Author
-
Laetitia Pigeyre, Malvina Schatz, Marc Ravallec, Leila Gasmi, Nicolas Nègre, Cécile Clouet, Martial Seveno, Khadija El Koulali, Mathilde Decourcelle, Yann Guerardel, Didier Cot, Thierry Dupressoir, Anne-Sophie Gosselin-Grenet, and Mylène Ogliastro
- Subjects
insect ,Lepidoptera ,insect parvovirus ,chitin ,peritrophins ,glycans ,biocontrol ,Microbiology ,QR1-502 - Abstract
The success of oral infection by viruses depends on their capacity to overcome the gut epithelial barrier of their host to crossing over apical, mucous extracellular matrices. As orally transmitted viruses, densoviruses, are also challenged by the complexity of the insect gut barriers, more specifically by the chitinous peritrophic matrix, that lines and protects the midgut epithelium; how capsids stick to and cross these barriers to reach their final cell destination where replication goes has been poorly studied in insects. Here, we analyzed the early interaction of the Junonia coenia densovirus (JcDV) with the midgut barriers of caterpillars from the pest Spodoptera frugiperda. Using combination of imaging, biochemical, proteomic and transcriptomic analyses, we examined in vitro, ex vivo and in vivo the early interaction of the capsids with the peritrophic matrix and the consequence of early oral infection on the overall gut function. We show that the JcDV particle rapidly adheres to the peritrophic matrix through interaction with different glycans including chitin and glycoproteins, and that these interactions are necessary for oral infection. Proteomic analyses of JcDV binding proteins of the peritrophic matrix revealed mucins and non-mucins proteins including enzymes already known to act as receptors for several insect pathogens. In addition, we show that JcDV early infection results in an arrest of N-Acetylglucosamine secretion and a disruption in the integrity of the peritrophic matrix, which may help viral particles to pass through. Finally, JcDV early infection induces changes in midgut genes expression favoring an increased metabolism including an increased translational activity. These dysregulations probably participate to the overall dysfunction of the gut barrier in the early steps of viral pathogenesis. A better understanding of early steps of densovirus infection process is crucial to build biocontrol strategies against major insect pests.
- Published
- 2019
- Full Text
- View/download PDF
7. A New Prevalent Densovirus Discovered in Acari. Insight from Metagenomics in Viral Communities Associated with Two-Spotted Mite (Tetranychus urticae) Populations
- Author
-
Sarah François, Doriane Mutuel, Alison B. Duncan, Leonor R. Rodrigues, Celya Danzelle, Sophie Lefevre, Inês Santos, Marie Frayssinet, Emmanuel Fernandez, Denis Filloux, Philippe Roumagnac, Rémy Froissart, and Mylène Ogliastro
- Subjects
parvovirus ,viral metagenomics ,virus diversity ,virus phylogeny ,agricultural pests ,arthropod ,mite ,viral communities ,viral ecology ,Microbiology ,QR1-502 - Abstract
Viral metagenomics and high throughput sequence mining have revealed unexpected diversity, and the potential presence, of parvoviruses in animals from all phyla. Among arthropods, this diversity highlights the poor knowledge that we have regarding the evolutionary history of densoviruses. The aim of this study was to explore densovirus diversity in a small arthropod pest belonging to Acari, the two-spotted spider mite Tetranychus urticae, while using viral metagenomics based on virus-enrichment. Here, we present the viromes obtained from T. urticae laboratory populations made of contigs that are attributed to nine new potential viral species, including the complete sequence of a novel densovirus. The genome of this densovirus has an ambisens genomic organization and an unusually compact size with particularly small non-structural proteins and a predicted major capsid protein that lacks the typical PLA2 motif that is common to all ambidensoviruses described so far. In addition, we showed that this new densovirus had a wide prevalence across populations of mite species tested and a genomic diversity that likely correlates with the host phylogeny. In particular, we observed a low densovirus genomic diversity between the laboratory and natural populations, which suggests that virus within-species evolution is probably slower than initially thought. Lastly, we showed that this novel densovirus can be inoculated to the host plant following feeding by infected mites, and circulate through the plant vascular system. These findings offer new insights into densovirus prevalence, evolution, and ecology.
- Published
- 2019
- Full Text
- View/download PDF
8. Evolution and phylogeography of Culex pipiens densovirus
- Author
-
Maxime Courcelle, Mylène Weill, Sarah François, Sebastian Lequime, Mathieu Sicard, Anne-Sophie Gosselin-Grenet, Mylène Ogliastro, Mine Altinli, Fabienne Justy, Institut des Sciences de l'Evolution de Montpellier (UMR ISEM), École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Montpellier (UM)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre National de la Recherche Scientifique (CNRS)-Institut de recherche pour le développement [IRD] : UR226, Rega Institute for Medical Research [Leuven, België], Catholic University of Leuven - Katholieke Universiteit Leuven (KU Leuven), University of Oxford [Oxford], Diversité, Génomes & Interactions Microorganismes - Insectes [Montpellier] (DGIMI), Université de Montpellier (UM)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut National de la Recherche Agronomique (INRA), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-École Pratique des Hautes Études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Montpellier (UM)-Institut de recherche pour le développement [IRD] : UR226-Centre National de la Recherche Scientifique (CNRS), University of Oxford, and Institut National de la Recherche Agronomique (INRA)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)
- Subjects
030231 tropical medicine ,selection ,phylogeography ,Microbiology ,Genome ,03 medical and health sciences ,Negative selection ,0302 clinical medicine ,Molecular evolution ,Virology ,Culex pipiens ,Clade ,Gene ,030304 developmental biology ,Parvoviridae ,0303 health sciences ,biology ,molecular evolution ,Ambidensovirus ,biology.organism_classification ,densovirus evolution ,insect-specific virus prevalence ,Evolutionary biology ,[SDV.MP.VIR]Life Sciences [q-bio]/Microbiology and Parasitology/Virology ,Densovirus ,Research Article - Abstract
Viruses of the Parvoviridae family infect a wide range of animals including vertebrates and invertebrates. So far, our understanding of parvovirus diversity is biased towards medically or economically important viruses mainly infecting vertebrate hosts, while invertebrate infecting parvoviruses—namely densoviruses—have been largely neglected. Here, we investigated the prevalence and the evolution of the only mosquito-infecting ambidensovirus, Culex pipiens densovirus (CpDV), from laboratory mosquito lines and natural populations collected worldwide. CpDV diversity generally grouped in two clades, here named CpDV-1 and -2. The incongruence of the different gene trees for some samples suggested the possibility of recombination events between strains from different clades. We further investigated the role of selection on the evolution of CpDV genome and detected many individual sites under purifying selection both in non-structural and structural genes. However, some sites in structural genes were under diversifying selection, especially during the divergence of CpDV-1 and -2 clades. These substitutions between CpDV-1 and -2 clades were mostly located in the capsid protein encoding region and might cause changes in host specificity or pathogenicity of CpDV strains from the two clades. However, additional functional and experimental studies are necessary to fully understand the protein conformations and the resulting phenotype of these substitutions between clades of CpDV.
- Published
- 2021
- Full Text
- View/download PDF
9. Characterisation of the Viral Community Associated with the Alfalfa Weevil (Hypera postica) and Its Host Plant, Alfalfa (Medicago sativa)
- Author
-
Marie Frayssinet, Rémy Froissart, Mylène Ogliastro, Emmanuel Fernandez, Philippe Roumagnac, Maximilien Kulikowski, Denis Filloux, Sarah François, Aymeric Antoine-Lorquin, Diversité, Génomes & Interactions Microorganismes - Insectes [Montpellier] (DGIMI), Université de Montpellier (UM)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), University of Oxford [Oxford], Plant Health Institute of Montpellier (UMR PHIM), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut de Recherche pour le Développement (IRD)-Université de Montpellier (UM)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Département Systèmes Biologiques (Cirad-BIOS), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad), Maladies infectieuses et vecteurs : écologie, génétique, évolution et contrôle (MIVEGEC), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud]), University of Oxford, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut de Recherche pour le Développement (IRD)-Université de Montpellier (UM)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro - Montpellier SupAgro, and Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)
- Subjects
0301 basic medicine ,H01 - Protection des végétaux - Considérations générales ,Viral metagenomics ,viruses ,agroecosystem ,ved/biology.organism_classification_rank.species ,Relation plante animal ,Biological pest control ,virus diversity ,Gestion intégrée des ravageurs ,Ravageur des plantes ,biology ,Weevil ,food and beverages ,QR1-502 ,Hypera postica ,Infectious Diseases ,Lutte biologique contre les ravageurs ,Medicago sativa ,F40 - Écologie végétale ,030106 microbiology ,Virus des insectes ,Microbiology ,03 medical and health sciences ,Virology ,Plant virus ,biocontrol ,Herbivore ,ved/biology ,fungi ,15. Life on land ,biology.organism_classification ,H10 - Ravageurs des plantes ,Lutte biologique ,[SDV.BV.PEP]Life Sciences [q-bio]/Vegetal Biology/Phytopathology and phytopharmacy ,030104 developmental biology ,Agronomy ,PEST analysis ,viral metagenomics ,insect pest - Abstract
Advances in viral metagenomics have paved the way of virus discovery by making the exploration of viruses in any ecosystem possible. Applied to agroecosystems, such an approach opens new possibilities to explore how viruses circulate between insects and plants, which may help to optimise their management. It could also lead to identifying novel entomopathogenic viral resources potentially suitable for biocontrol strategies. We sampled the larvae of a natural population of alfalfa weevils (Hypera postica), a major herbivorous pest feeding on legumes, and its host plant alfalfa (Medicago sativa). Insect and plant samples were collected from a crop field and an adjacent meadow. We characterised the diversity and abundance of viruses associated with weevils and alfalfa, and described nine putative new virus species, including four associated with alfalfa and five with weevils. In addition, we found that trophic accumulation may result in a higher diversity of plant viruses in phytophagous pests compared to host plants.
- Published
- 2021
- Full Text
- View/download PDF
10. Coding-Complete Genome Sequence of a Partitivirus Isolated from Pine Processionary Moth Eggs
- Author
-
Mylène Ogliastro, Réjane Streiff, Franck Dorkeld, Carole Kerdelhué, Centre de Biologie pour la Gestion des Populations (UMR CBGP), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Université de Montpellier (UM)-Institut de Recherche pour le Développement (IRD [France-Sud])-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Diversité, Génomes & Interactions Microorganismes - Insectes [Montpellier] (DGIMI), Université de Montpellier (UM)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), This work was supported by INRAE, departments ECODIV (project EVIL) and SPE. M.O. is supported by the European Union's Horizon 2020 research and innovation program under grant agreement number 773567., European Project: 773567,VIROPLANT, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Université de Montpellier (UM)-Institut de Recherche pour le Développement (IRD [France-Sud])-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro - Montpellier SupAgro, and Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)
- Subjects
0106 biological sciences ,Whole genome sequencing ,Genetics ,0303 health sciences ,[SDV]Life Sciences [q-bio] ,Genome Sequences ,Thaumetopoea pityocampa ,Coat protein ,Biology ,010603 evolutionary biology ,01 natural sciences ,Lepidoptera genitalia ,03 medical and health sciences ,chemistry.chemical_compound ,Open reading frame ,Immunology and Microbiology (miscellaneous) ,chemistry ,Family Partitiviridae ,RNA polymerase ,Molecular Biology ,Pine processionary moth ,030304 developmental biology - Abstract
Two coding-complete nucleotide sequences of a partitivirus (family Partitiviridae) were discovered in transcriptomic data sets obtained from eggs of the Lepidoptera Thaumetopoea pityocampa. Each segment encodes a single open reading frame, and these two segments are predicted to encode an RNA-dependent RNA polymerase and a coat protein, respectively.
- Published
- 2021
- Full Text
- View/download PDF
11. Mosquito densoviruses: the revival of a biological control agent against urban Aedes vectors of arboviruses
- Author
-
Marie Rossignol, Jérémy Bouyer, Fabrice Chandre, Aurélie Perrin, Thierry Baldet, Bethsabée Scheid, Anne-Sophie Gosselin-Grenet, Mylène Ogliastro, Carole Ginibre, and Christophe Lagneau
- Subjects
Aedes ,0303 health sciences ,Aedes albopictus ,biology ,viruses ,fungi ,education ,030231 tropical medicine ,Biological pest control ,virus diseases ,Aedes aegypti ,medicine.disease ,biology.organism_classification ,medicine.disease_cause ,Virology ,3. Good health ,Dengue fever ,03 medical and health sciences ,0302 clinical medicine ,medicine ,Chikungunya ,Densovirus ,Aedes albopictus densovirus ,030304 developmental biology - Abstract
Urban Aedes mosquitoes are vectors of many viruses affecting human health such as Dengue, Chikungunya and Zika viruses. Insecticide resistance and environmental toxicity risks hamper the effectiveness of chemical control against these mosquito vectors. Alternative control methods, such as the use of mosquito-specific entomopathogenic viruses should be explored. Numerous studies have focused on evaluating the potential of different densoviruses species as biological control agent. However, knowledge on the extent of inter- and intra-specific variations in the susceptibility of Aedes mosquitoes to infection by different densoviruses remains insufficient. In this study, we compared infection and mortality rates induced by the Aedes albopictus densovirus 2 in different strains of Aedes albopictus and Aedes aegypti mosquitoes. The two Aedes species were different in terms of susceptibility to viral infection. Under laboratory conditions, Aedes albopictus densovirus 2 appeared more virulent for the different strains of Aedes aegypti tested than for those of Aedes albopictus. In addition, we also found significant intra-specific variation in infection and mortality rates. Thus, although even if Aedes albopictus densoviruses could be powerful biocontrol agents used in the management of urban Aedes populations, our results also call into question the use of single viral isolate as biocontrol agents.
- Published
- 2020
- Full Text
- View/download PDF
12. Capsid Proteins are Necessary for Replication of a Densovirus
- Author
-
Guillaume Cambray, Deborah Garcia, Doriane Mutuel, Thomas Labadie, Mylène Ogliastro, Centre de Biochimie Structurale [Montpellier] (CBS), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Institut National de la Santé et de la Recherche Médicale (INSERM), Diversité, Génomes & Interactions Microorganismes - Insectes [Montpellier] (DGIMI), and Université de Montpellier (UM)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
- Subjects
Untranslated region ,replication ,viruses ,Genetic Vectors ,Immunology ,Mutant ,Genome, Viral ,Computational biology ,Spodoptera ,Viral Nonstructural Proteins ,Biology ,Virus Replication ,Microbiology ,Genome ,densovirus ,Parvoviridae Infections ,03 medical and health sciences ,Synthetic biology ,Virology ,Gene cluster ,capsid ,Animals ,[INFO.INFO-BT]Computer Science [cs]/Biotechnology ,Pest Control, Biological ,3' Untranslated Regions ,030304 developmental biology ,0303 health sciences ,Effector ,Parvovirus ,030302 biochemistry & molecular biology ,[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Molecular biology ,biology.organism_classification ,Genome Replication and Regulation of Viral Gene Expression ,Capsid ,Insect Science ,[SDV.MP.VIR]Life Sciences [q-bio]/Microbiology and Parasitology/Virology ,[SDE]Environmental Sciences ,Capsid Proteins ,synthetic biology ,Densovirus - Abstract
Despite tight genetic compression, viral genomes are often organized in functional gene clusters, a modular structure that might favor their evolvability. This has greatly facilitated biotechnological developments, such as the recombinant Adeno-Associated Virus (AAV) systems for gene therapy. Following this lead, we endeavored to engineer the related insect parvovirus Junonia coenia densovirus (JcDV) to create addressable vectors for insect pest biocontrol. To enable safer manipulation of capsid mutants, we translocated the non-structural (ns) gene cluster outside the viral genome. To our dismay, this yielded a virtually non-replicable clone. We linked the replication defect to an unexpected modularity breach, as ns translocation truncated the overlapping 3’ UTR of the capsid transcript (vp). We found that native vp 3’UTR is necessary to high VP production, but that decreased expression do not adversely impact the expression of NS proteins, which are known replication effectors. As nonsense vp mutations recapitulate the replication defect, VP proteins appear directly implicated in the replication process. Our findings suggest intricate replication-encapsidation couplings that favor maintenance of genetic integrity. We discuss possible connections with an intriguing cis-packaging phenomenon previously observed in parvoviruses, whereby capsids preferentially package the genome from which they were expressed.ImportanceDensoviruses could be used as biological control agents to manage insect pests. Such applications require in depth biological understanding and associated molecular tools. However, the genomes of these viruses remain hard to manipulate due too poorly tractable secondary structures at their extremities. We devised a construction strategy that enable precise and efficient molecular modifications. Using this approach, we endeavored to create a split clone of the Junonia coenia densovirus (JcDV) that can be used to safely study the impact of capsid mutations on host specificity. Our original construct proved to be non-functional. Fixing this defect led us to uncover that capsid proteins and their correct expression are essential for continued rolling-hairpin replication. This points to an intriguing link between replication and packaging, which might be shared with related viruses. This serendipitous discovery illustrates the power of synthetic biology approaches to advance our knowledge of biological systems.
- Published
- 2020
- Full Text
- View/download PDF
13. Outcome of mixed DNA virus infections on Spodoptera exigua susceptibility to SeMNPV
- Author
-
Laila Gasmi, Ada Frattini, Mylène Ogliastro, and Salvador Herrero
- Subjects
0106 biological sciences ,Infectivity ,biology ,Host (biology) ,viruses ,fungi ,Context (language use) ,DNA virus ,Spodoptera ,biology.organism_classification ,010603 evolutionary biology ,01 natural sciences ,Virology ,Virus ,010602 entomology ,Biopesticide ,Exigua ,Agronomy and Crop Science - Abstract
Baculovirus-based biopesticides have been developed for an efficient control of lepidopteran pests; however, very few studies have assessed the effect of other viral microorganisms that might coexist with the applied baculovirus pesticide. Systematic studies are needed to predict the effect of such microorganisms on the baculovirus efficacy following application in the field. In this context, we examined the effect of a sublethal doses of the DNA virus Junonia coenia densovirus (JcDV) on the infectivity of the Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) when infecting the same host, Spodoptera exigua. In our experimental conditions, the infection timing was critical for the mixed infection outcome. The consecutive infections with SeMNPV and later with JcDV did not affect the larval mortality or the measured infection parameters compared with single infection with the baculovirus. However, when larvae were first infected with JcDV, a clear antagonism was detected between both viruses and resulted in a patent reduction in viral pathogenicity and deleterious effects observed in the SeMNPV progeny. On the other hand, the simultaneous infection with both viruses led to an additive effect of the mortalities caused by the two viruses. Our results reveal that temporal order of the infection with one or the other virus affects the outcome of mixed viral infections on the targeted pest and may influence the ecology of baculovirus and its use as biological insecticide.
- Published
- 2018
- Full Text
- View/download PDF
14. To something, Covid is good: SFV 2.0
- Author
-
Henri Gruffat, Aure Saulnier, Maria Dimitrova, Grégory Caignard, David Gilmer, Sandra Martin-Latil, Etienne Decroly, Sandie Munier, Anne-Sophie Gosselin-Grenet, Noël Tordo, Mylène Ogliastro, Pascale Massin, Institut de biologie moléculaire des plantes (IBMP), and Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)
- Subjects
0303 health sciences ,2019-20 coronavirus outbreak ,Coronavirus disease 2019 (COVID-19) ,SARS-CoV-2 ,business.industry ,Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) ,COVID-19 ,030312 virology ,Virology ,03 medical and health sciences ,Infectious Diseases ,Humans ,[SDV.BV]Life Sciences [q-bio]/Vegetal Biology ,Medicine ,business - Published
- 2020
- Full Text
- View/download PDF
15. Virus and calcium: an unexpected tandem to optimize insecticide efficacy
- Author
-
Fabrice Chandre, Valérie Raymond, Mylène Ogliastro, Véronique Apaire-Marchais, Bruno Lapied, and Cédric Pennetier
- Subjects
0106 biological sciences ,0301 basic medicine ,media_common.quotation_subject ,chemistry.chemical_element ,Insect ,Calcium ,Biology ,01 natural sciences ,Calcium in biology ,Virus ,Dephosphorylation ,03 medical and health sciences ,Viral entry ,Insect virus ,Ecology, Evolution, Behavior and Systematics ,media_common ,Calcium signaling ,business.industry ,fungi ,Agricultural and Biological Sciences (miscellaneous) ,3. Good health ,Biotechnology ,Cell biology ,010602 entomology ,030104 developmental biology ,chemistry ,business - Abstract
The effective control of insect pests is based on the rational use of the most efficient and safe insecticide treatments. To increase the effects of classical insecticides and to avoid the ability of certain pest insects to develop resistance, it is essential to propose novel strategies. Previous studies have shown that calcium-dependent phosphorylation/dephosphorylation is now considered as a new cellular mechanism for increasing the target sensitivity to insecticides. Because it is known that virus entry is correlated with intracellular calcium concentration rise, this report attempts to present the most important data relevant to the feasibility of combining an insect virus such as baculovirus or densovirus with an insecticide. In this case, the insect virus is not used as a bioinsecticide but acts as a synergistic agent able to trigger calcium rise and to activate calcium-dependent intracellular signalling pathways involved in the increase of the membrane receptors and/or ion channels sensitivity to insecticides. This virus-insecticide mixture represents a promising alternative to optimize the efficacy of insecticides against insect pests while reducing the doses.
- Published
- 2016
- Full Text
- View/download PDF
16. A New Prevalent Densovirus Discovered in
- Author
-
Sarah, François, Doriane, Mutuel, Alison B, Duncan, Leonor R, Rodrigues, Celya, Danzelle, Sophie, Lefevre, Inês, Santos, Marie, Frayssinet, Emmanuel, Fernandez, Denis, Filloux, Philippe, Roumagnac, Rémy, Froissart, and Mylène, Ogliastro
- Subjects
viral ecology ,Microbiota ,parvovirus ,virus diversity ,Genetic Variation ,Genome, Viral ,viral communities ,Plants ,Viral Nonstructural Proteins ,Article ,virus phylogeny ,mite ,arthropod ,Prevalence ,Animals ,Densovirus ,Capsid Proteins ,Female ,Metagenomics ,viral metagenomics ,Tetranychidae ,agricultural pests ,Phylogeny - Abstract
Viral metagenomics and high throughput sequence mining have revealed unexpected diversity, and the potential presence, of parvoviruses in animals from all phyla. Among arthropods, this diversity highlights the poor knowledge that we have regarding the evolutionary history of densoviruses. The aim of this study was to explore densovirus diversity in a small arthropod pest belonging to Acari, the two-spotted spider mite Tetranychus urticae, while using viral metagenomics based on virus-enrichment. Here, we present the viromes obtained from T. urticae laboratory populations made of contigs that are attributed to nine new potential viral species, including the complete sequence of a novel densovirus. The genome of this densovirus has an ambisens genomic organization and an unusually compact size with particularly small non-structural proteins and a predicted major capsid protein that lacks the typical PLA2 motif that is common to all ambidensoviruses described so far. In addition, we showed that this new densovirus had a wide prevalence across populations of mite species tested and a genomic diversity that likely correlates with the host phylogeny. In particular, we observed a low densovirus genomic diversity between the laboratory and natural populations, which suggests that virus within-species evolution is probably slower than initially thought. Lastly, we showed that this novel densovirus can be inoculated to the host plant following feeding by infected mites, and circulate through the plant vascular system. These findings offer new insights into densovirus prevalence, evolution, and ecology.
- Published
- 2018
17. Viral Metagenomics Approaches for High-Resolution Screening of Multiplexed Arthropod and Plant Viral Communities
- Author
-
Sarah, François, Denis, Filloux, Emmanuel, Fernandez, Mylène, Ogliastro, and Philippe, Roumagnac
- Subjects
DNA, Viral ,Viruses ,Animals ,Computational Biology ,High-Throughput Nucleotide Sequencing ,Genome, Viral ,Metagenomics ,Plants ,Arthropods - Abstract
Viral metagenomic approaches have become essential for culture-independent and sequence-independent viral detection and characterization. This chapter describes an accurate and efficient approach to (1) concentrate viral particles from arthropods and plants, (2) remove contaminating non-encapsidated nucleic acids, (3) extract and amplify both viral DNA and RNA, and (4) analyze high-throughput sequencing (HTS) data by bioinformatics. Using this approach, up to 96 arthropod or plant samples can be multiplexed in a single HTS library.
- Published
- 2018
18. ICTV Virus Taxonomy Profile: Parvoviridae
- Author
-
Susan F, Cotmore, Mavis, Agbandje-McKenna, Marta, Canuti, John A, Chiorini, Anna-Maria, Eis-Hubinger, Joseph, Hughes, Mario, Mietzsch, Sejal, Modha, Mylène, Ogliastro, Judit J, Pénzes, David J, Pintel, Jianming, Qiu, Maria, Soderlund-Venermo, Peter, Tattersall, Peter, Tijssen, Ictv Report Consortium, Yale University School of Medicine, University of Florida [Gainesville] (UF), Memorial University of Newfoundland [St. John's], National Institutes of Health [Bethesda] (NIH), University of Bonn Medical Centre [Bonn], MRC - University of Glasgow Centre for Virus Research, Université de Montpellier (UM), University of Missouri [Columbia] (Mizzou), University of Missouri System, University of Kansas Medical Center [Lawrence], University of Helsinki, Institut Armand Frappier (INRS-IAF), Institut National de la Recherche Scientifique [Québec] (INRS)-Réseau International des Instituts Pasteur (RIIP), and Production of this summary, the online chapter and associated resources was funded by a grant from the Wellcome Trust (WT108418AIA)
- Subjects
0301 basic medicine ,taxonomie ,Biodiversité et Ecologie ,Parvoviridae ,Parvovirinae ,Densovirinae ,taxonomy ,ICTV Report ,viruses ,030106 microbiology ,Genome, Viral ,Genome ,Biodiversity and Ecology ,Parvoviridae Infections ,03 medical and health sciences ,Virology ,Animals ,Humans ,Tissue specific ,Phylogeny ,Virus classification ,biology ,Family Parvoviridae ,Animal ,biology.organism_classification ,ICTV Virus Taxonomy Profiles ,3. Good health ,030104 developmental biology ,Small DNA Viruses ,Helper virus ,[SDV.MP.VIR]Life Sciences [q-bio]/Microbiology and Parasitology/Virology - Abstract
International audience; Members of the family Parvoviridae are small, resilient, non-enveloped viruses with linear, single-stranded DNA genomes of 4-6 kb. Viruses in two subfamilies, the Parvovirinae and Densovirinae, are distinguished primarily by their respective ability to infect vertebrates (including humans) versus invertebrates. Being genetically limited, most parvoviruses require actively dividing host cells and are host and/or tissue specific. Some cause diseases, which range from subclinical to lethal. A few require co-infection with helper viruses from other families. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the Parvoviridae, which is available at www.ictv.global/report/parvoviridae.
- Published
- 2019
- Full Text
- View/download PDF
19. Increase in taxonomic assignment efficiency of viral reads in metagenomic studies
- Author
-
Sarah François, Denis Filloux, Mylène Ogliastro, Marie Frayssinet, Philippe Roumagnac, Darren P. Martin, Rémy Froissart, Diversité, Génomes & Interactions Microorganismes - Insectes [Montpellier] (DGIMI), Université de Montpellier (UM)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut National de la Recherche Agronomique (INRA), Biologie et Génétique des Interactions Plante-Parasite (UMR BGPI), Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA), Computational Biology Group, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Maladies infectieuses et vecteurs : écologie, génétique, évolution et contrôle (MIVEGEC), Institut de Recherche pour le Développement (IRD [France-Sud])-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM), Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD), Institut National de la Recherche Agronomique (INRA), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud]), Institut National de la Recherche Agronomique (INRA)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Du gène à l'écosystème (MIVEGEC-GeneSys), Pathogènes, Environnement, Santé Humaine (EPATH), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])-Maladies infectieuses et vecteurs : écologie, génétique, évolution et contrôle (MIVEGEC), and Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])
- Subjects
0301 basic medicine ,Cancer Research ,Insecta ,microbiologie végétale ,Datasets as Topic ,Fresh Water ,Computational biology ,Genome, Viral ,blast ,Biology ,L73 - Maladies des animaux ,dark matter ,03 medical and health sciences ,Contig Mapping ,Feces ,Similarity (network science) ,Virology ,Databases, Genetic ,Animals ,Humans ,Human virome ,mapping ,Soil Microbiology ,H20 - Maladies des plantes ,métagénomique ,metagenomics ,Contig ,Ecology ,Molecular Sequence Annotation ,Sequence Analysis, DNA ,Plants ,Molecular Typing ,030104 developmental biology ,Infectious Diseases ,Gene Ontology ,[SDV.MP]Life Sciences [q-bio]/Microbiology and Parasitology ,Metagenomics ,Viruses ,[SDV.MP.VIR]Life Sciences [q-bio]/Microbiology and Parasitology/Virology ,Assignment methods ,viral metagenomics ,virologie végétale ,Algorithms - Abstract
BGPI Cirad : équipe 7; Metagenomics studies have revolutionized the field of biology by revealing the presence of many previously unisolated and uncultured micro-organisms. However, one of the main problems encountered in metagenomic studies is the high percentage of sequences that cannot be assigned taxonomically using commonly used similarity-based approaches (e.g. BLAST or HMM). These unassigned sequences are allegorically called "dark matter" in the metagenomic literature and are often referred to as being derived from new or unknown organisms. Here, based on published and original metagenomic datasets coming from virus-like particle enriched samples, we present and quantify the improvement of viral taxonomic assignment that is achievable with a new similarity-based approach. Indeed, prior to any use of similarity based taxonomic assignment methods, we propose assembling contigs from short reads as is currently routinely done in metagenomic studies, but then to further map unassembled reads to the assembled contigs. This additional mapping step increases significantly the proportions of taxonomically assignable sequence reads from a variety plant, insect and environmental (estuary, lakes, soil, feces) - of virome studies.
- Published
- 2018
- Full Text
- View/download PDF
20. Pathogenesis of Junonia coenia densovirus in Spodoptera frugiperda: A route of infection that leads to hypoxia
- Author
-
Philippe Fournier, Béatrice Chabi, Mylène Ogliastro, Jean-Michel Salmon, Doriane Mutuel, Marc Ravallec, Cecilia Multeau, Biologie Intégrative et Virologie des Insectes [Univ. de Montpellier II] (BIVI), Université Montpellier 2 - Sciences et Techniques (UM2)-Institut National de la Recherche Agronomique (INRA), Différenciation Cellulaire et Croissance (DCC), Institut National de la Recherche Agronomique (INRA)-Université Montpellier 2 - Sciences et Techniques (UM2), Biotop, Sciences Pour l'Oenologie (SPO), Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), and Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université Montpellier 1 (UM1)-Université de Montpellier (UM)-Institut National de la Recherche Agronomique (INRA)
- Subjects
ANOXIA ,[SDV]Life Sciences [q-bio] ,PATHOGENESIS ,Spodoptera ,Biology ,Virus ,Pathogenesis ,03 medical and health sciences ,INSECT PARVOVIRUS ,Virology ,[SDV.IDA]Life Sciences [q-bio]/Food engineering ,TISSUE TROPISM ,medicine ,Animals ,[INFO]Computer Science [cs] ,[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering ,SPODOPTERA FRUGIPERDA ,Barrier function ,030304 developmental biology ,DENSOVIRUS ,0303 health sciences ,030306 microbiology ,HOST RANGE ,fungi ,ROS ,Midgut ,RELATION VIRUS-VECTEUR ,biology.organism_classification ,INSECT TRACHEA ,Epithelium ,3. Good health ,Oxygen ,Trachea ,Oxidative Stress ,medicine.anatomical_structure ,Larva ,Tissue tropism ,Densovirus ,BIOLOGICAL CONTROL - Abstract
International audience; To evaluate densovirus potential against lepidopteran pests and their capacity to invade new hosts, we have characterised in vivo the infection and pathogenesis of the Junonia coenia densovirus (JcDNV) in the noctuid pest Spodoptera frugiperda. Here we show that infection starts with the ingestion of viral particles that cross the midgut epithelium without replicating. By quantitative PCR we established the kinetic and the route of infection, from virus ingestion to replication in visceral tracheae and hemocytes. JcDNV has a high particle-to-infection ratio mostly due to the barrier function of the midgut. Pathology and cytopathology suggested that infection of tracheal cells impairs oxygen delivery to demanding tissues leading to cytopathic effects in all the tissues. Finally, larval death results from several physiological shocks, including molting arrest and anoxia.
- Published
- 2010
- Full Text
- View/download PDF
21. Virus and calcium: an unexpected tandem to optimize insecticide efficacy
- Author
-
Véronique, Apaire-Marchais, Mylène, Ogliastro, Fabrice, Chandre, Cédric, Pennetier, Valérie, Raymond, and Bruno, Lapied
- Subjects
Insecticides ,Insecta ,Animals ,Densovirus ,Calcium ,Calcium Signaling ,Baculoviridae ,Insect Control - Abstract
The effective control of insect pests is based on the rational use of the most efficient and safe insecticide treatments. To increase the effects of classical insecticides and to avoid the ability of certain pest insects to develop resistance, it is essential to propose novel strategies. Previous studies have shown that calcium-dependent phosphorylation/dephosphorylation is now considered as a new cellular mechanism for increasing the target sensitivity to insecticides. Because it is known that virus entry is correlated with intracellular calcium concentration rise, this report attempts to present the most important data relevant to the feasibility of combining an insect virus such as baculovirus or densovirus with an insecticide. In this case, the insect virus is not used as a bioinsecticide but acts as a synergistic agent able to trigger calcium rise and to activate calcium-dependent intracellular signalling pathways involved in the increase of the membrane receptors and/or ion channels sensitivity to insecticides. This virus-insecticide mixture represents a promising alternative to optimize the efficacy of insecticides against insect pests while reducing the doses.
- Published
- 2015
22. Establishment and analysis of a reference transcriptome for Spodoptera frugiperda
- Author
-
Florence Blanc, Philippe Fournier, Emmanuelle Jacquin-Joly, Anne-Sophie Gosselin Grenet, Anthony Bretaudeau, Anne-Nathalie Volkoff, Jean-Michel Escoubas, Christelle Monsempes, René Feyereisen, Sylvie Gimenez, François Cousserans, Nicolas Nègre, Pierre-Alain Girard, Frédérique Hilliou, Imène Seninet, Ghislaine Magdelenat, Mylène Ogliastro, Fabrice Legeai, Bernard Duvic, Doriane Mutuel, Emmanuelle d'Alençon, Institut de Génétique, Environnement et Protection des Plantes (IGEPP), AGROCAMPUS OUEST-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National de la Recherche Agronomique (INRA), Scalable, Optimized and Parallel Algorithms for Genomics (GenScale), Inria Rennes – Bretagne Atlantique, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-GESTION DES DONNÉES ET DE LA CONNAISSANCE (IRISA-D7), Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Université de Bretagne Sud (UBS)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-Télécom Bretagne-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-CentraleSupélec-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Université de Rennes (UNIV-RENNES)-CentraleSupélec-Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Université de Bretagne Sud (UBS)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Rennes (ENS Rennes)-Télécom Bretagne-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-CentraleSupélec, Diversité, Génomes & Interactions Microorganismes - Insectes [Montpellier] (DGIMI), Université de Montpellier (UM)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut National de la Recherche Agronomique (INRA), Plateforme bioinformatique GenOuest [Rennes], Université de Rennes (UNIV-RENNES)-CentraleSupélec-Plateforme Génomique Santé Biogenouest®-Inria Rennes – Bretagne Atlantique, Institut National de Recherche en Informatique et en Automatique (Inria), Institut d'écologie et des sciences de l'environnement de Paris (IEES), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Recherche Agronomique (INRA), Genoscope - Centre national de séquençage [Evry] (GENOSCOPE), Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut Sophia Agrobiotech [Sophia Antipolis] (ISA), Institut National de la Recherche Agronomique (INRA)-Université Nice Sophia Antipolis (... - 2019) (UNS), Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), Institut National de la Recherche Agronomique (INRA)-Université de Rennes (UR)-AGROCAMPUS OUEST, Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-Télécom Bretagne-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-Télécom Bretagne-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Télécom Bretagne-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS), Institut National de la Recherche Agronomique (INRA)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM), Université de Rennes (UR)-Plateforme Génomique Santé Biogenouest®-Inria Rennes – Bretagne Atlantique, Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-Télécom Bretagne-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut d'écologie et des sciences de l'environnement de Paris (iEES), Institut National de la Recherche Agronomique (INRA)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Institut Sophia Agrobiotech (ISA), Institut National de la Recherche Agronomique (INRA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS), INRA AIP Bio-ressources, Institut National de la Recherche Agronomique (INRA)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-AGROCAMPUS OUEST, Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-Télécom Bretagne-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes 1 (UR1), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-Télécom Bretagne-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Télécom Bretagne-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Plateforme Génomique Santé Biogenouest®-Inria Rennes – Bretagne Atlantique, Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-Télécom Bretagne-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), GESTION DES DONNÉES ET DE LA CONNAISSANCE (IRISA-D7), CentraleSupélec-Télécom Bretagne-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National de Recherche en Informatique et en Automatique (Inria)-École normale supérieure - Rennes (ENS Rennes)-Université de Bretagne Sud (UBS)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-CentraleSupélec-Télécom Bretagne-Université de Rennes 1 (UR1), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Inria Rennes – Bretagne Atlantique, Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-CentraleSupélec-Télécom Bretagne-École normale supérieure - Rennes (ENS Rennes)-Université de Bretagne Sud (UBS)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), Centre National de la Recherche Scientifique (CNRS)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut National de la Recherche Agronomique (INRA), and Negre, Nicolas
- Subjects
Biodiversité et Ecologie ,Genes, Insect ,Sf9 ,Spodoptera ,biodiversité ,Biodiversity and Ecology ,Transcriptome ,transcriptomics ,[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Genomics [q-bio.GN] ,Transcriptional regulation ,Genetics ,Animals ,Gene family ,lépidoptère ,génomique des populations ,Gene ,biology ,business.industry ,Gene Expression Profiling ,fungi ,Molecular Sequence Annotation ,Spodoptera frugiperda ,Reference Standards ,biology.organism_classification ,immunity ,Immunity, Innate ,Agricultural sciences ,Biotechnology ,Smell ,Gene expression profiling ,Insect Proteins ,olfaction ,DNA microarray ,symbiose ,business ,Sciences agricoles ,Research Article - Abstract
Background Spodoptera frugiperda (Noctuidae) is a major agricultural pest throughout the American continent. The highly polyphagous larvae are frequently devastating crops of importance such as corn, sorghum, cotton and grass. In addition, the Sf9 cell line, widely used in biochemistry for in vitro protein production, is derived from S. frugiperda tissues. Many research groups are using S. frugiperda as a model organism to investigate questions such as plant adaptation, pest behavior or resistance to pesticides. Results In this study, we constructed a reference transcriptome assembly (Sf_TR2012b) of RNA sequences obtained from more than 35 S. frugiperda developmental time-points and tissue samples. We assessed the quality of this reference transcriptome by annotating a ubiquitous gene family - ribosomal proteins - as well as gene families that have a more constrained spatio-temporal expression and are involved in development, immunity and olfaction. We also provide a time-course of expression that we used to characterize the transcriptional regulation of the gene families studied. Conclusion We conclude that the Sf_TR2012b transcriptome is a valid reference transcriptome. While its reliability decreases for the detection and annotation of genes under strong transcriptional constraint we still recover a fair percentage of tissue-specific transcripts. That allowed us to explore the spatial and temporal expression of genes and to observe that some olfactory receptors are expressed in antennae and palps but also in other non related tissues such as fat bodies. Similarly, we observed an interesting interplay of gene families involved in immunity between fat bodies and antennae. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-704) contains supplementary material, which is available to authorized users.
- Published
- 2014
- Full Text
- View/download PDF
23. Four Amino Acids of an Insect Densovirus Capsid Determine Midgut Tropism and Virulence
- Author
-
Morena Casartelli, Cecilia Multeau, Ilaria Castelli, Mylène Ogliastro, Aurélie Perrin, Rémy Froissart, Diversité, Génomes et Interactions Microorganismes-Insectes, Institut National de la Recherche Agronomique (INRA)-Université Montpellier 2 - Sciences et Techniques (UM2), InVivo AgroSolut, Université Montpellier 2 - Sciences et Techniques (UM2), Maladies infectieuses et vecteurs : écologie, génétique, évolution et contrôle (MIVEGEC), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud]), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad), Università degli Studi di Milano [Milano] (UNIMI), Diversité, Génomes & Interactions Microorganismes - Insectes [Montpellier] (DGIMI), Université de Montpellier (UM)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut National de la Recherche Agronomique (INRA), French Association Nationale Recherche Technologie, In vivo AgroSolutions from the Union In vivo group, and French Institut National de la Recherche Agronomique
- Subjects
Models, Molecular ,[SDV]Life Sciences [q-bio] ,viruses ,Immunology ,Amino Acid Motifs ,Molecular Sequence Data ,Virulence ,Biology ,Spodoptera ,Virus Replication ,JUNONIA-COENIA DENSOVIRUS ,Microbiology ,PATHWAY ,03 medical and health sciences ,Virology ,INFECTION ,Animals ,Densovirus ,Amino Acid Sequence ,Tropism ,030304 developmental biology ,chemistry.chemical_classification ,0303 health sciences ,030302 biochemistry & molecular biology ,fungi ,Midgut ,3. Good health ,Amino acid ,Virus-Cell Interactions ,GENOME ,Intestines ,Viral Tropism ,chemistry ,Viral replication ,Capsid ,Insect Science ,Tissue tropism ,VIRUS ,Capsid Proteins ,HOST-RANGE - Abstract
Densoviruses are insect parvoviruses that are orally infectious for Lepidoptera . To assess the mechanisms underlying their specificity and their virulence, we investigated the role of eight candidate residues in the densovirus capsid. We showed that the substitutions of four amino acids were associated with decreased virulence due to a decreased ability to cross the host midgut epithelium, without an effect on viral replication in other tissues.
- Published
- 2012
- Full Text
- View/download PDF
24. Densovirus infectious pathway requires clathrin-mediated endocytosis followed by trafficking to the nucleus
- Author
-
Françoise-Xavière Jousset, Micheline Devise, Miguel López-Ferber, Agnès Vendeville, Mylène Ogliastro, Doriane Mutuel, Marc Ravallec, Thierry Dupressoir, Philippe Fournier, Biologie Intégrative et Virologie des Insectes [Univ. de Montpellier II] (BIVI), Université Montpellier 2 - Sciences et Techniques (UM2)-Institut National de la Recherche Agronomique (INRA), IMT - MINES ALES (IMT - MINES ALES), Institut Mines-Télécom [Paris] (IMT), and Institut National de la Recherche Agronomique (INRA)-Université Montpellier 2 - Sciences et Techniques (UM2)
- Subjects
Time Factors ,media_common.quotation_subject ,Immunology ,Endocytic cycle ,Active Transport, Cell Nucleus ,Spodoptera ,Endocytosis ,Microbiology ,Clathrin ,Virus ,Cell Line ,03 medical and health sciences ,Virology ,Animals ,Densovirus ,Internalization ,Cytoskeleton ,030304 developmental biology ,media_common ,0303 health sciences ,biology ,030306 microbiology ,fungi ,Receptor-mediated endocytosis ,LEPIDOPTERE ,Virus Internalization ,3. Good health ,Virus-Cell Interactions ,Kinetics ,Microscopy, Electron ,INSECTE ,Insect Science ,JUNONIA COENIA ,[SDV.MP.VIR]Life Sciences [q-bio]/Microbiology and Parasitology/Virology ,biology.protein ,Intracellular - Abstract
Junonia coenia densovirus (JcDNV) is an ambisense insect parvovirus highly pathogenic for lepidopteran pests at larval stages. The potential use of DNVs as biological control agents prompted us to reinvestigate the host range and cellular mechanisms of infection. In order to understand the early events of infection, we set up a functional infection assay in a cell line of the pest Lymantria dispar to determine the intracellular pathway undertaken by JcDNV to infect a permissive lepidopteran cell line. Our results show that JcDNV particles are rapidly internalized into clathrin-coated vesicles and slowly traffic within early and late endocytic compartments. Blocking late-endocytic trafficking or neutralizing the pH with drugs inhibited infection. During internalization, disruption of the cytoskeleton, and inhibition of phosphatidylinositol 3-kinase blocked the movement of vesicles containing the virus to the nucleus and impaired infection. In summary, our results define for the first time the early endocytic steps required for a productive DNV infection.
- Published
- 2009
- Full Text
- View/download PDF
25. Characterization of the cDNA encoding the 90 kDa heat-shock protein in the Lepidoptera Bombyx mori and Spodoptera frugiperda
- Author
-
Mylène Ogliastro, Kasuei Mita, Igor Landais, Sylvie Gimenez, Martine Duonor-Cerutti, Junko Nohata, Philippe Fournier, Gérard Devauchelle, Jean-Michel Pommet, Biologie Intégrative et Virologie des Insectes [Univ. de Montpellier II] (BIVI), Institut National de la Recherche Agronomique (INRA)-Université Montpellier 2 - Sciences et Techniques (UM2), and Université Montpellier 2 - Sciences et Techniques (UM2)-Institut National de la Recherche Agronomique (INRA)
- Subjects
0106 biological sciences ,DNA, Complementary ,Sequence analysis ,viruses ,Molecular Sequence Data ,Gene Expression ,Sf9 ,Sequence alignment ,Spodoptera ,Biology ,01 natural sciences ,03 medical and health sciences ,ADNC ,Bombyx mori ,Sequence Homology, Nucleic Acid ,Complementary DNA ,Genetics ,Animals ,Amino Acid Sequence ,HSP90 Heat-Shock Proteins ,Peptide sequence ,Phylogeny ,030304 developmental biology ,0303 health sciences ,Expressed sequence tag ,[SDV.GEN]Life Sciences [q-bio]/Genetics ,Base Sequence ,Sequence Homology, Amino Acid ,cDNA library ,fungi ,Sequence Analysis, DNA ,General Medicine ,Blotting, Northern ,Bombyx ,biology.organism_classification ,Molecular biology ,010602 entomology ,INSECTE ,RNA ,Sequence Alignment - Abstract
This report presents the first hsp90 complete cDNA sequences from two Lepidoptera. The Bombyx mori full sequence was reconstituted from 15 partial cDNA clones belonging to expressed sequence tag libraries obtained from different tissues or cultured cells, thus showing the ubiquitous expression of the hsp90 gene. The Spodoptera frugiperda cDNA was isolated as a full-length clone from a cDNA library established from the Sf9 cell line. Both cDNAs are highly homologous and display the classical amino acid (aa) stretches representing the HSP90 signature. They potentially encode a 716 aa (B. mori) and a 717 aa (S. frugiperda) protein, with a calculated molecular mass of 83 kDa similar to the Drosophila homologous protein. We show that, unlike the vertebrates, hsp90 is a unique gene in both S. frupiperda and B. mori genomes. Sequencing of the corresponding genomic region shows that, contrary to the dipteran homologous gene, the lepidopteran hsp90 gene does not display any intron. Phylogenetic analysis based on the two lepidopteran and 23 other HSP90 aa sequences displays a high consistency with known phylogeny at both high and low taxonomic levels. Transcriptional analysis performed in S. frugiperda shows that the induction of the hsp90 gene only occurs 14 degrees C above physiological growth conditions (42 degrees C).
- Published
- 2001
26. Functional analysis of evolutionary conserved clustering of bZIP binding sites in the baculovirus homologous regions (hrs) suggests a cooperativity between host and viral transcription factors
- Author
-
Rachel Vincent, Mylène Ogliastro, Igor Landais, Martine Bouton, Martine Duonor-Cérutti, and Gérard Devauchelle
- Subjects
Gene Expression Regulation, Viral ,animal structures ,viruses ,Sf9 ,Biology ,Response Elements ,Cell Line ,Evolution, Molecular ,Immediate early gene ,chemistry.chemical_compound ,cAMP response element ,Allosteric Regulation ,Transcription (biology) ,Virology ,RNA polymerase ,Animals ,Binding site ,Enhancer ,Transcription factor ,Conserved Sequence ,Genetics ,Binding Sites ,Base Sequence ,fungi ,Viral enhancer ,TPA response element ,hr5 ,Promoter ,Spodoptera frugiperda ,AcMNPV ,Nucleopolyhedroviruses ,Lepidoptera NPV ,Basic-Leucine Zipper Transcription Factors ,chemistry ,Baculoviridae ,Protein Binding - Abstract
The genome of the Autographa californica Multinucleocapsid Polyhedrosis Virus (AcMNPV) contains nine interspersed homologous regions (hrs) that function as potent enhancer sequences when linked in cis to either viral or heterologous RNA polymerase II-dependent promoters. Their activity is strongly increased by the binding of the major immediate early viral transregulator IE1 on 28-mer palindromic sites present in hrs. We show that hrs of AcMNPV additionally carry, in the interpalindromic sequences, a large number of cAMP response elements (CRE) and TPA response elements (TRE), known to bind ubiquitous cellular transcription factors of the bZIP family. Moreover, these clusters of CRE and TRE motifs are concentrated in hrs. Analysis of the 25 baculovirus genomes sequenced so far reveals that these motifs are evolutionary conserved in Lepidoptera NPVs, suggesting a functional role in the hr enhancer function. Consistently, EMSA experiments indicate that CRE and on a lesser extent TRE sites specifically bind insect host factors. Moreover, reporter assays reveal that these CRE sites have an additive stimulatory effect on RNAPol II-dependent transcription in Sf9 cells and are potentially able to synergize with the IE1-binding palindrome.
- Full Text
- View/download PDF
27. Wild plant species associated viromes : towards improved characterization strategies and variability in various ecological environments
- Author
-
Ma, Yuxin, Biologie du fruit et pathologie (BFP), Université Bordeaux Segalen - Bordeaux 2-Institut National de la Recherche Agronomique (INRA)-Université Sciences et Technologies - Bordeaux 1, Université de Bordeaux, Thierry Candresse, Université Sciences et Technologies - Bordeaux 1-Université Bordeaux Segalen - Bordeaux 2-Institut National de la Recherche Agronomique (INRA), Candresse, Thierry, Ogliastro, Mylène, Roumagnac, Philippe, Massart, Sébastien, Mylène Ogliastro [Président], Philippe Roumagnac [Rapporteur], and Sébastien Massart [Rapporteur]
- Subjects
Diversity ,Diversité ,Virome ,Plant virus ,Metagenomics ,Virus phytopathogène ,[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology ,Métagénomique - Abstract
Metagenomics based on high throughput sequencing (HTS) has opened a new era of unbiased discovery and genomic characterization of viruses. As for other viruses, such metagenomic studies indicate that the diversity of plant viruses was until recently far underestimated. As potentially important components of unmanaged and cultivated ecosystems, there is a need to explore the diversity of the viruses associated with plant populations and to understand the drivers shaping their diversity in space and time. At the same time, the development of such studies is still faced by methodological questions concerning, for example, the choice of target nucleic acids populations, the reproducibility of the analyses or the implementation of a strategy to accurately compare virus richness in different environments. In the present thesis the phytovirome associated with plant populations sampled in various ecosystems, with an emphasis on wild plant or weed species was characterized using HTS-based metagenomics. In these experiments, the bioinformatic analysis of the virome complexity was performed using two strategies, a classical one based on Blast-based contigs annotation for the identification of the viral families present in a sample and a novel one, described and validated here, and which allows to classify the metagenomic viral sequences into operational taxonomic units (OTUs) as a proxy to viral species. Also from the methodological perspective, the results obtained using complex plant pools such as those used in the “lawn-mower” sampling strategy allowed to compare the performance of the two currently used viral enrichment methods, double-stranded RNA (dsRNA) or Virion-associated nucleic acids (VANA) purification. The results indicate both of approaches uncovered rich viromes and suggest that the dsRNA approach should be preferred when analyzing complex plant pools since it consistently provided a more comprehensive description of the analysed phytoviromes, with the exception of the DNA viruses. The virome characterization results obtained showed, for the temperate plant populations from unmanaged and cultivated sampling sites, a high virus incidence (up to 86.5% in 126 single species pools collected over a two-year period) and confirmed the predominance of dsRNA viruses with greater than 70% of the phytovirome OTUs. While a significant proportion of detected single-stranded RNA (ssRNA) viruses are already known agents, more than 90% of the dsRNA viruses are novel and had not previously been characterized. A large scale culturomics effort to contrast the phytovirome with the mycovirome of fungal cultures obtained from the same plant samples revealed an extremely low number of shared OTUs, further deepening the debate about the phytovirus or mycovirus nature of the dsRNA viruses identified in plant viromes. The OTU composition of the analyzed phytoviromes varied significantly between sampling sites but was also shown to be highly dynamic over time, with a very low proportion of OTUs consistently re-sampled in the same plant population over a 2 years period. Taken together, these exploratory studies allow a more reasoned choice of methodology for the study of plant-associated viromes and expand our knowledge of plant virus diversity especially in neglected wild plant populations, providing important references for the further viral ecology and evolution studies.; Les approches de métagénomique basées sur l’utilisation des techniques de séquençage haut débit ont ouvert une nouvelle ère pour la découverte non biaisée et la caractérisation génomique des virus. Comme pour les autres virus, de telles études montrent que la diversité des virus phytopathogènes a jusqu’à tout récemment été fortement sous-estimée. Ces virus constituant une composante potentiellement importante des écosystèmes naturels ou des agrosystèmes anthropisés, il est important d’explorer la diversité des virus associés aux populations végétales et de comprendre les forces structurant cette diversité dans le temps et dans l’espace. Dans le même temps, le développement de telles études reste confronté à des questions d’ordre méthodologique concernant, par exemple, le choix des populations d’acides nucléiques à séquencer, la reproductibilité des analyses ou la disponibilité d’une stratégie permettant de comparer de façon fiable la richesse virale dans différents environnements. Dans le présent travail, le virome associé à des populations végétales échantillonnées dans différents écosystèmes, avec un focus sur les adventices et les plantes sauvages, a été caractérisé par des approches de métagénomique par séquençage haut débit. Dans ces travaux, l’analyse bioinformatique de la richesse du virome a été conduite par deux approches, l’une classique basée sur l’annotation Blast pour l’identification des familles virales présentes dans un échantillon, et l’autre, décrite et validée ici, qui permet de classifier les séquences virales métagénomiques en unités taxonomiques opérationnelles (operational taxonomic units, OTUs) utilisées comme proxy des espèces virales. Toujours dans une perspective méthodologique, les résultats obtenus avec des pools complexes de plantes représentatifs de la diversité végétale au site d’échantillonnage (approche « tondeuse à gazon ») ont permis de comparer les performances des deux techniques actuellement utilisées pour enrichir les séquences virales, la purification d’ARN bicaténaires (double-stranded RNA, dsRNA) ou d’acides nucléiques associés aux virions (virion-associated nucleic acids, VANA). Les résultats obtenus par les deux approches ont mis en évidence des viromes riches mais montrent que l’approche dsRNA devrait être préférée pour l’analyse de tels pools complexes car elle permet de façon reproductible une description plus complète du phytovirome, à l’exception des virus ADN. Les viromes caractérisés montrent, pour les populations végétales de milieux cultivés ou non gérés tempérés échantillonnées, une forte incidence virale (jusqu’à 86.5% dans 126 pools monospécifiques collectés sur une période de deux ans) et confirment la prédominance des virus dsRNA qui représentent plus de 70% des OTU identifiés. Alors qu’une proportion significative des virus ssRNA détectés sont déjà connus, plus de 90% des virus dsRNA détectés sont nouveaux et n’avaient pas été caractérisés auparavant. Un effort important en culturomique visant à comparer le phytovirome avec le mycovirome de cultures fongiques obtenues à partir des mêmes échantillons végétaux a révélé un nombre remarquablement faible d’OTUs partagés, renforçant le questionnement sur la nature, phytovirus ou mycovirus, des virus dsRNA identifiés dans les viromes des plantes. La composition en OTU des viromes analysés s’est révélée variable entre sites d’échantillonnage mais aussi très dynamique dans le temps, avec seulement une très faible fraction des OTUs ré-échantillonnés de façon stable dans la même population végétale sur une période de deux ans. Pris dans leur ensemble, ces travaux exploratoires permettent de mieux raisonner les choix méthodologiques pour l’étude des viromes associés aux plantes et étendent notre connaissance de la diversité des phytovirus, en particulier dans des espèces végétales sauvages largement négligées, apportant des points de référence importants pour de nouveaux travaux en écologie et en évolution virale.
- Published
- 2019
28. Diversité et écologie des virus associés aux arthropodes : des communautés aux génomes
- Author
-
François, Sarah, Diversité, Génomes & Interactions Microorganismes - Insectes [Montpellier] (DGIMI), Université de Montpellier (UM)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut National de la Recherche Agronomique (INRA), Université Montpellier, Mylène Ogliastro, Rémy Froissart, and Institut National de la Recherche Agronomique (INRA)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)
- Subjects
[SDV.SA]Life Sciences [q-bio]/Agricultural sciences ,Diversity ,Diversité ,Ecology ,Ecologie ,Evolution ,Metagenomics ,Arthropods ,Virus ,Métagénomique ,Arthropodes - Abstract
High throughput sequencing technologies have revealed the extraordinary diversity of viral sequences in hitherto largely unexplored host groups. Thus, our knowledge about arthropod viruses, infecting the most diverse and abundant animals on Earth, was hitherto essentially reduced to species of economical and medical interest. New data on viral diversity in arthropods illustrate the need to expand viral inventory at the scale of the ecosystem and to include viruses as an essential component of their functioning and their evolution.In my thesis, I developed and applied two approaches to study the diversity of viruses in arthropods and how virus circulate in ecosystems, focusing on species of agronomic interest: (i) a virus-centered approach by exploring nucleotidic sequence databases, searching for the presence of a group of small DNA viruses infecting arthropods, the densoviruses (ii) an arthropod-centered approach at the scale of the ecosystem, using a viral metagenomic method to analyze viral communities associated with arthropods from different trophic levels from the same agroecosystems.My results showed that:(i) Densoviruses are spread throughout the animal kingdom - particularly in a wide diversity of arthropods - and are highly diverse genetically, which led to a better understanding of the evolutionary history of this group of viruses;(ii) A number of new viruses can be described in pests: the spider mite (Tetranychus urticae, Acari) from laboratory populations, as well as the green pea aphid (Acyrthosiphon pisum, Hemiptera), the alfalfa weevil (Hypera postica, Coleoptera) and the cotton bollworm (Helicoverpa armigera, Lepidoptera) from natural populations sampled from alfalfa crops and grasslands. These studies also highlighted that specific viromes are associated with each pest species, and I characterized the distribution of some of these viruses in arthropod communities. In total, more than 60 new species of arthropod and plant viruses were discovered. Their evolutionary links with known virus species was characterized by phylogenetic analyzes.(iii) The work realized in (ii) also contributed to optimize a methodology to prepare and analyze viromes from multiplexed samples, that is particularly suitable to optimize the taxonomic allocation of sequences and thus reduce the "dark matter" that is inherent to viral metagenomics analyses.; Les nouvelles technologies de séquençage des génomes ont permis de révéler l’extraordinaire diversité des séquences virales dans des groupes d’hôtes jusque-là largement inexplorés. Ainsi, notre connaissance des virus d’arthropodes, infectant les animaux les plus diversifiés et abondants sur Terre, était jusque-là essentiellement réduite à des espèces d’intérêt économique et médical. Les nouvelles données de diversité virale chez les arthropodes illustrent le besoin d’étendre l’inventaire viral à l’échelle de l’écosystème et d’inclure les virus comme une composante essentielle de leur fonctionnement et de leur évolution.Dans ces travaux de thèse, j’ai développé et appliqué deux approches d’étude de la diversité virale chez des arthropodes, ainsi que de la circulation des virus dans des écosystèmes, en me focalisant sur des espèces d’intérêt agronomique : i) une approche virus-centrée par fouille de bases de données nucléotidiques, en recherchant la présence d’un groupe de petits virus à ADN inféodés aux arthropodes, les densovirus ii) une approche arthropode-centrée, utilisant une méthode séquençage haut débit de génomes viraux (métagénomique virale) pour analyser des communautés virales associées à des arthropodes de différents niveaux trophiques échantillonnés dans des agroécosystèmes.Mes résultats ont permis de :(i) Mettre en évidence que les densovirus sont largement présents dans l’ensemble du règne animal - notamment chez une grande diversité d’arthropodes - et qu’ils sont très diversifiés génétiquement, ce qui a permis de mieux appréhender histoire évolutive de ce groupe de virus ;(ii) Découvrir de nouveaux virus chez certains ravageurs de cultures : le tétranyque tisserand (Tetranychus urticae, Acarien) provenant de populations de laboratoires, ainsi que le puceron vert du pois (Acyrthosiphon pisum, Hémiptère), le phytonome de la luzerne (Hypera postica, Coléoptère) et l’armigère de la tomate (Helicoverpa armigera, Lépidoptère) provenant de populations naturelles échantillonnées dans des cultures de luzerne et des prairies. Ces études ont permis de mettre en évidence la présence de viromes spécifiques de chaque espèce d’arthropode et de caractériser la distribution de certains virus dans des communautés d’arthropodes d’un même écosystème. Plus de 60 nouvelles espèces de virus d’arthropodes et de plantes ont été découvertes. Leurs liens évolutifs avec des espèces de virus connues ont été caractérisés par des analyses phylogénétiques.(iii) Enfin, les travaux menés en (ii) ont également permis d’optimiser la méthodologie permettant d’obtenir et d’analyser des viromes obtenus à partir d’échantillons multiplexés, optimisant notamment l’étape d’attribution taxonomique des séquences obtenues par séquençage à haut débit, réduisant ainsi leur proportion en « matière noire » inhérente aux analyses des viromes.
- Published
- 2017
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.