1. The AMPK activator ATX-304 alters cellular metabolism to protect against cisplatin-induced acute kidney injury
- Author
-
Katerelos, M, Gleich, K, Harley, G, Loh, K, Oakhill, JS, Kemp, BE, de Souza, DP, Narayana, VK, Coughlan, MT, Laskowski, A, Ling, NXY, Murray-Segal, L, Brink, R, Lee, M, Power, DA, Mount, PF, Katerelos, M, Gleich, K, Harley, G, Loh, K, Oakhill, JS, Kemp, BE, de Souza, DP, Narayana, VK, Coughlan, MT, Laskowski, A, Ling, NXY, Murray-Segal, L, Brink, R, Lee, M, Power, DA, and Mount, PF
- Abstract
Acute kidney injury (AKI) disrupts energy metabolism. Targeting metabolism through AMP-activated protein kinase (AMPK) may alleviate AKI. ATX-304, a pan-AMPK activator, was evaluated in C57Bl/6 mice and tubular epithelial cell (TEC) cultures. Mice received ATX-304 (1 mg/g) or control chow for 7 days before cisplatin-induced AKI (CI-AKI). Primary cultures of tubular epithelial cells (TECs) were pre-treated with ATX-304 (20 µM, 4 h) prior to exposure to cisplatin (20 µM, 23 h). ATX-304 increased acetyl-CoA carboxylase phosphorylation, indicating AMPK activation. It protected against CI-AKI measured by serum creatinine (control 0.05 + 0.03 mM vs ATX-304 0.02 + 0.01 mM, P = 0.03), western blot for neutrophil gelatinase-associated lipocalin (NGAL) (control 3.3 + 1.8-fold vs ATX-304 1.2 + 0.55-fold, P = 0.002), and histological injury (control 3.5 + 0.59 vs ATX-304 2.7 + 0.74, P = 0.03). In TECs, pre-treatment with ATX-304 protected against cisplatin-mediated injury, as measured by lactate dehydrogenase release, MTS cell viability, and cleaved caspase 3 expression. ATX-304 protection against cisplatin was lost in AMPK-null murine embryonic fibroblasts. Metabolomic analysis in TECs revealed that ATX-304 (20 µM, 4 h) altered 66/126 metabolites, including fatty acids, tricarboxylic acid cycle metabolites, and amino acids. Metabolic studies of live cells using the XFe96 Seahorse analyzer revealed that ATX-304 increased the basal TEC oxygen consumption rate by 38%, whereas maximal respiration was unchanged. Thus, ATX-304 protects against cisplatin-mediated kidney injury via AMPK-dependent metabolic reprogramming, revealing a promising therapeutic strategy for AKI.
- Published
- 2024