92,786 results on '"Murray, P."'
Search Results
2. 'Why Are We Running Short of Teachers Even as the Birthrate Declines?': A Case Study of the Teacher Shortage in Public Schools in X Prefecture in Japan
- Author
-
Aki Sakuma, Naoto Shimazaki, and Nadezhda Murray
- Abstract
This paper examined the actual circumstances of the recent teacher shortage in public elementary and junior high schools in X Prefecture. Although teacher shortages had been reported, few previous studies had investigated them empirically. With the cooperation of all five branch offices of the Board of Education, data were collected through three surveys: 1) a questionnaire survey in June 2021 of the branch offices, 2) three interview surveys in July 2021 of the administrative officers at the town level, and 3) a 2019-2021 visiting survey of the branch offices of X Prefecture and of four towns. First, the actual amount of shortage as of May 1, 2021 was scrutinized by the questionnaire survey, clarifying the shortage into three stages. 1) Positions for 1,971 full-time teachers with tenure were unfilled as the first stage. 2) Teachers without tenure were subsequently recruited, still leaving 150 unfilled positions as the second stage. 3) Finally, part-time teachers were recruited, still leaving 115 unfilled positions as the third stage. 4) In the end, each school was required to manage by themselves. This survey also made it clear that the teacher shortage increased in each term because more and more teachers left work due to childbirth or illness, with no substitutes. This suggests that the design of the first national teacher shortage survey by the Ministry of Education in July 2021 should be redone, as it focused only on the condition of the first term. Second, the paper disclosed that the teacher shortage had increased since 2018 in this prefecture. This was caused by multiple factors at micro/mezzo/ macro levels at each stage. 1) There were three background factors for the first stage. (1) Although the numbers of teachers were strictly determined by national law, the government had made no improvements for 41 years. The local government had additionally decreased teacher numbers in order to prepare for a teacher surplus in the future, based on the declining birthrate. However, teacher demands were enlarged by the increase of children with special needs. (2) Administrators were reluctant to hire teachers with tenure. The risk of the prohibited surplus of teachers was multiplied because of the increased number of small and mutable special education classes. (3) The applicants for hiring exams decreased. Teaching itself was not as attractive as before. (4) Maternity leaves not only increased but grew longer. 2) The shortage in the second stage was caused by the lack of teachers without tenure. Few teachers were on the candidate list because most of them were already hired with tenure. 3) The shortage in the third stage was caused by the teacher license renewal system, which began in 2009. Many licenses were already expired. Third, the effects of the shortage were examined, finding that teachers were compelled to overwork because each school had to cover 3.91 teachers' worth of absence as a team. The paper also found that 60% of current teachers had less than 10 years' experience, which is expected to have negative effects both on the quality of teaching and the professionalization of teaching.
- Published
- 2024
3. The History of Women's Education and the Gender Characteristics Theory
- Author
-
Tazuko Hiroi and Nadezhda Murray
- Abstract
In the history of Japanese education, the "gender characteristics theory" that men and women naturally have different characteristics rejected not only the "gender equality theory" which came from Western Europe in the early Meiji era, but also the traditional "male chauvinism" of East Asia. According to the theory of gender characteristics, men and women were seen as having "equal value," though not "equal rights." This theory became the main educational philosophy of women's education when the single-sex school system was established in the 1900s, and likewise permeated society as a scientific theory in the 1920s. After World War II, when gender equality became accepted, a coeducational system was introduced toward equal educational opportunities. However, the gender characteristics theory remained the basis for making home economics a compulsory subject for women, as the division of labor by gender expanded during the high economic growth period of the sixties and environs. Coeducation was a system intended for men and women to "respect" each other and "cooperate" (Article 5 of the Basic Act on Education), and gender differences in curricula in coeducational schools were seen as "reasonable" differences to ensure "essential equality" between men and women. Schools were also not considered places of gender inequality. Elsewhere, women's universities and women's junior colleges were established after the war with the expectation that they would play a new role in training women to support the democratic society. However, they also inherited the pre-war vocational school curriculum centered on literature and home economics. When these colleges increased during the period of high economic growth, this prewar curriculum spread further, based on the gender characteristics theory. As a result, women's universities and women's junior colleges were criticized as contrary to gender equality. It was only after the 1985 ratification of the Convention on the Elimination of All Forms of Discrimination against Women and the spread of gender equality that the gender characteristics theory was finally rejected. Today, the raison d'être of girls' education is being questioned again. The Convention on the Elimination of All Forms of Discrimination Against Women not only rejects the gender characteristics theory and fixed gender roles, but also defines "discrimination against women" as "discrimination, exclusion or restriction based on sex." As the concept of gender spreads, the view that separating men and women is itself "discrimination" is also spreading. If women's education is to continue to exist, its raison d'être will depend on its ability to contribute to the elimination of gender disparities.
- Published
- 2024
4. Navigating Controversial Topics in Required Diversity Courses
- Author
-
Ryan A. Miller, Laura Struve, Morgan Murray, and Alex Tompkins
- Abstract
Required undergraduate diversity courses often expose students to topics and worldviews which may push them out of their comfort zones and prompt dissonance and even resistance. This paper reports on interviews with 68 faculty members across 16 humanities and social science disciplines at five predominantly white institutions in the Southern United States, detailing how they navigated discussion of controversial topics in required diversity courses. Most instructors aimed to expose students to critical social issues yet were concerned that resistance could disturb the learning process. We identified 20 unique strategies for handling controversial topics in class that included proactively establishing community and safety and normalizing conflict, and reactively acknowledging and surfacing multiple perspectives, as well as connecting content to students' lived experiences. Some instructors also reported a lack of controversy or conflict in their classrooms, which they variously attributed to student characteristics or their own disinclination to promote heated discussion - which, we argue, calls into question the breadth and criteria of many institutionally defined diversity course requirements. We conclude the paper with implications for faculty, educational developers, administrators, and institutions.
- Published
- 2024
5. Oxidation Kinetics of Superconducting Niobium and a-Tantalum in Atmosphere at Short and Intermediate Time Scales
- Author
-
Frost, Hunter J., Bhatia, Ekta, Xiao, Zhihao, Olson, Stephen, Johnson, Corbet, Musick, Kevin, Murray, Thomas, Borst, Christopher, and Rao, Satyavolu Papa
- Subjects
Condensed Matter - Superconductivity ,Condensed Matter - Materials Science ,Quantum Physics - Abstract
The integration of superconducting niobium and tantalum into superconducting quantum devices has been increasingly explored over the past few years. Recent developments have shown that two-level-systems (TLS) in the surface oxides of these superconducting films are a leading source of decoherence in quantum circuits, and understanding the surface oxidation kinetics of these materials is key to enabling scalability of these technologies. We analyze the nature of atmospheric oxidation of both niobium and a-tantalum surfaces at time scales relevant to fabrication, from sub-minute to two-week atmospheric exposure, employing a combination of x-ray photoelectron spectroscopy and transmission electron microscopy to monitor the growth of the surface oxides. The oxidation kinetics are modeled according to the Cabrera-Mott model of surface oxidation, and the model growth parameters are reported for both films. Our results indicate that niobium surface oxidation follows a consistent regime of inverse logarithmic growth for the entire time scale of the study, whereas a-Ta surface oxidation shows a clear transition between two inverse logarithmic growth regimes at time t = 1 hour, associated with the re-coordination of the surface oxide as determined by x-ray photoelectron spectroscopy analysis. Our findings provide a more complete understanding of the differences in atmospheric surface oxidation between Nb and a-Ta, particularly at short time scales, paving the way for the development of more robust fabrication control for quantum computing architectures., Comment: 15 pages, 5 figures, 4 embedded tables
- Published
- 2024
6. The Effect of Galaxy Interactions on Starbursts in Milky Way-Mass Galaxies in FIRE Simulations
- Author
-
Li, Fei, Rahman, Mubdi, Murray, Norman, Kereš, Dušan, Wetzel, Andrew, Faucher-Giguère, Claude-André, Hopkins, Philip F., and Moreno, Jorge
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
Simulations and observations suggest that galaxy interactions may enhance the star formation rate (SFR) in merging galaxies. One proposed mechanism is the torque exerted on the gas and stars in the larger galaxy by the smaller galaxy. We analyze the interaction torques and star formation activity on six galaxies from the FIRE-2 simulation suite with masses comparable to the Milky Way galaxy at redshift $z=0$. We trace the halos from $z = 3.6$ to $z=0$, calculating the torque exerted by the nearby galaxies on the gas in the central galaxy. We calculate the correlation between the torque and the SFR across the simulations for various mass ratios. For near-equal-stellar-mass-ratio interactions in the galaxy sample, occurring between $z=1.2-3.6$, there is a positive and statistically significant correlation between the torque from nearby galaxies on the gas of the central galaxies and the SFR. For all other samples, no statistically significant correlation is found between the torque and the SFR. Our analysis shows that some, but not all, major interactions cause starbursts in the simulated Milky Way-mass galaxies, and that most starbursts are not caused by galaxy interactions. The transition from `bursty' at high redshift ($z\gtrsim1$) to `steady' star-formation state at later times is independent of the interaction history of the galaxies, and most of the interactions do not leave significant imprints on the overall trend of the star formation history of the galaxies., Comment: Submitted to ApJ
- Published
- 2024
7. Photonic frequency multiplexed next-generation reservoir computer
- Author
-
Cox, Nicholas, Murray, Joseph, Hart, Joseph, and Redding, Brandon
- Subjects
Physics - Optics - Abstract
In this work, we introduce and experimentally demonstrate a photonic frequency-multiplexed next generation reservoir computer (FM-NGRC) capable of performing real-time inference at GHz speed. NGRCs apply a feed-forward architecture to produce a feature vector directly from the input data over a fixed number of time steps. This feature vector, analogous to the reservoir state in a conventional RC, is used to perform inference by applying a decision layer trained by linear regression. Photonic NGRC provides a flexible platform for real-time inference by forgoing the need for explicit feedback loops inherent to a physical reservoir. The FM-NGRC introduced here defines the memory structure using an optical frequency comb and dispersive fiber while the sinusoidal response of electro-optic Mach-Zehnder interferometers controls the nonlinear transform applied to elements of the feature vector. A programmable waveshaper modulates each comb tooth independently to apply the trained decision layer weights in the analog domain. We apply the FM-NGRC to solve the benchmark nonlinear channel equalization task; after theoretically determining feature vectors that enable high-accuracy distortion compensation, we construct an FM-NGRC that generates these vectors to experimentally demonstrate real-time channel equalization at 5 GS/s with a symbol error rate of $\sim 2\times 10^{-3}$., Comment: 23 pages, 6 figures
- Published
- 2024
8. An alignment problem
- Author
-
McDaniel, Emma L., Mikler, Armin R., Tiwari, Chetan, and Patterson, Murray
- Subjects
Computer Science - Data Structures and Algorithms ,Computer Science - Computational Complexity - Abstract
This work concerns an alignment problem that has applications in many geospatial problems such as resource allocation and building reliable disease maps. Here, we introduce the problem of optimally aligning $k$ collections of $m$ spatial supports over $n$ spatial units in a $d$-dimensional Euclidean space. We show that the 1-dimensional case is solvable in time polynomial in $k$, $m$ and $n$. We then show that the 2-dimensional case is NP-hard for 2 collections of 2 supports. Finally, we devise a heuristic for aligning a set of collections in the 2-dimensional case.
- Published
- 2024
9. The EDGES measurement disfavors an excess radio background during the cosmic dawn
- Author
-
Cang, Junsong, Mesinger, Andrei, Murray, Steven G., Breitman, Daniela, Qin, Yuxiang, and Trotta, Roberto
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics ,Astrophysics - Astrophysics of Galaxies - Abstract
In 2018 the EDGES experiment claimed the first detection of the global cosmic 21cm signal, which featured an absorption trough centered around $z \sim 17$ with a depth of approximately -500mK. This amplitude is deeper than the standard prediction (in which the radio background is determined by the cosmic microwave background) by a factor of two and potentially hints at the existence of a radio background excess. While this result was obtained by fitting the data with a phenomenological flattened-Gaussian shape for the cosmological signal, here we develop a physical model for the inhomogeneous radio background sourced by the first galaxies hosting population III stars. Star formation in these galaxies is quenched at lower redshifts due to various feedback mechanisms, so they serve as a natural candidate for the excess radio background hinted by EDGES, without violating present day measurements by ARCADE2. We forward-model the EDGES sky temperature data, jointly sampling our physical model for the cosmic signal, a foreground model, and residual calibration errors. We compare the Bayesian evidences obtained by varying the complexity and prior ranges for the systematics. We find that the data is best explained by a model with seven log-polynomial foreground terms, and that it requires calibration residuals. Interestingly, the presence of a cosmic 21cm signal with a non-standard depth is decisively disfavored. This is contrary to previous EDGES analysis in the context of extra radio background models, serving as a caution against using a ''pseudo-likelihood'' built on a model (flattened Gaussian) that is different from the one being used for inference. We make our simulation code and associated emulator publicly-available., Comment: 17 pages, 9 figures, 1 table, version submitted to A&A
- Published
- 2024
10. The long-term variability of a population of ULXs monitored by Chandra
- Author
-
Earnshaw, Hannah P., Patti, Gauri, Brightman, Murray, Sathyaprakash, Rajath, Walton, Dominic J., Fuerst, Felix, Roberts, Timothy P., and Harrison, Fiona A.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
We present preliminary results of a Chandra Large Program to monitor the ultraluminous X-ray source (ULX) populations of three nearby, ULX-rich galaxies over the course of a year, finding the ULX population to show a variety of long-term variability behaviours. Of a sample of 36 ULXs, some show persistent or moderately variable flux, often with a significant relationship between hardness and luminosity, consistent with a supercritically accreting source with varying accretion rates. Six show very high-amplitude variability with no strong relationship between luminosity and hardness, though not all of them show evidence of any long-term periodicity, nor of the bimodal distribution indicative of the propeller effect. We find evidence of additional eclipses for two previously-identified eclipsing ULXs. Additionally, many sources that were previously identified as ULXs in previous studies were not detected at ULX luminosities during our monitoring campaign, indicating a large number of transient ULXs., Comment: 7 pages, 4 figures, to be published in Proceedings of the XMM-Newton Workshop 2024 "The X-ray Mysteries of Neutron Stars and White Dwarfs", Astronomische Nachrichten, in press
- Published
- 2024
11. CQUESST: A dynamical stochastic framework for predicting soil-carbon sequestration
- Author
-
Pagendam, Dan, Baldock, Jeff, Clifford, David, Farquharson, Ryan, Murray, Lawrence, Beare, Mike, Curtin, Denis, and Cressie, Noel
- Subjects
Statistics - Applications ,Statistics - Computation - Abstract
A statistical framework we call CQUESST (Carbon Quantification and Uncertainty from Evolutionary Soil STochastics), which models carbon sequestration and cycling in soils, is applied to a long-running agricultural experiment that controls for crop type, tillage, and season. The experiment, known as the Millenium Tillage Trial (MTT), ran on 42 field-plots for ten years from 2000-2010; here CQUESST is used to model soil carbon dynamically in six pools, in each of the 42 agricultural plots, and on a monthly time step for a decade. We show how CQUESST can be used to estimate soil-carbon cycling rates under different treatments. Our methods provide much-needed statistical tools for quantitatively inferring the effectiveness of different experimental treatments on soil-carbon sequestration. The decade-long data are of multiple observation types, and these interacting time series are ingested into a fully Bayesian model that has a dynamic stochastic model of multiple pools of soil carbon at its core. CQUESST's stochastic model is motivated by the deterministic RothC soil-carbon model based on nonlinear difference equations. We demonstrate how CQUESST can estimate soil-carbon fluxes for different experimental treatments while acknowledging uncertainties in soil-carbon dynamics, in physical parameters, and in observations. CQUESST is implemented efficiently in the probabilistic programming language Stan using its MapReduce parallelization, and it scales well for large numbers of field-plots, using software libraries that allow for computation to be shared over multiple nodes of high-performance computing clusters.
- Published
- 2024
12. Quantifying artificial intelligence through algebraic generalization
- Author
-
Ito, Takuya, Campbell, Murray, Horesh, Lior, Klinger, Tim, and Ram, Parikshit
- Subjects
Computer Science - Artificial Intelligence ,Computer Science - Computation and Language ,Computer Science - Machine Learning ,Computer Science - Logic in Computer Science - Abstract
The rapid development of modern artificial intelligence (AI) systems has created an urgent need for their scientific quantification. While their fluency across a variety of domains is impressive, modern AI systems fall short on tests requiring symbolic processing and abstraction - a glaring limitation given the necessity for interpretable and reliable technology. Despite a surge of reasoning benchmarks emerging from the academic community, no comprehensive and theoretically-motivated framework exists to quantify reasoning (and more generally, symbolic ability) in AI systems. Here, we adopt a framework from computational complexity theory to explicitly quantify symbolic generalization: algebraic circuit complexity. Many symbolic reasoning problems can be recast as algebraic expressions. Thus, algebraic circuit complexity theory - the study of algebraic expressions as circuit models (i.e., directed acyclic graphs) - is a natural framework to study the complexity of symbolic computation. The tools of algebraic circuit complexity enable the study of generalization by defining benchmarks in terms of their complexity-theoretic properties (i.e., the difficulty of a problem). Moreover, algebraic circuits are generic mathematical objects; for a given algebraic circuit, an arbitrarily large number of samples can be generated for a specific circuit, making it an optimal testbed for the data-hungry machine learning algorithms that are used today. Here, we adopt tools from algebraic circuit complexity theory, apply it to formalize a science of symbolic generalization, and address key theoretical and empirical challenges for its successful application to AI science and its impact on the broader community.
- Published
- 2024
13. DWFL: Enhancing Federated Learning through Dynamic Weighted Averaging
- Author
-
Chourasia, Prakash, Ali, Tamkanat E, Ali, Sarwan, and Pattersn, Murray
- Subjects
Computer Science - Machine Learning - Abstract
Federated Learning (FL) is a distributed learning technique that maintains data privacy by providing a decentralized training method for machine learning models using distributed big data. This promising Federated Learning approach has also gained popularity in bioinformatics, where the privacy of biomedical data holds immense importance, especially when patient data is involved. Despite the successful implementation of Federated learning in biological sequence analysis, rigorous consideration is still required to improve accuracy in a way that data privacy should not be compromised. Additionally, the optimal integration of federated learning, especially in protein sequence analysis, has not been fully explored. We propose a deep feed-forward neural network-based enhanced federated learning method for protein sequence classification to overcome these challenges. Our method introduces novel enhancements to improve classification accuracy. We introduce dynamic weighted federated learning (DWFL) which is a federated learning-based approach, where local model weights are adjusted using weighted averaging based on their performance metrics. By assigning higher weights to well-performing models, we aim to create a more potent initial global model for the federated learning process, leading to improved accuracy. We conduct experiments using real-world protein sequence datasets to assess the effectiveness of DWFL. The results obtained using our proposed approach demonstrate significant improvements in model accuracy, making federated learning a preferred, more robust, and privacy-preserving approach for collaborative machine-learning tasks., Comment: Accepted at SIMBig 2024
- Published
- 2024
14. EPIC: Enhancing Privacy through Iterative Collaboration
- Author
-
Chourasia, Prakash, Lonkar, Heramb, Ali, Sarwan, and Patterson, Murray
- Subjects
Computer Science - Machine Learning ,Computer Science - Cryptography and Security - Abstract
Advancements in genomics technology lead to a rising volume of viral (e.g., SARS-CoV-2) sequence data, resulting in increased usage of machine learning (ML) in bioinformatics. Traditional ML techniques require centralized data collection and processing, posing challenges in realistic healthcare scenarios. Additionally, privacy, ownership, and stringent regulation issues exist when pooling medical data into centralized storage to train a powerful deep learning (DL) model. The Federated learning (FL) approach overcomes such issues by setting up a central aggregator server and a shared global model. It also facilitates data privacy by extracting knowledge while keeping the actual data private. This work proposes a cutting-edge Privacy enhancement through Iterative Collaboration (EPIC) architecture. The network is divided and distributed between local and centralized servers. We demonstrate the EPIC approach to resolve a supervised classification problem to estimate SARS-CoV-2 genomic sequence data lineage without explicitly transferring raw sequence data. We aim to create a universal decentralized optimization framework that allows various data holders to work together and converge to a single predictive model. The findings demonstrate that privacy-preserving strategies can be successfully used with aggregation approaches without materially altering the degree of learning convergence. Finally, we highlight a few potential issues and prospects for study in FL-based approaches to healthcare applications., Comment: Accepted at SIMBig 2024
- Published
- 2024
15. Findings of the IWSLT 2024 Evaluation Campaign
- Author
-
Ahmad, Ibrahim Said, Anastasopoulos, Antonios, Bojar, Ondřej, Borg, Claudia, Carpuat, Marine, Cattoni, Roldano, Cettolo, Mauro, Chen, William, Dong, Qianqian, Federico, Marcello, Haddow, Barry, Javorský, Dávid, Krubiński, Mateusz, Lam, Tsz Kin, Ma, Xutai, Mathur, Prashant, Matusov, Evgeny, Maurya, Chandresh, McCrae, John, Murray, Kenton, Nakamura, Satoshi, Negri, Matteo, Niehues, Jan, Niu, Xing, Ojha, Atul Kr., Ortega, John, Papi, Sara, Polák, Peter, Pospíšil, Adam, Pecina, Pavel, Salesky, Elizabeth, Sethiya, Nivedita, Sarkar, Balaram, Shi, Jiatong, Sikasote, Claytone, Sperber, Matthias, Stüker, Sebastian, Sudoh, Katsuhito, Thompson, Brian, Turchi, Marco, Waibel, Alex, Watanabe, Shinji, Wilken, Patrick, Zemánek, Petr, and Zevallos, Rodolfo
- Subjects
Computer Science - Computation and Language - Abstract
This paper reports on the shared tasks organized by the 21st IWSLT Conference. The shared tasks address 7 scientific challenges in spoken language translation: simultaneous and offline translation, automatic subtitling and dubbing, speech-to-speech translation, dialect and low-resource speech translation, and Indic languages. The shared tasks attracted 18 teams whose submissions are documented in 26 system papers. The growing interest towards spoken language translation is also witnessed by the constantly increasing number of shared task organizers and contributors to the overview paper, almost evenly distributed across industry and academia., Comment: IWSLT 2024; 59 pages
- Published
- 2024
16. Restricted Win Probability with Bayesian Estimation for Implementing the Estimand Framework in Clinical Trials With a Time-to-Event Outcome
- Author
-
Leeberg, Michelle, Luo, Xianghua, and Murray, Thomas A.
- Subjects
Statistics - Methodology - Abstract
We propose a restricted win probability estimand for comparing treatments in a randomized trial with a time-to-event outcome. We also propose Bayesian estimators for this summary measure as well as the unrestricted win probability. Bayesian estimation is scalable and facilitates seamless handling of censoring mechanisms as compared to related non-parametric pairwise approaches like win ratios. Unlike the log-rank test, these measures effectuate the estimand framework as they reflect a clearly defined population quantity related to the probability of a later event time with the potential restriction that event times exceeding a pre-specified time are deemed equivalent. We compare efficacy with established methods using computer simulation and apply the proposed approach to 304 reconstructed datasets from oncology trials. We show that the proposed approach has more power than the log-rank test in early treatment difference scenarios, and at least as much power as the win ratio in all scenarios considered. We also find that the proposed approach's statistical significance is concordant with the log-rank test for the vast majority of the oncology datasets examined. The proposed approach offers an interpretable, efficient alternative for trials with time-to-event outcomes that aligns with the estimand framework., Comment: Main text: 12 pages, 4 figures and 2 tables. Supplementary information: 15 pages, 9 figures, and 3 tables
- Published
- 2024
17. Unlocking the Archives: Using Large Language Models to Transcribe Handwritten Historical Documents
- Author
-
Humphries, Mark, Leddy, Lianne C., Downton, Quinn, Legace, Meredith, McConnell, John, Murray, Isabella, and Spence, Elizabeth
- Subjects
Computer Science - Computer Vision and Pattern Recognition ,Computer Science - Computation and Language ,Computer Science - Digital Libraries ,Computer Science - Machine Learning - Abstract
This study demonstrates that Large Language Models (LLMs) can transcribe historical handwritten documents with significantly higher accuracy than specialized Handwritten Text Recognition (HTR) software, while being faster and more cost-effective. We introduce an open-source software tool called Transcription Pearl that leverages these capabilities to automatically transcribe and correct batches of handwritten documents using commercially available multimodal LLMs from OpenAI, Anthropic, and Google. In tests on a diverse corpus of 18th/19th century English language handwritten documents, LLMs achieved Character Error Rates (CER) of 5.7 to 7% and Word Error Rates (WER) of 8.9 to 15.9%, improvements of 14% and 32% respectively over specialized state-of-the-art HTR software like Transkribus. Most significantly, when LLMs were then used to correct those transcriptions as well as texts generated by conventional HTR software, they achieved near-human levels of accuracy, that is CERs as low as 1.8% and WERs of 3.5%. The LLMs also completed these tasks 50 times faster and at approximately 1/50th the cost of proprietary HTR programs. These results demonstrate that when LLMs are incorporated into software tools like Transcription Pearl, they provide an accessible, fast, and highly accurate method for mass transcription of historical handwritten documents, significantly streamlining the digitization process., Comment: 29 Pages, 11 Tables, 2 Figures
- Published
- 2024
18. Reassessing Sub-Neptune Structure, Radii, and Thermal Evolution
- Author
-
Tang, Yao, Fortney, Jonathan J., Nimmo, Francis, Thorngren, Daniel, Ohno, Kazumasa, and Murray-Clay, Ruth
- Subjects
Astrophysics - Earth and Planetary Astrophysics - Abstract
We present a novel python-based 1D sub-Neptune evolution model that emphasizes the thermal evolution and potential solidification of the rock/iron core and the structure of the radiative atmosphere. This model explores planetary structure from the molten center to nbar pressure levels. Treating the radiative atmosphere is crucial for sub-Neptunes, due to the large scale height and low gravity, which contributes up to 40\% of their observed radius, especially for low-mass, highly irradiated planets. Consequently, we generically find that lower H/He mass fractions are needed to match a given planetary radius, compared to previous work. While the presence of metal-enrichment in the H/He layers (here modeled as 50$\times$ solar) does not substantially influence the size of the convective envelope, it notably reduces the transit radius by shrinking the radiative atmospheric scale height. Sub-Neptunes cool differently from terrestrial planets, with the rock/iron core's cooling rate limited by the envelope, leading to longer solidification timescales. Complete solidification of the silicate mantle by 10 Gyr is found only for planets with very low masses ($\leq 1M_\oplus$) and small H/He envelopes ($\leq$ 0.1\%). Dynamo action in sub-Neptune iron cores persists as long as the mantle surface remains molten, often exceeding 10 Gyr, and becomes sensitive to core thermal conductivity after solidification. We examine aspects of ''boil-off,'' which sets the maximum allowed H/He mass and planetary radius for subsequent evolution. The rock/iron's cooling energy moderately decreases the post-boil-off H/He mass fraction in planets with large atmospheric scale heights only., Comment: 32 pages, 17 figures, submitted to ApJ
- Published
- 2024
19. The Local Ultraviolet to Infrared Treasury I. Survey Overview of the Broadband Imaging
- Author
-
Gilbert, Karoline M., Choi, Yumi, Boyer, Martha L., Williams, Benjamin F., Weisz, Daniel R., Bell, Eric F., Dalcanton, Julianne J., McQuinn, Kristen B. W., Skillman, Evan D., Costa, Guglielmo, Fouesneau, Morgan, Girardi, Léo, Goldman, Steven R., Gordon, Karl D., Guhathakurta, Puragra, Gull, Maude, Hagen, Lea, Huynh, Ky, Lindberg, Christina W., Marigo, Paola, Murray, Claire E., Pastorelli, Giada, and Merica-Jones, Petia Yanchulova
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
The Local Ultraviolet to Infrared Treasury (LUVIT) is a Hubble Space Telescope program that combines newly acquired data in the near ultraviolet (NUV), optical, and near infrared (NIR) with archival optical and NIR imaging to produce multiband panchromatic resolved stellar catalogs for 23 pointings in 22 low-mass, star-forming galaxies ranging in distance from the outskirts of the Local Group to ~3.8 Mpc. We describe the survey design, detail the LUVIT broadband filter observations and the archival datasets included in the LUVIT reductions, and summarize the simultaneous multiband data reduction steps. The spatial distributions and color-magnitude diagrams (CMDs) from the resulting stellar catalogs are presented for each target, from the NUV to the NIR. We demonstrate in which regions of the CMDs stars with NUV and optical, optical and NIR, and NUV through NIR detections reside. For each target, we use the results from artificial star tests to measure representative completeness, bias, and total photometric uncertainty as a function of magnitude in each broadband filter. We also assess which LUVIT targets have significant spatial variation in the fraction of stars recovered at a given magnitude. The panchromatic LUVIT stellar catalogs will provide a rich legacy dataset for a host of resolved stellar population studies., Comment: 48 pages, 14 figures, 8 tables, accepted for publication in ApJS
- Published
- 2024
20. Scylla IV: Intrinsic Stellar Properties and Line-of-Sight Dust Extinction Measurements Towards 1.5 Million Stars in the SMC and LMC
- Author
-
Lindberg, Christina W., Murray, Claire E., Merica-Jones, Petia Yanchulova, Bot, Caroline, Burhenne, Clare, Choi, Yumi, Clark, Christopher J. R., Cohen, Roger E., Gilbert, Karoline M., Goldman, Steven R., Gordon, Karl D., Hirschauer, Alec S., McQuinn, Kristen B. W., Roman-Duval, Julia C., Sandstrom, Karin M., Tarantino, Elizabeth, and Williams, Benjamin F.
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
By analyzing the spectral energy distributions (SEDs) of resolved stars in nearby galaxies, we can constrain their stellar properties and line-of-sight dust extinction. From the Scylla survey, we obtain ultraviolet to near-infrared photometry from Wide Field Camera 3 onboard the {\it Hubble Space Telescope} for more than 1.5 million stars in the SMC and LMC. We use the Bayesian Extinction and Stellar Tool (BEAST) to analyze the multi-band SEDs of these sources and characterize their initial masses, ages, metallicities, distances, and line-of-sight extinction properties (e.g.~$A_V$, $R_V$). We apply quality cuts and perform validation simulations to construct a catalog of over 550,000 stars with high-reliability SED fits, which we use to analyze the stellar content and extinction properties of the SMC and LMC. We detect stars with masses as low as 0.6 $M_{\odot}$. Observed stellar age distributions show a jump in stars around 6 Gyrs ago, which is in agreement with other star-formation histories. Extinctions ($A_V$) in both galaxies follow a log-normal distribution. We compare $A_V$ with ancillary gas and dust tracers like $HI$, $H_\alpha$, and far infrared (FIR) dust emission and find positive correlations on a field-by-field basis. We convert observed $A_V$ to predicted dust surface densities using the Draine et. al. (2014) model and find $A_V$-based dust surface densities are a factor of $\sim$2.5 lower than observed FIR-based dust surface densities, a correction factor similar to other studies., Comment: Submitted to ApJ, 31 pages
- Published
- 2024
21. Cast vote records: A database of ballots from the 2020 U.S. Election
- Author
-
Kuriwaki, Shiro, Reece, Mason, Baltz, Samuel, Conevska, Aleksandra, Loffredo, Joseph R., Mutlu, Can, Samarth, Taran, Jetter, Kevin E. Acevedo, Garai, Zachary Djanogly, Murray, Kate, Hirano, Shigeo, Lewis, Jeffrey B., Snyder Jr., James M., and Stewart III, Charles H.
- Subjects
Computer Science - Computers and Society ,Statistics - Applications - Abstract
Ballots are the core records of elections. Electronic records of actual ballots cast (cast vote records) are available to the public in some jurisdictions. However, they have been released in a variety of formats and have not been independently evaluated. Here we introduce a database of cast vote records from the 2020 U.S. general election. We downloaded publicly available unstandardized cast vote records, standardized them into a multi-state database, and extensively compared their totals to certified election results. Our release includes vote records for President, Governor, U.S. Senate and House, and state upper and lower chambers -- covering 42.7 million voters in 20 states who voted for more than 2,204 candidates. This database serves as a uniquely granular administrative dataset for studying voting behavior and election administration. Using this data, we show that in battleground states, 1.9 percent of solid Republicans (as defined by their congressional and state legislative voting) in our database split their ticket for Joe Biden, while 1.2 percent of solid Democrats split their ticket for Donald Trump., Comment: 26 pages and appendix
- Published
- 2024
22. Ion manipulation from liquid Xe to vacuum: Ba-tagging for a nEXO upgrade and future 0{\nu}\b{eta}\b{eta} experiments
- Author
-
Ray, Dwaipayan, Collister, Robert, Rasiwala, Hussain, Backes, Lucas, Balbuena, Ali V., Brunner, Thomas, Casandjian, Iroise, Chambers, Chris, vitan, Megan, Daniels, Tim, Dilling, Jens, Elmansali, Ryan, Fairbank, William, Fudenberg, Daniel, Gornea, Razvan, Gratta, Giorgio, Iverson, Alec, Kwiatkowski, Anna A., Leach, Kyle G., Lennarz, Annika, Li, Zepeng, Medina-Peregrina, Melissa, Murray, Kevin, Sullivan, Kevin O, Ross, Regan, Shaikh, Raad, Shang, Xiao, Soderstrom, Joseph, Varentsov, Victor, and Yang, Liang
- Subjects
Physics - Instrumentation and Detectors ,Nuclear Experiment - Abstract
Neutrinoless double beta decay ($0 \nu \beta \beta$) provides a way to probe physics beyond the Standard Model of particle physics. The upcoming nEXO experiment will search for $0\nu\beta\beta$ decay in $^{136}$Xe with a projected half-life sensitivity exceeding $10^{28}$ years at the 90\% confidence level using a liquid xenon (LXe) Time Projection Chamber (TPC) filled with 5 tonnes of Xe enriched to $\sim$90\% in the $\beta \beta$-decaying isotope $^{136}$Xe. In parallel, a potential future upgrade to nEXO is being investigated with the aim to further suppress radioactive backgrounds, and to confirm $\beta \beta$-decay events. This technique, known as Ba-tagging, comprises of extracting and identifying the $\beta \beta$-decay daughter $^{136}$Ba ion. One tagging approach being pursued involves extracting a small volume of LXe in the vicinity of a potential $\beta \beta$-decay using a capillary tube and facilitating a liquid to gas phase transition by heating the capillary exit. The Ba ion is then separated from the accompanying Xe gas using a radio-frequency (RF) carpet and RF funnel, conclusively identifying the ion as $^{136}$Ba via laser-fluorescence spectroscopy and mass spectrometry. Simultaneously, an accelerator-driven Ba ion source is being developed to validate and optimize this technique. The motivation for the project, the development of the different aspects along with current status and results are discussed here.
- Published
- 2024
23. Universal Gate Set for Optical Lattice Based Atom Interferometry
- Author
-
LeDesma, Catie, Mehling, Kendall, Wilson, John Drew, Nicotra, Marco, and Holland, Murray
- Subjects
Quantum Physics ,Condensed Matter - Quantum Gases ,Physics - Atomic Physics - Abstract
In this paper, we propose a new paradigm for atom interferometry and demonstrate that there exists a universal set of atom optic components for inertial sensing. These components constitute gates with which we carry out quantum operations and represent input-output matterwave transformations between lattice eigenstates. Each gate is associated with a modulation pattern of the position of the optical lattice according to machine-designed protocols. In this methodology, a sensor can be reprogrammed to respond to an evolving set of design priorities without modifying the hardware. We assert that such a gate set is metrologically universal, in analogy to universal gate sets for quantum computing. Experimental confirmation of the designed operation is demonstrated via in situ imaging of the spatial evolution of a Bose-Einstein condensate in an optical lattice, and by measurement of the momentum probabilities following time-of-flight expansion. The representation of several basic quantum sensing circuits is presented for the measurement of inertial forces, rotating reference frames, and gravity gradients., Comment: 16 pages, 19 figures
- Published
- 2024
24. Crystallization of Binary Nanocrystal Superlattices and the Relevance of Short-Range Attraction
- Author
-
Marino, Emanuele, LaCour, R. Allen, Moore, Timothy C., van Dongen, Sjoerd W., Keller, Austin W., An, Di, Yang, Shengsong, Rosen, Daniel J., Gouget, Guillaume, Tsai, Esther H. R., Kagan, Cherie R., Kodger, Thomas E., Glotzer, Sharon C., and Murray, Christopher B.
- Subjects
Condensed Matter - Materials Science ,Condensed Matter - Mesoscale and Nanoscale Physics ,Condensed Matter - Soft Condensed Matter - Abstract
The synthesis of binary nanocrystal superlattices (BNSLs) enables the targeted integration of orthogonal physical properties, like photoluminescence and magnetism, into a single superstructure, unlocking a vast design space for multifunctional materials. Yet, the formation mechanism of BNSLs remains poorly understood, restricting the use of simulation to predict the structure and properties of the superlattices. Here, we use a combination of in situ scattering and molecular simulation to elucidate the self-assembly of two common BNSLs through emulsion templating. Our self-assembly experiments reveal that no intermediate structures precede the formation of the final binary phases, indicating that their formation proceeds through classical nucleation. Using simulations, we find that, despite the formation of AlB2 and NaZn13 typically being attributed to entropy, their self-assembly is most consistent with the nanocrystals possessing short-range interparticle attraction, which we find can dramatically accelerate nucleation kinetics in BNSLs. We also find homogenous, classical nucleation in simulation, corroborating our experiments. These results establish a robust correspondence between experiment and theory, paving the way towards a priori prediction of BNSLs.
- Published
- 2024
- Full Text
- View/download PDF
25. Semantic-guided Search for Efficient Program Repair with Large Language Models
- Author
-
Le-Cong, Thanh, Le, Bach, and Murray, Toby
- Subjects
Computer Science - Software Engineering ,Computer Science - Artificial Intelligence - Abstract
In this paper, we first show that increases in beam size of even just small-sized LLM (1B-7B parameters) require an extensive GPU resource consumption, leading to up to 80% of recurring crashes due to memory overloads in LLM-based APR. Seemingly simple solutions to reduce memory consumption are (1) to quantize LLM models, i.e., converting the weights of a LLM from high-precision values to lower-precision ones. and (2) to make beam search sequential, i.e., forwarding each beam through the model sequentially and then concatenate them back into a single model output. However, we show that these approaches still do not work via both theoretical analysis and experiments. To address this, we introduce FLAMES, a novel LLM-based APR technique that employs semantic-guided patch generation to enhance repair effectiveness and memory efficiency. Unlike conventional methods that rely on beam search, FLAMES utilizes greedy decoding to enhance memory efficiency while steering the search to more potentially good repair candidates via a semantic-guided best-first search algorithm. At each decoding step, FLAMES uses semantic feedback from test validation such as the number of passing and failing test cases to select the most promising token to explore further. Our empirical evaluation on the Defects4J and HumanEval-Java datasets shows that FLAMES not only substantially reduces memory consumption by up to 83% compared to conventional LLM-based APR, but also accelerates the repair process. Remarkably, FLAMES successfully generated 133 and 103 correct fixes for 333 and 163 bugs in the Defects4J and HumanEval-Java datasets, respectively. This suggests that FLAMES is not only more efficient but also outperforms state-of-the-art techniques, fixing at least 10 and 11 more bugs than SOTA baselines in the Defects4J and HumanEval-Java datasets, respectively.
- Published
- 2024
26. Search for gravitational waves emitted from SN 2023ixf
- Author
-
The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration, Abac, A. G., Abbott, R., Abouelfettouh, I., Acernese, F., Ackley, K., Adhicary, S., Adhikari, N., Adhikari, R. X., Adkins, V. K., Agarwal, D., Agathos, M., Abchouyeh, M. Aghaei, Aguiar, O. D., Aguilar, I., Aiello, L., Ain, A., Akutsu, T., Albanesi, S., Alfaidi, R. A., Al-Jodah, A., Alléné, C., Allocca, A., Al-Shammari, S., Altin, P. A., Alvarez-Lopez, S., Amato, A., Amez-Droz, L., Amorosi, A., Amra, C., Ananyeva, A., Anderson, S. B., Anderson, W. G., Andia, M., Ando, M., Andrade, T., Andres, N., Andrés-Carcasona, M., Andrić, T., Anglin, J., Ansoldi, S., Antelis, J. M., Antier, S., Aoumi, M., Appavuravther, E. Z., Appert, S., Apple, S. K., Arai, K., Araya, A., Araya, M. C., Areeda, J. S., Argianas, L., Aritomi, N., Armato, F., Arnaud, N., Arogeti, M., Aronson, S. M., Ashton, G., Aso, Y., Assiduo, M., Melo, S. Assis de Souza, Aston, S. M., Astone, P., Attadio, F., Aubin, F., AultONeal, K., Avallone, G., Babak, S., Badaracco, F., Badger, C., Bae, S., Bagnasco, S., Bagui, E., Baier, J. G., Baiotti, L., Bajpai, R., Baka, T., Ball, M., Ballardin, G., Ballmer, S. W., Banagiri, S., Banerjee, B., Bankar, D., Baral, P., Barayoga, J. C., Barish, B. C., Barker, D., Barneo, P., Barone, F., Barr, B., Barsotti, L., Barsuglia, M., Barta, D., Bartoletti, A. M., Barton, M. A., Bartos, I., Basak, S., Basalaev, A., Bassiri, R., Basti, A., Bates, D. E., Bawaj, M., Baxi, P., Bayley, J. C., Baylor, A. C., Baynard II, P. A., Bazzan, M., Bedakihale, V. M., Beirnaert, F., Bejger, M., Belardinelli, D., Bell, A. S., Benedetto, V., Benoit, W., Bentley, J. D., Yaala, M. Ben, Bera, S., Berbel, M., Bergamin, F., Berger, B. K., Bernuzzi, S., Beroiz, M., Bersanetti, D., Bertolini, A., Betzwieser, J., Beveridge, D., Bevins, N., Bhandare, R., Bhardwaj, U., Bhatt, R., Bhattacharjee, D., Bhaumik, S., Bhowmick, S., Bianchi, A., Bilenko, I. A., Billingsley, G., Binetti, A., Bini, S., Birnholtz, O., Biscoveanu, S., Bisht, A., Bitossi, M., Bizouard, M. -A., Blackburn, J. K., Blagg, L. A., Blair, C. D., Blair, D. G., Bobba, F., Bode, N., Boileau, G., Boldrini, M., Bolingbroke, G. N., Bolliand, A., Bonavena, L. D., Bondarescu, R., Bondu, F., Bonilla, E., Bonilla, M. S., Bonino, A., Bonnand, R., Booker, P., Borchers, A., Boschi, V., Bose, S., Bossilkov, V., Boudart, V., Boudon, A., Bozzi, A., Bradaschia, C., Brady, P. R., Braglia, M., Branch, A., Branchesi, M., Brandt, J., Braun, I., Breschi, M., Briant, T., Brillet, A., Brinkmann, M., Brockill, P., Brockmueller, E., Brooks, A. F., Brown, B. C., Brown, D. D., Brozzetti, M. L., Brunett, S., Bruno, G., Bruntz, R., Bryant, J., Bucci, F., Buchanan, J., Bulashenko, O., Bulik, T., Bulten, H. J., Buonanno, A., Burtnyk, K., Buscicchio, R., Buskulic, D., Buy, C., Byer, R. L., Davies, G. S. Cabourn, Cabras, G., Cabrita, R., Cáceres-Barbosa, V., Cadonati, L., Cagnoli, G., Cahillane, C., Bustillo, J. Calderón, Callister, T. A., Calloni, E., Camp, J. B., Canepa, M., Santoro, G. Caneva, Cannon, K. C., Cao, H., Capistran, L. A., Capocasa, E., Capote, E., Carapella, G., Carbognani, F., Carlassara, M., Carlin, J. B., Carpinelli, M., Carrillo, G., Carter, J. J., Carullo, G., Diaz, J. Casanueva, Casentini, C., Castro-Lucas, S. Y., Caudill, S., Cavaglià, M., Cavalieri, R., Cella, G., Cerdá-Durán, P., Cesarini, E., Chaibi, W., Chakraborty, P., Subrahmanya, S. Chalathadka, Chan, J. C. L., Chan, M., Chandra, K., Chang, R. -J., Chao, S., Charlton, E. L., Charlton, P., Chassande-Mottin, E., Chatterjee, C., Chatterjee, Debarati, Chatterjee, Deep, Chaturvedi, M., Chaty, S., Chen, A., Chen, A. H. -Y., Chen, D., Chen, H., Chen, H. Y., Chen, J., Chen, K. H., Chen, Y., Chen, Yanbei, Chen, Yitian, Cheng, H. P., Chessa, P., Cheung, H. T., Cheung, S. Y., Chiadini, F., Chiarini, G., Chierici, R., Chincarini, A., Chiofalo, M. L., Chiummo, A., Chou, C., Choudhary, S., Christensen, N., Chua, S. S. Y., Chugh, P., Ciani, G., Ciecielag, P., Cieślar, M., Cifaldi, M., Ciolfi, R., Clara, F., Clark, J. A., Clarke, J., Clarke, T. A., Clearwater, P., Clesse, S., Coccia, E., Codazzo, E., Cohadon, P. -F., Colace, S., Colleoni, M., Collette, C. G., Collins, J., Colloms, S., Colombo, A., Colpi, M., Compton, C. M., Connolly, G., Conti, L., Corbitt, T. R., Cordero-Carrión, I., Corezzi, S., Cornish, N. J., Corsi, A., Cortese, S., Costa, C. A., Cottingham, R., Coughlin, M. W., Couineaux, A., Coulon, J. -P., Countryman, S. T., Coupechoux, J. -F., Couvares, P., Coward, D. M., Cowart, M. J., Coyne, R., Craig, K., Creed, R., Creighton, J. D. E., Creighton, T. D., Cremonese, P., Criswell, A. W., Crockett-Gray, J. C. G., Crook, S., Crouch, R., Csizmazia, J., Cudell, J. R., Cullen, T. J., Cumming, A., Cuoco, E., Cusinato, M., Dabadie, P., Canton, T. Dal, Dall'Osso, S., Pra, S. Dal, Dálya, G., D'Angelo, B., Danilishin, S., D'Antonio, S., Danzmann, K., Darroch, K. E., Dartez, L. P., Dasgupta, A., Datta, S., Dattilo, V., Daumas, A., Davari, N., Dave, I., Davenport, A., Davier, M., Davies, T. F., Davis, D., Davis, L., Davis, M. C., Davis, P. J., Dax, M., De Bolle, J., Deenadayalan, M., Degallaix, J., De Laurentis, M., Deléglise, S., De Lillo, F., Dell'Aquila, D., Del Pozzo, W., De Marco, F., De Matteis, F., D'Emilio, V., Demos, N., Dent, T., Depasse, A., DePergola, N., De Pietri, R., De Rosa, R., De Rossi, C., DeSalvo, R., De Simone, R., Dhani, A., Diab, R., Díaz, M. C., Di Cesare, M., Dideron, G., Didio, N. A., Dietrich, T., Di Fiore, L., Di Fronzo, C., Di Giovanni, M., Di Girolamo, T., Diksha, D., Di Michele, A., Ding, J., Di Pace, S., Di Palma, I., Di Renzo, F., Divyajyoti, Dmitriev, A., Doctor, Z., Dohmen, E., Doleva, P. P., Dominguez, D., D'Onofrio, L., Donovan, F., Dooley, K. L., Dooney, T., Doravari, S., Dorosh, O., Drago, M., Driggers, J. C., Ducoin, J. -G., Dunn, L., Dupletsa, U., D'Urso, D., Duval, H., Duverne, P. -A., Dwyer, S. E., Eassa, C., Ebersold, M., Eckhardt, T., Eddolls, G., Edelman, B., Edo, T. B., Edy, O., Effler, A., Eichholz, J., Einsle, H., Eisenmann, M., Eisenstein, R. A., Ejlli, A., Eleveld, R. M., Emma, M., Endo, K., Engl, A. J., Enloe, E., Errico, L., Essick, R. C., Estellés, H., Estevez, D., Etzel, T., Evans, M., Evstafyeva, T., Ewing, B. E., Ezquiaga, J. M., Fabrizi, F., Faedi, F., Fafone, V., Fairhurst, S., Farah, A. M., Farr, B., Farr, W. M., Favaro, G., Favata, M., Fays, M., Fazio, M., Feicht, J., Fejer, M. M., Felicetti, R., Fenyvesi, E., Ferguson, D. L., Ferraiuolo, S., Ferrante, I., Ferreira, T. A., Fidecaro, F., Figura, P., Fiori, A., Fiori, I., Fishbach, M., Fisher, R. P., Fittipaldi, R., Fiumara, V., Flaminio, R., Fleischer, S. M., Fleming, L. S., Floden, E., Foley, E. M., Fong, H., Font, J. A., Fornal, B., Forsyth, P. W. F., Franceschetti, K., Franchini, N., Frasca, S., Frasconi, F., Mascioli, A. Frattale, Frei, Z., Freise, A., Freitas, O., Frey, R., Frischhertz, W., Fritschel, P., Frolov, V. V., Fronzé, G. G., Fuentes-Garcia, M., Fujii, S., Fujimori, T., Fulda, P., Fyffe, M., Gadre, B., Gair, J. R., Galaudage, S., Galdi, V., Gallagher, H., Gallardo, S., Gallego, B., Gamba, R., Gamboa, A., Ganapathy, D., Ganguly, A., Garaventa, B., García-Bellido, J., Núñez, C. García, García-Quirós, C., Gardner, J. W., Gardner, K. A., Gargiulo, J., Garron, A., Garufi, F., Gasbarra, C., Gateley, B., Gayathri, V., Gemme, G., Gennai, A., Gennari, V., George, J., George, R., Gerberding, O., Gergely, L., Ghosh, Archisman, Ghosh, Sayantan, Ghosh, Shaon, Ghosh, Shrobana, Ghosh, Suprovo, Ghosh, Tathagata, Giacoppo, L., Giaime, J. A., Giardina, K. D., Gibson, D. R., Gibson, D. T., Gier, C., Giri, P., Gissi, F., Gkaitatzis, S., Glanzer, J., Glotin, F., Godfrey, J., Godwin, P., Goebbels, N. L., Goetz, E., Golomb, J., Lopez, S. Gomez, Goncharov, B., Gong, Y., González, G., Goodarzi, P., Goode, S., Goodwin-Jones, A. W., Gosselin, M., Göttel, A. S., Gouaty, R., Gould, D. W., Govorkova, K., Goyal, S., Grace, B., Grado, A., Graham, V., Granados, A. E., Granata, M., Granata, V., Gras, S., Grassia, P., Gray, A., Gray, C., Gray, R., Greco, G., Green, A. C., Green, S. M., Green, S. R., Gretarsson, A. M., Gretarsson, E. M., Griffith, D., Griffiths, W. L., Griggs, H. L., Grignani, G., Grimaldi, A., Grimaud, C., Grote, H., Guerra, D., Guetta, D., Guidi, G. M., Guimaraes, A. R., Gulati, H. K., Gulminelli, F., Gunny, A. M., Guo, H., Guo, W., Guo, Y., Gupta, Anchal, Gupta, Anuradha, Gupta, Ish, Gupta, N. C., Gupta, P., Gupta, S. K., Gupta, T., Gupte, N., Gurs, J., Gutierrez, N., Guzman, F., H, H. -Y., Haba, D., Haberland, M., Haino, S., Hall, E. D., Hamilton, E. Z., Hammond, G., Han, W. -B., Haney, M., Hanks, J., Hanna, C., Hannam, M. D., Hannuksela, O. A., Hanselman, A. G., Hansen, H., Hanson, J., Harada, R., Hardison, A. R., Haris, K., Harmark, T., Harms, J., Harry, G. M., Harry, I. W., Hart, J., Haskell, B., Haster, C. -J., Hathaway, J. S., Haughian, K., Hayakawa, H., Hayama, K., Hayes, R., Heffernan, A., Heidmann, A., Heintze, M. C., Heinze, J., Heinzel, J., Heitmann, H., Hellman, F., Hello, P., Helmling-Cornell, A. F., Hemming, G., Henderson-Sapir, O., Hendry, M., Heng, I. S., Hennes, E., Henshaw, C., Hertog, T., Heurs, M., Hewitt, A. L., Heyns, J., Higginbotham, S., Hild, S., Hill, S., Himemoto, Y., Hirata, N., Hirose, C., Hoang, S., Hochheim, S., Hofman, D., Holland, N. A., Holley-Bockelmann, K., Holmes, Z. J., Holz, D. E., Honet, L., Hong, C., Hornung, J., Hoshino, S., Hough, J., Hourihane, S., Howell, E. J., Hoy, C. G., Hrishikesh, C. A., Hsieh, H. -F., Hsiung, C., Hsu, H. C., Hsu, W. -F., Hu, P., Hu, Q., Huang, H. Y., Huang, Y. -J., Huddart, A. D., Hughey, B., Hui, D. C. Y., Hui, V., Husa, S., Huxford, R., Huynh-Dinh, T., Iampieri, L., Iandolo, G. A., Ianni, M., Iess, A., Imafuku, H., Inayoshi, K., Inoue, Y., Iorio, G., Iqbal, M. H., Irwin, J., Ishikawa, R., Isi, M., Ismail, M. A., Itoh, Y., Iwanaga, H., Iwaya, M., Iyer, B. R., JaberianHamedan, V., Jacquet, C., Jacquet, P. -E., Jadhav, S. J., Jadhav, S. P., Jain, T., James, A. L., James, P. A., Jamshidi, R., Janquart, J., Janssens, K., Janthalur, N. N., Jaraba, S., Jaranowski, P., Jaume, R., Javed, W., Jennings, A., Jia, W., Jiang, J., Kubisz, J., Johanson, C., Johns, G. R., Johnson, N. A., Johnston, M. C., Johnston, R., Johny, N., Jones, D. H., Jones, D. I., Jones, R., Jose, S., Joshi, P., Ju, L., Jung, K., Junker, J., Juste, V., Kajita, T., Kaku, I., Kalaghatgi, C., Kalogera, V., Kamiizumi, M., Kanda, N., Kandhasamy, S., Kang, G., Kanner, J. B., Kapadia, S. J., Kapasi, D. P., Karat, S., Karathanasis, C., Kashyap, R., Kasprzack, M., Kastaun, W., Kato, T., Katsavounidis, E., Katzman, W., Kaushik, R., Kawabe, K., Kawamoto, R., Kazemi, A., Keitel, D., Kelley-Derzon, J., Kennington, J., Kesharwani, R., Key, J. S., Khadela, R., Khadka, S., Khalili, F. Y., Khan, F., Khan, I., Khanam, T., Khursheed, M., Khusid, N. M., Kiendrebeogo, W., Kijbunchoo, N., Kim, C., Kim, J. C., Kim, K., Kim, M. H., Kim, S., Kim, Y. -M., Kimball, C., Kinley-Hanlon, M., Kinnear, M., Kissel, J. S., Klimenko, S., Knee, A. M., Knust, N., Kobayashi, K., Obergaulinger, M., Koch, P., Koehlenbeck, S. M., Koekoek, G., Kohri, K., Kokeyama, K., Koley, S., Kolitsidou, P., Kolstein, M., Komori, K., Kong, A. K. H., Kontos, A., Korobko, M., Kossak, R. V., Kou, X., Koushik, A., Kouvatsos, N., Kovalam, M., Kozak, D. B., Kranzhoff, S. L., Kringel, V., Krishnendu, N. V., Królak, A., Kruska, K., Kuehn, G., Kuijer, P., Kulkarni, S., Ramamohan, A. Kulur, Kumar, A., Kumar, Praveen, Kumar, Prayush, Kumar, Rahul, Kumar, Rakesh, Kume, J., Kuns, K., Kuntimaddi, N., Kuroyanagi, S., Kurth, N. J., Kuwahara, S., Kwak, K., Kwan, K., Kwok, J., Lacaille, G., Lagabbe, P., Laghi, D., Lai, S., Laity, A. H., Lakkis, M. H., Lalande, E., Lalleman, M., Lalremruati, P. C., Landry, M., Lane, B. B., Lang, R. N., Lange, J., Lantz, B., La Rana, A., La Rosa, I., Lartaux-Vollard, A., Lasky, P. D., Lawrence, J., Lawrence, M. N., Laxen, M., Lazzarini, A., Lazzaro, C., Leaci, P., Lecoeuche, Y. K., Lee, H. M., Lee, H. W., Lee, K., Lee, R. -K., Lee, R., Lee, S., Lee, Y., Legred, I. N., Lehmann, J., Lehner, L., Jean, M. Le, Lemaître, A., Lenti, M., Leonardi, M., Lequime, M., Leroy, N., Lesovsky, M., Letendre, N., Lethuillier, M., Levin, S. E., Levin, Y., Leyde, K., Li, A. K. Y., Li, K. L., Li, T. G. F., Li, X., Li, Z., Lihos, A., Lin, C-Y., Lin, C. -Y., Lin, E. T., Lin, F., Lin, H., Lin, L. C. -C., Lin, Y. -C., Linde, F., Linker, S. D., Littenberg, T. B., Liu, A., Liu, G. C., Liu, Jian, Villarreal, F. Llamas, Llobera-Querol, J., Lo, R. K. L., Locquet, J. -P., London, L. T., Longo, A., Lopez, D., Portilla, M. Lopez, Lorenzini, M., Lorenzo-Medina, A., Loriette, V., Lormand, M., Losurdo, G., Lott IV, T. P., Lough, J. D., Loughlin, H. A., Lousto, C. O., Lowry, M. J., Lu, N., Lück, H., Lumaca, D., Lundgren, A. P., Lussier, A. W., Ma, L. -T., Ma, S., Ma'arif, M., Macas, R., Macedo, A., MacInnis, M., Maciy, R. R., Macleod, D. M., MacMillan, I. A. O., Macquet, A., Macri, D., Maeda, K., Maenaut, S., Hernandez, I. Magaña, Magare, S. S., Magazzù, C., Magee, R. M., Maggio, E., Maggiore, R., Magnozzi, M., Mahesh, M., Mahesh, S., Maini, M., Majhi, S., Majorana, E., Makarem, C. N., Makelele, E., Malaquias-Reis, J. A., Mali, U., Maliakal, S., Malik, A., Man, N., Mandic, V., Mangano, V., Mannix, B., Mansell, G. L., Mansingh, G., Manske, M., Mantovani, M., Mapelli, M., Marchesoni, F., Pina, D. Marín, Marion, F., Márka, S., Márka, Z., Markosyan, A. S., Markowitz, A., Maros, E., Marsat, S., Martelli, F., Martin, I. W., Martin, R. M., Martinez, B. B., Martinez, M., Martinez, V., Martini, A., Martinovic, K., Martins, J. C., Martynov, D. V., Marx, E. J., Massaro, L., Masserot, A., Masso-Reid, M., Mastrodicasa, M., Mastrogiovanni, S., Matcovich, T., Matiushechkina, M., Matsuyama, M., Mavalvala, N., Maxwell, N., McCarrol, G., McCarthy, R., McClelland, D. E., McCormick, S., McCuller, L., McEachin, S., McElhenny, C., McGhee, G. I., McGinn, J., McGowan, K. B. M., McIver, J., McLeod, A., McRae, T., Meacher, D., Meijer, Q., Melatos, A., Mellaerts, S., Menendez-Vazquez, A., Menoni, C. S., Mera, F., Mercer, R. A., Mereni, L., Merfeld, K., Merilh, E. L., Mérou, J. R., Merritt, J. D., Merzougui, M., Messenger, C., Messick, C., Meyer-Conde, M., Meylahn, F., Mhaske, A., Miani, A., Miao, H., Michaloliakos, I., Michel, C., Michimura, Y., Middleton, H., Miller, A. L., Miller, S., Millhouse, M., Milotti, E., Milotti, V., Minenkov, Y., Mio, N., Mir, Ll. M., Mirasola, L., Miravet-Tenés, M., Miritescu, C. -A., Mishra, A. K., Mishra, A., Mishra, C., Mishra, T., Mitchell, A. L., Mitchell, J. G., Mitra, S., Mitrofanov, V. P., Mittleman, R., Miyakawa, O., Miyamoto, S., Miyoki, S., Mo, G., Mobilia, L., Mohapatra, S. R. P., Mohite, S. R., Molina-Ruiz, M., Mondal, C., Mondin, M., Montani, M., Moore, C. J., Moraru, D., More, A., More, S., Moreno, G., Morgan, C., Morisaki, S., Moriwaki, Y., Morras, G., Moscatello, A., Mourier, P., Mours, B., Mow-Lowry, C. M., Muciaccia, F., Mukherjee, Arunava, Mukherjee, D., Mukherjee, Samanwaya, Mukherjee, Soma, Mukherjee, Subroto, Mukherjee, Suvodip, Mukund, N., Mullavey, A., Munch, J., Mundi, J., Mungioli, C. L., Oberg, W. R. Munn, Murakami, Y., Murakoshi, M., Murray, P. G., Muusse, S., Nabari, D., Nadji, S. L., Nagar, A., Nagarajan, N., Nagler, K. N., Nakagaki, K., Nakamura, K., Nakano, H., Nakano, M., Nandi, D., Napolano, V., Narayan, P., Nardecchia, I., Narikawa, T., Narola, H., Naticchioni, L., Nayak, R. K., Neilson, J., Nelson, A., Nelson, T. J. N., Nery, M., Neunzert, A., Ng, S., Quynh, L. Nguyen, Nichols, S. A., Nielsen, A. B., Nieradka, G., Niko, A., Nishino, Y., Nishizawa, A., Nissanke, S., Nitoglia, E., Niu, W., Nocera, F., Norman, M., North, C., Novak, J., Siles, J. F. Nuño, Nuttall, L. K., Obayashi, K., Oberling, J., O'Dell, J., Oertel, M., Offermans, A., Oganesyan, G., Oh, J. J., Oh, K., O'Hanlon, T., Ohashi, M., Ohkawa, M., Ohme, F., Oliveira, A. S., Oliveri, R., O'Neal, B., Oohara, K., O'Reilly, B., Ormsby, N. D., Orselli, M., O'Shaughnessy, R., O'Shea, S., Oshima, Y., Oshino, S., Ossokine, S., Osthelder, C., Ota, I., Ottaway, D. J., Ouzriat, A., Overmier, H., Owen, B. J., Pace, A. E., Pagano, R., Page, M. A., Pai, A., Pal, A., Pal, S., Palaia, M. A., Pálfi, M., Palma, P. P., Palomba, C., Palud, P., Pan, H., Pan, J., Pan, K. C., Panai, R., Panda, P. K., Pandey, S., Panebianco, L., Pang, P. T. H., Pannarale, F., Pannone, K. A., Pant, B. C., Panther, F. H., Paoletti, F., Paolone, A., Papalexakis, E. E., Papalini, L., Papigkiotis, G., Paquis, A., Parisi, A., Park, B. -J., Park, J., Parker, W., Pascale, G., Pascucci, D., Pasqualetti, A., Passaquieti, R., Passenger, L., Passuello, D., Patane, O., Pathak, D., Pathak, M., Patra, A., Patricelli, B., Patron, A. S., Paul, K., Paul, S., Payne, E., Pearce, T., Pedraza, M., Pegna, R., Pele, A., Arellano, F. E. Peña, Penn, S., Penuliar, M. D., Perego, A., Pereira, Z., Perez, J. J., Périgois, C., Perna, G., Perreca, A., Perret, J., Perriès, S., Perry, J. W., Pesios, D., Petracca, S., Petrillo, C., Pfeiffer, H. P., Pham, H., Pham, K. A., Phukon, K. S., Phurailatpam, H., Piarulli, M., Piccari, L., Piccinni, O. J., Pichot, M., Piendibene, M., Piergiovanni, F., Pierini, L., Pierra, G., Pierro, V., Pietrzak, M., Pillas, M., Pilo, F., Pinard, L., Pinto, I. M., Pinto, M., Piotrzkowski, B. J., Pirello, M., Pitkin, M. D., Placidi, A., Placidi, E., Planas, M. L., Plastino, W., Poggiani, R., Polini, E., Pompili, L., Poon, J., Porcelli, E., Porter, E. K., Posnansky, C., Poulton, R., Powell, J., Pracchia, M., Pradhan, B. K., Pradier, T., Prajapati, A. K., Prasai, K., Prasanna, R., Prasia, P., Pratten, G., Principe, G., Principe, M., Prodi, G. A., Prokhorov, L., Prosposito, P., Puecher, A., Pullin, J., Punturo, M., Puppo, P., Pürrer, M., Qi, H., Qin, J., Quéméner, G., Quetschke, V., Quigley, C., Quinonez, P. J., Raab, F. J., Raabith, S. S., Raaijmakers, G., Raja, S., Rajan, C., Rajbhandari, B., Ramirez, K. E., Vidal, F. A. Ramis, Ramos-Buades, A., Rana, D., Ranjan, S., Ransom, K., Rapagnani, P., Ratto, B., Rawat, S., Ray, A., Raymond, V., Razzano, M., Read, J., Payo, M. Recaman, Regimbau, T., Rei, L., Reid, S., Reitze, D. H., Relton, P., Renzini, A. I., Rettegno, P., Revenu, B., Reyes, R., Rezaei, A. S., Ricci, F., Ricci, M., Ricciardone, A., Richardson, J. W., Richardson, M., Rijal, A., Riles, K., Riley, H. K., Rinaldi, S., Rittmeyer, J., Robertson, C., Robinet, F., Robinson, M., Rocchi, A., Rolland, L., Rollins, J. G., Romano, A. E., Romano, R., Romero, A., Romero-Shaw, I. M., Romie, J. H., Ronchini, S., Roocke, T. J., Rosa, L., Rosauer, T. J., Rose, C. A., Rosińska, D., Ross, M. P., Rossello, M., Rowan, S., Roy, S. K., Roy, S., Rozza, D., Ruggi, P., Ruhama, N., Morales, E. Ruiz, Ruiz-Rocha, K., Sachdev, S., Sadecki, T., Sadiq, J., Saffarieh, P., Sah, M. R., Saha, S. S., Saha, S., Sainrat, T., Menon, S. Sajith, Sakai, K., Sakellariadou, M., Sakon, S., Salafia, O. S., Salces-Carcoba, F., Salconi, L., Saleem, M., Salemi, F., Sallé, M., Salvador, S., Sanchez, A., Sanchez, E. J., Sanchez, J. H., Sanchez, L. E., Sanchis-Gual, N., Sanders, J. R., Sänger, E. M., Santoliquido, F., Saravanan, T. R., Sarin, N., Sasaoka, S., Sasli, A., Sassi, P., Sassolas, B., Satari, H., Sato, R., Sato, Y., Sauter, O., Savage, R. L., Sawada, T., Sawant, H. L., Sayah, S., Scacco, V., Schaetzl, D., Scheel, M., Schiebelbein, A., Schiworski, M. G., Schmidt, P., Schmidt, S., Schnabel, R., Schneewind, M., Schofield, R. M. S., Schouteden, K., Schulte, B. W., Schutz, B. F., Schwartz, E., Scialpi, M., Scott, J., Scott, S. M., Seetharamu, T. C., Seglar-Arroyo, M., Sekiguchi, Y., Sellers, D., Sengupta, A. S., Sentenac, D., Seo, E. G., Seo, J. W., Sequino, V., Serra, M., Servignat, G., Sevrin, A., Shaffer, T., Shah, U. S., Shaikh, M. A., Shao, L., Sharma, A. K., Sharma, P., Sharma-Chaudhary, S., Shaw, M. R., Shawhan, P., Shcheblanov, N. S., Sheridan, E., Shikano, Y., Shikauchi, M., Shimode, K., Shinkai, H., Shiota, J., Shoemaker, D. H., Shoemaker, D. M., Short, R. W., ShyamSundar, S., Sider, A., Siegel, H., Sieniawska, M., Sigg, D., Silenzi, L., Simmonds, M., Singer, L. P., Singh, A., Singh, D., Singh, M. K., Singh, S., Singha, A., Sintes, A. M., Sipala, V., Skliris, V., Slagmolen, B. J. J., Slaven-Blair, T. J., Smetana, J., Smith, J. R., Smith, L., Smith, R. J. E., Smith, W. J., Soldateschi, J., Somiya, K., Song, I., Soni, K., Soni, S., Sordini, V., Sorrentino, F., Sorrentino, N., Sotani, H., Soulard, R., Southgate, A., Spagnuolo, V., Spencer, A. P., Spera, M., Spinicelli, P., Spoon, J. B., Sprague, C. A., Srivastava, A. K., Stachurski, F., Steer, D. A., Steinlechner, J., Steinlechner, S., Stergioulas, N., Stevens, P., StPierre, M., Stratta, G., Strong, M. D., Strunk, A., Sturani, R., Stuver, A. L., Suchenek, M., Sudhagar, S., Sueltmann, N., Suleiman, L., Sullivan, K. D., Sun, L., Sunil, S., Suresh, J., Sutton, P. J., Suzuki, T., Suzuki, Y., Swinkels, B. L., Syx, A., Szczepańczyk, M. J., Szewczyk, P., Tacca, M., Tagoshi, H., Tait, S. C., Takahashi, H., Takahashi, R., Takamori, A., Takase, T., Takatani, K., Takeda, H., Takeshita, K., Talbot, C., Tamaki, M., Tamanini, N., Tanabe, D., Tanaka, K., Tanaka, S. J., Tanaka, T., Tang, D., Tanioka, S., Tanner, D. B., Tao, L., Tapia, R. D., Martín, E. N. Tapia San, Tarafder, R., Taranto, C., Taruya, A., Tasson, J. D., Teloi, M., Tenorio, R., Themann, H., Theodoropoulos, A., Thirugnanasambandam, M. P., Thomas, L. M., Thomas, M., Thomas, P., Thompson, J. E., Thondapu, S. R., Thorne, K. A., Thrane, E., Tissino, J., Tiwari, A., Tiwari, P., Tiwari, S., Tiwari, V., Todd, M. R., Toivonen, A. M., Toland, K., Tolley, A. E., Tomaru, T., Tomita, K., Tomura, T., Tong-Yu, C., Toriyama, A., Toropov, N., Torres-Forné, A., Torrie, C. I., Toscani, M., Melo, I. Tosta e, Tournefier, E., Trapananti, A., Travasso, F., Traylor, G., Trevor, M., Tringali, M. C., Tripathee, A., Troian, G., Troiano, L., Trovato, A., Trozzo, L., Trudeau, R. J., Tsang, T. T. L., Tso, R., Tsuchida, S., Tsukada, L., Tsutsui, T., Turbang, K., Turconi, M., Turski, C., Ubach, H., Uchikata, N., Uchiyama, T., Udall, R. P., Uehara, T., Uematsu, M., Ueno, K., Ueno, S., Undheim, V., Ushiba, T., Vacatello, M., Vahlbruch, H., Vaidya, N., Vajente, G., Vajpeyi, A., Valdes, G., Valencia, J., Valentini, M., Vallejo-Peña, S. A., Vallero, S., Valsan, V., van Bakel, N., van Beuzekom, M., van Dael, M., Brand, J. F. J. van den, Broeck, C. Van Den, Vander-Hyde, D. C., van der Sluys, M., Van de Walle, A., van Dongen, J., Vandra, K., van Haevermaet, H., van Heijningen, J. V., Van Hove, P., VanKeuren, M., Vanosky, J., van Putten, M. H. P. M., van Ranst, Z., van Remortel, N., Vardaro, M., Vargas, A. F., Varghese, J. J., Varma, V., Vasúth, M., Vecchio, A., Vedovato, G., Veitch, J., Veitch, P. J., Venikoudis, S., Venneberg, J., Verdier, P., Verkindt, D., Verma, B., Verma, P., Verma, Y., Vermeulen, S. M., Vetrano, F., Veutro, A., Vibhute, A. M., Viceré, A., Vidyant, S., Viets, A. D., Vijaykumar, A., Vilkha, A., Villa-Ortega, V., Vincent, E. T., Vinet, J. -Y., Viret, S., Virtuoso, A., Vitale, S., Vives, A., Vocca, H., Voigt, D., von Reis, E. R. G., von Wrangel, J. S. A., Vyatchanin, S. P., Wade, L. E., Wade, M., Wagner, K. J., Wajid, A., Walker, M., Wallace, G. S., Wallace, L., Wang, H., Wang, J. Z., Wang, W. H., Wang, Z., Waratkar, G., Warner, J., Was, M., Washimi, T., Washington, N. Y., Watarai, D., Wayt, K. E., Weaver, B. R., Weaver, B., Weaving, C. R., Webster, S. A., Weinert, M., Weinstein, A. J., Weiss, R., Wellmann, F., Wen, L., Weßels, P., Wette, K., Whelan, J. T., Whiting, B. F., Whittle, C., Wildberger, J. B., Wilk, O. S., Wilken, D., Wilkin, A. T., Willadsen, D. J., Willetts, K., Williams, D., Williams, M. J., Williams, N. S., Willis, J. L., Willke, B., Wils, M., Winterflood, J., Wipf, C. C., Woan, G., Woehler, J., Wofford, J. K., Wolfe, N. E., Wong, H. T., Wong, H. W. Y., Wong, I. C. F., Wright, J. L., Wright, M., Wu, C., Wu, D. S., Wu, H., Wuchner, E., Wysocki, D. M., Xu, V. A., Xu, Y., Yadav, N., Yamamoto, H., Yamamoto, K., Yamamoto, T. S., Yamamoto, T., Yamamura, S., Yamazaki, R., Yan, S., Yan, T., Yang, F. W., Yang, F., Yang, K. Z., Yang, Y., Yarbrough, Z., Yasui, H., Yeh, S. -W., Yelikar, A. B., Yin, X., Yokoyama, J., Yokozawa, T., Yoo, J., Yu, H., Yuan, S., Yuzurihara, H., Zadrożny, A., Zanolin, M., Zeeshan, M., Zelenova, T., Zendri, J. -P., Zeoli, M., Zerrad, M., Zevin, M., Zhang, A. C., Zhang, L., Zhang, R., Zhang, T., Zhang, Y., Zhao, C., Zhao, Yue, Zhao, Yuhang, Zheng, Y., Zhong, H., Zhou, R., Zhu, X. -J., Zhu, Z. -H., Zimmerman, A. B., Zucker, M. E., and Zweizig, J.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
We present the results of a search for gravitational-wave transients associated with core-collapse supernova SN 2023ixf, which was observed in the galaxy Messier 101 via optical emission on 2023 May 19th, during the LIGO-Virgo-KAGRA 15th Engineering Run. We define a five-day on-source window during which an accompanying gravitational-wave signal may have occurred. No gravitational waves have been identified in data when at least two gravitational-wave observatories were operating, which covered $\sim 14\%$ of this five-day window. We report the search detection efficiency for various possible gravitational-wave emission models. Considering the distance to M101 (6.7 Mpc), we derive constraints on the gravitational-wave emission mechanism of core-collapse supernovae across a broad frequency spectrum, ranging from 50 Hz to 2 kHz where we assume the GW emission occurred when coincident data are available in the on-source window. Considering an ellipsoid model for a rotating proto-neutron star, our search is sensitive to gravitational-wave energy $1 \times 10^{-5} M_{\odot} c^2$ and luminosity $4 \times 10^{-5} M_{\odot} c^2/\text{s}$ for a source emitting at 50 Hz. These constraints are around an order of magnitude more stringent than those obtained so far with gravitational-wave data. The constraint on the ellipticity of the proto-neutron star that is formed is as low as $1.04$, at frequencies above $1200$ Hz, surpassing results from SN 2019ejj., Comment: Main paper: 6 pages, 4 figures and 1 table. Total with appendices: 20 pages, 4 figures, and 1 table
- Published
- 2024
27. Enhancing Personalised Cybersecurity Guidance for Older Adults in Ireland
- Author
-
Sheil, Ashley, Camilleri, Jacob, Cronin, Moya, Gruben, Melanie, Keefe, Michelle O, Murray, Hazel, and Das, Sanchari
- Subjects
Computer Science - Human-Computer Interaction ,Computer Science - Computers and Society - Abstract
The term `Digital Divide' emerged in the mid-1990s, highlighting the gap between those with access to emerging information technologies and those without. This gap persists for older adults even in the 21st century. To address this, our study focused on how older adults in Ireland can feel safer online. We conducted a two-phase study. In Phase I, 58 participants used Dot Voting to identify top cyber-security priorities, including password management, privacy, and avoiding scams. This informed Phase II, where we held focus groups with 31 participants from rural and urban communities in Ireland. Researchers provided tailored advice through presentations and leaflets, followed by open discussions. Our findings show that, despite being highly aware of cyber-scams, older adults remain very concerned about them. Participants expressed hesitation about using online password managers and two-factor authentication but valued advice on privacy and tools that can help them feel more in control online.
- Published
- 2024
28. MIK: Modified Isolation Kernel for Biological Sequence Visualization, Classification, and Clustering
- Author
-
Ali, Sarwan, Chourasia, Prakash, Mansoor, Haris, koirala, Bipin, and Patterson, Murray
- Subjects
Computer Science - Machine Learning ,Computer Science - Human-Computer Interaction ,Statistics - Machine Learning - Abstract
The t-Distributed Stochastic Neighbor Embedding (t-SNE) has emerged as a popular dimensionality reduction technique for visualizing high-dimensional data. It computes pairwise similarities between data points by default using an RBF kernel and random initialization (in low-dimensional space), which successfully captures the overall structure but may struggle to preserve the local structure efficiently. This research proposes a novel approach called the Modified Isolation Kernel (MIK) as an alternative to the Gaussian kernel, which is built upon the concept of the Isolation Kernel. MIK uses adaptive density estimation to capture local structures more accurately and integrates robustness measures. It also assigns higher similarity values to nearby points and lower values to distant points. Comparative research using the normal Gaussian kernel, the isolation kernel, and several initialization techniques, including random, PCA, and random walk initializations, are used to assess the proposed approach (MIK). Additionally, we compare the computational efficiency of all $3$ kernels with $3$ different initialization methods. Our experimental results demonstrate several advantages of the proposed kernel (MIK) and initialization method selection. It exhibits improved preservation of the local and global structure and enables better visualization of clusters and subclusters in the embedded space. These findings contribute to advancing dimensionality reduction techniques and provide researchers and practitioners with an effective tool for data exploration, visualization, and analysis in various domains.
- Published
- 2024
29. The Propensity for Density in Feed-forward Models
- Author
-
Schoots, Nandi, Jackson, Alex, Kholmovaia, Ali, McBurney, Peter, and Shanahan, Murray
- Subjects
Computer Science - Machine Learning ,Computer Science - Artificial Intelligence - Abstract
Does the process of training a neural network to solve a task tend to use all of the available weights even when the task could be solved with fewer weights? To address this question we study the effects of pruning fully connected, convolutional and residual models while varying their widths. We find that the proportion of weights that can be pruned without degrading performance is largely invariant to model size. Increasing the width of a model has little effect on the density of the pruned model relative to the increase in absolute size of the pruned network. In particular, we find substantial prunability across a large range of model sizes, where our biggest model is 50 times as wide as our smallest model. We explore three hypotheses that could explain these findings.
- Published
- 2024
- Full Text
- View/download PDF
30. A novel understanding of the role of plasma-molecular kinetics on divertor power exhaust
- Author
-
Osborne, N., Verhaegh, K., Moulton, D., Reimerdes, H., Ryan, P., Lonigro, N., Mijin, S., Osawa, R., Murray, K., Kobussen, S., Damizia, Y., Perek, A., Theiler, C., Ducker, R., and Mykytchuk, D.
- Subjects
Physics - Plasma Physics - Abstract
During detachment, a buffer of neutral atoms and molecules builds up between the target and the ionising plasma. Collisions between the plasma and the molecules play an important role in the detachment process. Studies of plasma-molecular kinetics indicate that the gas temperature is increased during detachment for a wide range of conditions on the MAST-U and TCV tokamaks. This is related to an increased $\mathrm{D}_2$ lifetime during detachment, leading to more plasma-molecule collisions that raise the molecular temperature. Such collisions subsequently result in significant power and momentum losses to the divertor plasma during detachment. Using a simplified inference, these losses are estimated using the rotational temperature, neutral pressure and ionisation front position. Significant power losses (about $10\%$ of $P_{SOL}$) and dominant momentum losses (majority of the upstream pressure) from plasma-molecule collisions are inferred experimentally in long-legged, strongly baffled, detached divertors (MAST-U Super-X divertor), consistent with SOLPS-ITER simulations. The vibrational distribution obtained is compared with an Eirene-like collisional-radiative model setup, indicating some qualitative agreements and disagreements, potentially highlighting model gaps. These interpretations highlight the importance of plasma-molecular collisions, leading to power and momentum losses during detachment. Our analysis and reduced modelling of these processes provide further insights into detachment control observations, the workings of long-legged divertors and divertor power balance.
- Published
- 2024
31. Large data limits and scaling laws for tSNE
- Author
-
Murray, Ryan and Pickarski, Adam
- Subjects
Mathematics - Statistics Theory ,Computer Science - Machine Learning ,Mathematics - Analysis of PDEs ,Statistics - Machine Learning ,68Q25, 68R10, 68U05 - Abstract
This work considers large-data asymptotics for t-distributed stochastic neighbor embedding (tSNE), a widely-used non-linear dimension reduction algorithm. We identify an appropriate continuum limit of the tSNE objective function, which can be viewed as a combination of a kernel-based repulsion and an asymptotically-vanishing Laplacian-type regularizer. As a consequence, we show that embeddings of the original tSNE algorithm cannot have any consistent limit as $n \to \infty$. We propose a rescaled model which mitigates the asymptotic decay of the attractive energy, and which does have a consistent limit.
- Published
- 2024
32. Position Specific Scoring Is All You Need? Revisiting Protein Sequence Classification Tasks
- Author
-
Ali, Sarwan, Murad, Taslim, Chourasia, Prakash, Mansoor, Haris, Khan, Imdad Ullah, Chen, Pin-Yu, and Patterson, Murray
- Subjects
Computer Science - Machine Learning - Abstract
Understanding the structural and functional characteristics of proteins are crucial for developing preventative and curative strategies that impact fields from drug discovery to policy development. An important and popular technique for examining how amino acids make up these characteristics of the protein sequences with position-specific scoring (PSS). While the string kernel is crucial in natural language processing (NLP), it is unclear if string kernels can extract biologically meaningful information from protein sequences, despite the fact that they have been shown to be effective in the general sequence analysis tasks. In this work, we propose a weighted PSS kernel matrix (or W-PSSKM), that combines a PSS representation of protein sequences, which encodes the frequency information of each amino acid in a sequence, with the notion of the string kernel. This results in a novel kernel function that outperforms many other approaches for protein sequence classification. We perform extensive experimentation to evaluate the proposed method. Our findings demonstrate that the W-PSSKM significantly outperforms existing baselines and state-of-the-art methods and achieves up to 45.1\% improvement in classification accuracy.
- Published
- 2024
33. A Search for 3-mm Molecular Absorption Line Transitions in the Magellanic Stream
- Author
-
Steffes, Lucille, Rybarczyk, Daniel R., Stanimirović, Snežana, Dawson, J. R., Putman, Mary, Richter, Philipp, Gallagher III, John, Liszt, Harvey, Murray, Claire, Dickey, John, Heiles, Carl, Hernandez, Audra, Lindner, Robert, Liu, Yangyang, McClure-Griffiths, Naomi, Wong, Tony, and Savage, Blair
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
The Magellanic Stream, a tidal tail of diffuse gas falling onto the Milky Way, formed by interactions between the Small and Large Magellanic Clouds, is primarily composed of neutral atomic hydrogen (HI). The deficiency of dust and the diffuse nature of the present gas make molecular formation rare and difficult, but if present, could lead to regions potentially suitable for star formation, thereby allowing us to probe conditions of star formation similar to those at high redshifts. We search for HCO$^+$, HCN, HNC, and C$_2$H using the highest sensitivity observations of molecular absorption data from the Atacama Large Millimeter Array to trace these regions, comparing with HI archival data to compare these environments in the Magellanic Stream to the HI column density threshold for molecular formation in the Milky Way. We also compare the line of sight locations with confirmed locations of stars, molecular hydrogen, and OI detections, though at higher sensitivities than the observations presented here. We find no detections to a 3$\sigma$ significance, despite four sightlines having column densities surpassing the threshold for molecular formation in the diffuse regions of the Milky Way. Here we present our calculations for the upper limits of the column densities of each of these molecular absorption lines, ranging from $3 \times 10^{10}$ to $1 \times 10^{13}$ cm$^{-2}$. The non-detection of HCO$^+$ suggests that at least one of the following is true: (i) $X_{HCO^+, \mathrm{MS}}$ is significantly lower than the Milky Way value; (ii) that the widespread diffuse molecular gas observed in the Milky Way's diffuse ISM does not have a direct analog in the MS; (iii) the HI-to-H$_2$ transition occurs in the MS at a higher surface density in the MS than in the LMC or SMC; or (iv) molecular gas exists in the MS, but only in small, dense clumps., Comment: 19 pages, 7 figures, 4 tables, Accepted for publication in PASA
- Published
- 2024
34. Forcing Planets to Evolve: The Relationship Between Uranus and Neptune at Late Stages of Dynamical Evolution
- Author
-
Ruiz, Arcelia Hermosillo, Murray-Clay, Ruth, Volk, Kathryn, and Pike, Rosemary
- Subjects
Astrophysics - Earth and Planetary Astrophysics - Abstract
The dynamical properties of the bodies in the outer Solar System hold information regarding the planets' orbital histories. In early Solar System numerical simulations, where chaos is a primary driver, it is difficult to explore parameter space in a systematic way. In such simulations, stable configurations are hard to come by, and often require special fine-tuning. In addition, it is infeasible to run suites of well-resolved, realistic simulations with massive particles to drive planetary evolution where enough particles remain to represent the transneptunian populations to robustly statistically compare with observations. To complement state of the art full N-body simulations, we develop a method to artificially control each planet's orbital elements independently from each other, which when carefully applied, can be used to test a wider suite of models. We modify two widely used publicly available N-body integrators: (1) the C code, REBOUND and (2) the FORTRAN code, Mercury. We show how the application of specific fictitious forces within numerical integrators can be used to tightly control planetary evolution to more easily explore migration and orbital excitation and damping. This tool allows us to replicate the impact a massive planetesimal disk would have on the planets, without actually including the massive planetesimals, thus decreasing the chaos and simulation runtime. We highlight an appropriate application that shows the impact of Neptune's eccentricity damping and radial outward migration on Uranus' eccentricity, Comment: submitted to ApJ
- Published
- 2024
35. Scylla III. The Outside-In Radial Age Gradient in the Small Magellanic Cloud and the Star Formation Histories of the Main Body, Wing and Outer Regions
- Author
-
Cohen, Roger E., McQuinn, Kristen B. W., Murray, Claire E., Williams, Benjamin F., Choi, Yumi, Lindberg, Christina W., Burhenne, Clare, Gordon, Karl D., Merica-Jones, Petia Yanchulova, Bot, Caroline, Dolphin, Andrew E., Gilbert, Karoline M., Goldman, Steven, Hirschauer, Alec S., Sandstrom, Karin M., and Telford, O. Grace
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
The proximity of the Large and Small Magellanic Clouds (LMC and SMC) provides the opportunity to study the impact of dwarf-dwarf interactions on their mass assembly with a unique level of detail. To this end, we analyze two-filter broadband imaging of 83 Hubble Space Telescope (HST) pointings covering 0.203 deg$^2$ towards the SMC, extending out to $\sim$3.5 kpc in projection from its optical center. Lifetime star formation histories (SFHs) fit to each pointing independently reveal an outside-in age gradient such that fields in the SMC outskirts are older on average. We measure radial gradients of the lookback time to form 90%, 75% and 50% of the cumulative stellar mass for the first time, finding $\delta$($\tau_{90}$, $\tau_{75}$, $\tau_{50}$)/$\delta$R = (0.61$^{+0.08}_{-0.07}$, 0.65$^{+0.09}_{-0.08}$, 0.82$^{+0.12}_{-0.16}$) Gyr/kpc assuming PARSEC evolutionary models and a commonly used elliptical geometry of the SMC, although our results are robust to these assumptions. The wing of the SMC deviates from this trend, forming 25\% of its cumulative mass over the most recent 3 Gyr due to a best-fit star formation rate that remains approximately constant. Our results are consistent with chemodynamical evidence of a tidally stripped SMC component in the foreground, and imply contributions to the observed SFH from multiple previous LMC-SMC interactions. We also compare our SMC SFH with results from a companion study of the LMC, finding that while the two galaxies present different internal, spatially resolved SFH trends, both the LMC and SMC have similar near-constant lifetime SFHs when viewed globally., Comment: ApJ in press. 40 pages, 18 figures, 5 tables including Appendices
- Published
- 2024
36. Scylla II. The Spatially Resolved Star Formation History of the Large Magellanic Cloud Reveals an Inverted Radial Age Gradient
- Author
-
Cohen, Roger E., McQuinn, Kristen B. W., Murray, Claire E., Williams, Benjamin F., Choi, Yumi, Lindberg, Christina W., Burhenne, Clare, Gordon, Karl D., Merica-Jones, Petia Yanchulova, Gilbert, Karoline M., Boyer, Martha L., Goldman, Steven, Dolphin, Andrew E., and Telford, O. Grace
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
The proximity of the Magellanic Clouds provides the opportunity to study interacting dwarf galaxies near a massive host, and spatial trends in their stellar population properties in particular, with a unique level of detail. The Scylla pure parallel program has obtained deep (80% complete to >1 mag below the ancient main sequence turnoff), homogeneous two-filter Hubble Space Telescope (HST) imaging sampling the inner star-forming disk of the Large Magellanic Cloud (LMC), the perfect complement to shallower, contiguous ground-based surveys. We harness this imaging together with extant archival data and fit lifetime star formation histories (SFHs) to resolved color-magnitude diagrams (CMDs) of 111 individual fields, using three different stellar evolutionary libraries. We validate per-field recovered distances and extinctions as well as the combined global LMC age-metallicity relation and SFH against independent estimates. We find that the present-day radial age gradient reverses from an inside-out gradient in the inner disk to an outside-in gradient beyond $\sim$2 disk scalelengths, supported by ground-based measurements. The gradients become relatively flatter at earlier lookback times, while the location of the inversion remains constant over an order of magnitude in lookback time, from $\sim$1$-$10 Gyr. This suggests at least one mechanism that predates the recent intense LMC-SMC interaction. We compare observed radial age trends to other late-type galaxies at fixed stellar mass and discuss similarities and differences in the context of potential drivers, implying strong radial migration in the LMC., Comment: ApJ in press. 45 pages, 17 figures, 9 tables including Appendices
- Published
- 2024
37. Scylla I: A pure-parallel, multi-wavelength imaging survey of the ULLYSES fields in the LMC and SMC
- Author
-
Murray, Claire E., Lindberg, Christina W., Merica-Jones, Petia Yanchulova, Williams, Benjamin F., Cohen, Roger E., Gordon, Karl D., McQuinn, Kristen B. W., Choi, Yumi, Burhenne, Clare, Sandstrom, Karin M., Bot, Caroline, Johnson, L. Clifton, Goldman, Steven R., Clark, Christopher J. R., Roman-Duval, Julia C., Gilbert, Karoline M., Peek, J. E. G., Hirschauer, Alec S., Boyer, Martha L., and Dolphin, Andrew E.
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
Scylla is a deep Hubble Space Telescope survey of the stellar populations, interstellar medium and star formation in the LMC and SMC. As a pure-parallel complement to the Ultraviolet Legacy Library of Young Stars as Essential Standards (ULLYSES) survey, Scylla obtained 342 orbits of ultraviolet (UV) through near-infrared (IR) imaging of the LMC and SMC with Wide Field Camera 3. In this paper, we describe the science objectives, observing strategy, data reduction procedure, and initial results from our photometric analysis of 96 observed fields. Although our observations were constrained by ULYSSES primary exposures, we imaged all fields in at least two filters (F475W and F814W), and 64% of fields in at least three and as many as seven WFC3 filters spanning the UV to IR. Overall, we reach average 50% completeness of $m_{\rm F225W}=26.0$, $m_{\rm F275W}=26.2$, $m_{\rm F336W}=26.9$, $m_{\rm F475W}=27.8$, $m_{\rm F814W}=25.5$, $m_{\rm F110W}=24.7$, and $m_{\rm F160W}=24.0$ Vega magnitudes in our photometric catalogs, which is faintward of the ancient main sequence turnoff in all filters. The primary science goals of Scylla include characterizing the structure and properties of dust in the MCs, as well as their spatially-resolved star formation and chemical enrichment histories. Our images and photometric catalogs, which represent the widest-area coverage of MCs with HST photometry to date, are available as a high-level science product at the Barbara A. Mikulski Archive for Space Telescopes., Comment: 25 pages, 16 figures, 8 tables. Accepted for publication in ApJS
- Published
- 2024
38. MultiVENT 2.0: A Massive Multilingual Benchmark for Event-Centric Video Retrieval
- Author
-
Kriz, Reno, Sanders, Kate, Etter, David, Murray, Kenton, Carpenter, Cameron, Van Ochten, Kelly, Recknor, Hannah, Guallar-Blasco, Jimena, Martin, Alexander, Colaianni, Ronald, King, Nolan, Yang, Eugene, and Van Durme, Benjamin
- Subjects
Computer Science - Computer Vision and Pattern Recognition ,Computer Science - Computation and Language - Abstract
Efficiently retrieving and synthesizing information from large-scale multimodal collections has become a critical challenge. However, existing video retrieval datasets suffer from scope limitations, primarily focusing on matching descriptive but vague queries with small collections of professionally edited, English-centric videos. To address this gap, we introduce $\textbf{MultiVENT 2.0}$, a large-scale, multilingual event-centric video retrieval benchmark featuring a collection of more than 218,000 news videos and 3,906 queries targeting specific world events. These queries specifically target information found in the visual content, audio, embedded text, and text metadata of the videos, requiring systems leverage all these sources to succeed at the task. Preliminary results show that state-of-the-art vision-language models struggle significantly with this task, and while alternative approaches show promise, they are still insufficient to adequately address this problem. These findings underscore the need for more robust multimodal retrieval systems, as effective video retrieval is a crucial step towards multimodal content understanding and generation tasks.
- Published
- 2024
39. The Thermal Emission Spectrum of the Nearby Rocky Exoplanet LTT 1445A b from JWST MIRI/LRS
- Author
-
Wachiraphan, Patcharapol, Berta-Thompson, Zachory K., Diamond-Lowe, Hannah, Winters, Jennifer G., Murray, Catriona, Zhang, Michael, Xue, Qiao, Morley, Caroline V., Rosario-Franco, Marialis, and Duvvuri, Girish M.
- Subjects
Astrophysics - Earth and Planetary Astrophysics - Abstract
The nearby transiting rocky exoplanet LTT 1445A b presents an ideal target for studying atmospheric retention in terrestrial planets orbiting M dwarfs. It is cooler than many rocky exoplanets yet tested for atmospheres, receiving a bolometric instellation similar to Mercury's. Previous transmission spectroscopy ruled out a light H/He-dominated atmosphere but could not distinguish between a bare-rock, a high-MMW, or a cloudy atmosphere. We present new secondary eclipse observations using JWST's MIRI/LRS, covering the 5-12 $\mu$m range. From these observations, we detect a broadband secondary eclipse depth of 41 $\pm$ 9 ppm and measure a mid-eclipse timing consistent with a circular orbit (at 1.7$\sigma$). From its emission spectrum, the planet's dayside brightness temperature is constrained to 525 $\pm$ 15 K, yielding a temperature ratio relative to the maximum average dayside temperature from instant thermal reradiation by a rocky surface $R$ = $T_{\rm day,obs}/T_{\rm max}$ = 0.952 $\pm$ 0.057, consistent with emission from a dark rocky surface. From an energy balance perspective, such a warm dayside temperature disfavors thick atmospheres, excluding $\sim$100 bar atmospheres with Bond albedo $>$ 0.08 at the 3$\sigma$ level. Furthermore, forward modeling of atmospheric emission spectra disfavor simple 100\% CO$_2$ atmospheres with surface pressures of 1, 10, and 100 bar at 4.2$\sigma$, 6.6$\sigma$, and 6.8$\sigma$ confidence, respectively. These results suggest that LTT 1445A b lacks a very thick CO$_2$ atmosphere, possibly due to atmospheric erosion driven by stellar activity. However, the presence of a moderately thin atmosphere (similar to those on Mars, Titan, or Earth) remains uncertain., Comment: 31 pages, 14 figures, submitted to AJ
- Published
- 2024
40. A search using GEO600 for gravitational waves coincident with fast radio bursts from SGR 1935+2154
- Author
-
The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration, Abac, A. G., Abbott, R., Abouelfettouh, I., Acernese, F., Ackley, K., Adhicary, S., Adhikari, N., Adhikari, R. X., Adkins, V. K., Agarwal, D., Agathos, M., Abchouyeh, M. Aghaei, Aguiar, O. D., Aguilar, I., Aiello, L., Ain, A., Ajith, P., Akutsu, T., Albanesi, S., Alfaidi, R. A., Al-Jodah, A., Alléné, C., Allocca, A., Al-Shammari, S., Altin, P. A., Alvarez-Lopez, S., Amato, A., Amez-Droz, L., Amorosi, A., Amra, C., Ananyeva, A., Anderson, S. B., Anderson, W. G., Andia, M., Ando, M., Andrade, T., Andres, N., Andrés-Carcasona, M., Andrić, T., Anglin, J., Ansoldi, S., Antelis, J. M., Antier, S., Aoumi, M., Appavuravther, E. Z., Appert, S., Apple, S. K., Arai, K., Araya, A., Araya, M. C., Areeda, J. S., Argianas, L., Aritomi, N., Armato, F., Arnaud, N., Arogeti, M., Aronson, S. M., Ashton, G., Aso, Y., Assiduo, M., Melo, S. Assis de Souza, Aston, S. M., Astone, P., Attadio, F., Aubin, F., AultONeal, K., Avallone, G., Azrad, D., Babak, S., Badaracco, F., Badger, C., Bae, S., Bagnasco, S., Bagui, E., Baier, J. G., Baiotti, L., Bajpai, R., Baka, T., Ball, M., Ballardin, G., Ballmer, S. W., Banagiri, S., Banerjee, B., Bankar, D., Baral, P., Barayoga, J. C., Barish, B. C., Barker, D., Barneo, P., Barone, F., Barr, B., Barsotti, L., Barsuglia, M., Barta, D., Bartoletti, A. M., Barton, M. A., Bartos, I., Basak, S., Basalaev, A., Bassiri, R., Basti, A., Bates, D. E., Bawaj, M., Baxi, P., Bayley, J. C., Baylor, A. C., Baynard II, P. A., Bazzan, M., Bedakihale, V. M., Beirnaert, F., Bejger, M., Belardinelli, D., Bell, A. S., Benedetto, V., Benoit, W., Bentley, J. D., Yaala, M. Ben, Bera, S., Berbel, M., Bergamin, F., Berger, B. K., Bernuzzi, S., Beroiz, M., Bersanetti, D., Bertolini, A., Betzwieser, J., Beveridge, D., Bevins, N., Bhandare, R., Bhardwaj, U., Bhatt, R., Bhattacharjee, D., Bhaumik, S., Bhowmick, S., Bianchi, A., Bilenko, I. A., Billingsley, G., Binetti, A., Bini, S., Birnholtz, O., Biscoveanu, S., Bisht, A., Bitossi, M., Bizouard, M. -A., Blackburn, J. K., Blagg, L. A., Blair, C. D., Blair, D. G., Bobba, F., Bode, N., Boileau, G., Boldrini, M., Bolingbroke, G. N., Bolliand, A., Bonavena, L. D., Bondarescu, R., Bondu, F., Bonilla, E., Bonilla, M. S., Bonino, A., Bonnand, R., Booker, P., Borchers, A., Boschi, V., Bose, S., Bossilkov, V., Boudart, V., Boudon, A., Bozzi, A., Bradaschia, C., Brady, P. R., Braglia, M., Branch, A., Branchesi, M., Brandt, J., Braun, I., Breschi, M., Briant, T., Brillet, A., Brinkmann, M., Brockill, P., Brockmueller, E., Brooks, A. F., Brown, B. C., Brown, D. D., Brozzetti, M. L., Brunett, S., Bruno, G., Bruntz, R., Bryant, J., Bucci, F., Buchanan, J., Bulashenko, O., Bulik, T., Bulten, H. J., Buonanno, A., Burtnyk, K., Buscicchio, R., Buskulic, D., Buy, C., Byer, R. L., Davies, G. S. Cabourn, Cabras, G., Cabrita, R., Cáceres-Barbosa, V., Cadonati, L., Cagnoli, G., Cahillane, C., Bustillo, J. Calderón, Callister, T. A., Calloni, E., Camp, J. B., Canepa, M., Santoro, G. Caneva, Cannon, K. C., Cao, H., Capistran, L. A., Capocasa, E., Capote, E., Carapella, G., Carbognani, F., Carlassara, M., Carlin, J. B., Carpinelli, M., Carrillo, G., Carter, J. J., Carullo, G., Diaz, J. Casanueva, Casentini, C., Castro-Lucas, S. Y., Caudill, S., Cavaglià, M., Cavalieri, R., Cella, G., Cerdá-Durán, P., Cesarini, E., Chaibi, W., Chakraborty, P., Subrahmanya, S. Chalathadka, Chan, J. C. L., Chan, M., Chandra, K., Chang, R. -J., Chao, S., Charlton, E. L., Charlton, P., Chassande-Mottin, E., Chatterjee, C., Chatterjee, Debarati, Chatterjee, Deep, Chaturvedi, M., Chaty, S., Chen, A., Chen, A. H. -Y., Chen, D., Chen, H., Chen, H. Y., Chen, J., Chen, K. H., Chen, Y., Chen, Yanbei, Chen, Yitian, Cheng, H. P., Chessa, P., Cheung, H. T., Cheung, S. Y., Chiadini, F., Chiarini, G., Chierici, R., Chincarini, A., Chiofalo, M. L., Chiummo, A., Chou, C., Choudhary, S., Christensen, N., Chua, S. S. Y., Chugh, P., Ciani, G., Ciecielag, P., Cieślar, M., Cifaldi, M., Ciolfi, R., Clara, F., Clark, J. A., Clarke, J., Clarke, T. A., Clearwater, P., Clesse, S., Coccia, E., Codazzo, E., Cohadon, P. -F., Colace, S., Colleoni, M., Collette, C. G., Collins, J., Colloms, S., Colombo, A., Colpi, M., Compton, C. M., Connolly, G., Conti, L., Corbitt, T. R., Cordero-Carrión, I., Corezzi, S., Cornish, N. J., Corsi, A., Cortese, S., Costa, C. A., Cottingham, R., Coughlin, M. W., Couineaux, A., Coulon, J. -P., Countryman, S. T., Coupechoux, J. -F., Couvares, P., Coward, D. M., Cowart, M. J., Coyne, R., Craig, K., Creed, R., Creighton, J. D. E., Creighton, T. D., Cremonese, P., Criswell, A. W., Crockett-Gray, J. C. G., Crook, S., Crouch, R., Csizmazia, J., Cudell, J. R., Cullen, T. J., Cumming, A., Cuoco, E., Cusinato, M., Dabadie, P., Canton, T. Dal, Dall'Osso, S., Pra, S. Dal, Dálya, G., D'Angelo, B., Danilishin, S., D'Antonio, S., Danzmann, K., Darroch, K. E., Dartez, L. P., Dasgupta, A., Datta, S., Dattilo, V., Daumas, A., Davari, N., Dave, I., Davenport, A., Davier, M., Davies, T. F., Davis, D., Davis, L., Davis, M. C., Davis, P. J., Dax, M., De Bolle, J., Deenadayalan, M., Degallaix, J., De Laurentis, M., Deléglise, S., De Lillo, F., Dell'Aquila, D., Del Pozzo, W., De Marco, F., De Matteis, F., D'Emilio, V., Demos, N., Dent, T., Depasse, A., DePergola, N., De Pietri, R., De Rosa, R., De Rossi, C., DeSalvo, R., De Simone, R., Dhani, A., Diab, R., Díaz, M. C., Di Cesare, M., Dideron, G., Didio, N. A., Dietrich, T., Di Fiore, L., Di Fronzo, C., Di Giovanni, M., Di Girolamo, T., Diksha, D., Di Michele, A., Ding, J., Di Pace, S., Di Palma, I., Di Renzo, F., Divyajyoti, Dmitriev, A., Doctor, Z., Dohmen, E., Doleva, P. P., Dominguez, D., D'Onofrio, L., Donovan, F., Dooley, K. L., Dooney, T., Doravari, S., Dorosh, O., Drago, M., Driggers, J. C., Ducoin, J. -G., Dunn, L., Dupletsa, U., D'Urso, D., Duval, H., Duverne, P. -A., Dwyer, S. E., Eassa, C., Ebersold, M., Eckhardt, T., Eddolls, G., Edelman, B., Edo, T. B., Edy, O., Effler, A., Eichholz, J., Einsle, H., Eisenmann, M., Eisenstein, R. A., Ejlli, A., Eleveld, R. M., Emma, M., Endo, K., Engl, A. J., Enloe, E., Errico, L., Essick, R. C., Estellés, H., Estevez, D., Etzel, T., Evans, M., Evstafyeva, T., Ewing, B. E., Ezquiaga, J. M., Fabrizi, F., Faedi, F., Fafone, V., Fairhurst, S., Farah, A. M., Farr, B., Farr, W. M., Favaro, G., Favata, M., Fays, M., Fazio, M., Feicht, J., Fejer, M. M., Felicetti, R. ., Fenyvesi, E., Ferguson, D. L., Ferraiuolo, S., Ferrante, I., Ferreira, T. A., Fidecaro, F., Figura, P., Fiori, A., Fiori, I., Fishbach, M., Fisher, R. P., Fittipaldi, R., Fiumara, V., Flaminio, R., Fleischer, S. M., Fleming, L. S., Floden, E., Foley, E. M., Fong, H., Font, J. A., Fornal, B., Forsyth, P. W. F., Franceschetti, K., Franchini, N., Frasca, S., Frasconi, F., Mascioli, A. Frattale, Frei, Z., Freise, A., Freitas, O., Frey, R., Frischhertz, W., Fritschel, P., Frolov, V. V., Fronzé, G. G., Fuentes-Garcia, M., Fujii, S., Fujimori, T., Fulda, P., Fyffe, M., Gadre, B., Gair, J. R., Galaudage, S., Galdi, V., Gallagher, H., Gallardo, S., Gallego, B., Gamba, R., Gamboa, A., Ganapathy, D., Ganguly, A., Garaventa, B., García-Bellido, J., Núñez, C. García, García-Quirós, C., Gardner, J. W., Gardner, K. A., Gargiulo, J., Garron, A., Garufi, F., Gasbarra, C., Gateley, B., Gayathri, V., Gemme, G., Gennai, A., Gennari, V., George, J., George, R., Gerberding, O., Gergely, L., Ghonge, S., Ghosh, Archisman, Ghosh, Sayantan, Ghosh, Shaon, Ghosh, Shrobana, Ghosh, Suprovo, Ghosh, Tathagata, Giacoppo, L., Giaime, J. A., Giardina, K. D., Gibson, D. R., Gibson, D. T., Gier, C., Giri, P., Gissi, F., Gkaitatzis, S., Glanzer, J., Glotin, F., Godfrey, J., Godwin, P., Goebbels, N. L., Goetz, E., Golomb, J., Lopez, S. Gomez, Goncharov, B., Gong, Y., González, G., Goodarzi, P., Goode, S., Goodwin-Jones, A. W., Gosselin, M., Göttel, A. S., Gouaty, R., Gould, D. W., Govorkova, K., Goyal, S., Grace, B., Grado, A., Graham, V., Granados, A. E., Granata, M., Granata, V., Gras, S., Grassia, P., Gray, A., Gray, C., Gray, R., Greco, G., Green, A. C., Green, S. M., Green, S. R., Gretarsson, A. M., Gretarsson, E. M., Griffith, D., Griffiths, W. L., Griggs, H. L., Grignani, G., Grimaldi, A., Grimaud, C., Grote, H., Guerra, D., Guetta, D., Guidi, G. M., Guimaraes, A. R., Gulati, H. K., Gulminelli, F., Gunny, A. M., Guo, H., Guo, W., Guo, Y., Gupta, Anchal, Gupta, Anuradha, Gupta, Ish, Gupta, N. C., Gupta, P., Gupta, S. K., Gupta, T., Gupte, N., Gurs, J., Gutierrez, N., Guzman, F., H, H. -Y., Haba, D., Haberland, M., Haino, S., Hall, E. D., Hamilton, E. Z., Hammond, G., Han, W. -B., Haney, M., Hanks, J., Hanna, C., Hannam, M. D., Hannuksela, O. A., Hanselman, A. G., Hansen, H., Hanson, J., Harada, R., Hardison, A. R., Haris, K., Harmark, T., Harms, J., Harry, G. M., Harry, I. W., Hart, J., Haskell, B., Haster, C. -J., Hathaway, J. S., Haughian, K., Hayakawa, H., Hayama, K., Hayes, R., Heffernan, A., Heidmann, A., Heintze, M. C., Heinze, J., Heinzel, J., Heitmann, H., Hellman, F., Hello, P., Helmling-Cornell, A. F., Hemming, G., Henderson-Sapir, O., Hendry, M., Heng, I. S., Hennes, E., Henshaw, C., Hertog, T., Heurs, M., Hewitt, A. L., Heyns, J., Higginbotham, S., Hild, S., Hill, S., Himemoto, Y., Hirata, N., Hirose, C., Ho, W. C. G., Hoang, S., Hochheim, S., Hofman, D., Holland, N. A., Holley-Bockelmann, K., Holmes, Z. J., Holz, D. E., Honet, L., Hong, C., Hornung, J., Hoshino, S., Hough, J., Hourihane, S., Howell, E. J., Hoy, C. G., Hrishikesh, C. A., Hsieh, H. -F., Hsiung, C., Hsu, H. C., Hsu, W. -F., Hu, P., Hu, Q., Huang, H. Y., Huang, Y. -J., Huddart, A. D., Hughey, B., Hui, D. C. Y., Hui, V., Husa, S., Huxford, R., Huynh-Dinh, T., Iampieri, L., Iandolo, G. A., Ianni, M., Iess, A., Imafuku, H., Inayoshi, K., Inoue, Y., Iorio, G., Iqbal, M. H., Irwin, J., Ishikawa, R., Isi, M., Ismail, M. A., Itoh, Y., Iwanaga, H., Iwaya, M., Iyer, B. R., JaberianHamedan, V., Jacquet, C., Jacquet, P. -E., Jadhav, S. J., Jadhav, S. P., Jain, T., James, A. L., James, P. A., Jamshidi, R., Janquart, J., Janssens, K., Janthalur, N. N., Jaraba, S., Jaranowski, P., Jaume, R., Javed, W., Jennings, A., Jia, W., Jiang, J., Kubisz, J., Johanson, C., Johns, G. R., Johnson, N. A., Johnston, M. C., Johnston, R., Johny, N., Jones, D. H., Jones, D. I., Jones, R., Jose, S., Joshi, P., Ju, L., Jung, K., Junker, J., Juste, V., Kajita, T., Kaku, I., Kalaghatgi, C., Kalogera, V., Kamiizumi, M., Kanda, N., Kandhasamy, S., Kang, G., Kanner, J. B., Kapadia, S. J., Kapasi, D. P., Karat, S., Karathanasis, C., Kashyap, R., Kasprzack, M., Kastaun, W., Kato, T., Katsavounidis, E., Katzman, W., Kaushik, R., Kawabe, K., Kawamoto, R., Kazemi, A., Keitel, D., Kelley-Derzon, J., Kennington, J., Kesharwani, R., Key, J. S., Khadela, R., Khadka, S., Khalili, F. Y., Khan, F., Khan, I., Khanam, T., Khursheed, M., Khusid, N. M., Kiendrebeogo, W., Kijbunchoo, N., Kim, C., Kim, J. C., Kim, K., Kim, M. H., Kim, S., Kim, Y. -M., Kimball, C., Kinley-Hanlon, M., Kinnear, M., Kissel, J. S., Klimenko, S., Knee, A. M., Knust, N., Kobayashi, K., Koch, P., Koehlenbeck, S. M., Koekoek, G., Kohri, K., Kokeyama, K., Koley, S., Kolitsidou, P., Kolstein, M., Komori, K., Kong, A. K. H., Kontos, A., Korobko, M., Kossak, R. V., Kou, X., Koushik, A., Kouvatsos, N., Kovalam, M., Kozak, D. B., Kranzhoff, S. L., Kringel, V., Krishnendu, N. V., Królak, A., Kruska, K., Kuehn, G., Kuijer, P., Kulkarni, S., Ramamohan, A. Kulur, Kumar, A., Kumar, Praveen, Kumar, Prayush, Kumar, Rahul, Kumar, Rakesh, Kume, J., Kuns, K., Kuntimaddi, N., Kuroyanagi, S., Kurth, N. J., Kuwahara, S., Kwak, K., Kwan, K., Kwok, J., Lacaille, G., Lagabbe, P., Laghi, D., Lai, S., Laity, A. H., Lakkis, M. H., Lalande, E., Lalleman, M., Lalremruati, P. C., Landry, M., Lane, B. B., Lang, R. N., Lange, J., Lantz, B., La Rana, A., La Rosa, I., Lartaux-Vollard, A., Lasky, P. D., Lawrence, J., Lawrence, M. N., Laxen, M., Lazzarini, A., Lazzaro, C., Leaci, P., Lecoeuche, Y. K., Lee, H. M., Lee, H. W., Lee, K., Lee, R. -K., Lee, R., Lee, S., Lee, Y., Legred, I. N., Lehmann, J., Lehner, L., Jean, M. Le, Lemaître, A., Lenti, M., Leonardi, M., Lequime, M., Leroy, N., Lesovsky, M., Letendre, N., Lethuillier, M., Levin, S. E., Levin, Y., Leyde, K., Li, A. K. Y., Li, K. L., Li, T. G. F., Li, X., Li, Z., Lihos, A., Lin, C-Y., Lin, C. -Y., Lin, E. T., Lin, F., Lin, H., Lin, L. C. -C., Lin, Y. -C., Linde, F., Linker, S. D., Littenberg, T. B., Liu, A., Liu, G. C., Liu, Jian, Villarreal, F. Llamas, Llobera-Querol, J., Lo, R. K. L., Locquet, J. -P., London, L. T., Longo, A., Lopez, D., Portilla, M. Lopez, Lorenzini, M., Lorenzo-Medina, A., Loriette, V., Lormand, M., Losurdo, G., Lott IV, T. P., Lough, J. D., Loughlin, H. A., Lousto, C. O., Lowry, M. J., Lu, N., Lück, H., Lumaca, D., Lundgren, A. P., Lussier, A. W., Ma, L. -T., Ma, S., Ma'arif, M., Macas, R., Macedo, A., MacInnis, M., Maciy, R. R., Macleod, D. M., MacMillan, I. A. O., Macquet, A., Macri, D., Maeda, K., Maenaut, S., Hernandez, I. Magaña, Magare, S. S., Magazzù, C., Magee, R. M., Maggio, E., Maggiore, R., Magnozzi, M., Mahesh, M., Mahesh, S., Maini, M., Majhi, S., Majorana, E., Makarem, C. N., Makelele, E., Malaquias-Reis, J. A., Mali, U., Maliakal, S., Malik, A., Man, N., Mandic, V., Mangano, V., Mannix, B., Mansell, G. L., Mansingh, G., Manske, M., Mantovani, M., Mapelli, M., Marchesoni, F., Pina, D. Marín, Marion, F., Márka, S., Márka, Z., Markosyan, A. S., Markowitz, A., Maros, E., Marsat, S., Martelli, F., Martin, I. W., Martin, R. M., Martinez, B. B., Martinez, M., Martinez, V., Martini, A., Martinovic, K., Martins, J. C., Martynov, D. V., Marx, E. J., Massaro, L., Masserot, A., Masso-Reid, M., Mastrodicasa, M., Mastrogiovanni, S., Matcovich, T., Matiushechkina, M., Matsuyama, M., Mavalvala, N., Maxwell, N., McCarrol, G., McCarthy, R., McCormick, S., McCuller, L., McEachin, S., McElhenny, C., McGhee, G. I., McGinn, J., McGowan, K. B. M., McIver, J., McLeod, A., McRae, T., Meacher, D., Meijer, Q., Melatos, A., Mellaerts, S., Menendez-Vazquez, A., Menoni, C. S., Mera, F., Mercer, R. A., Mereni, L., Merfeld, K., Merilh, E. L., Mérou, J. R., Merritt, J. D., Merzougui, M., Messenger, C., Messick, C., Meyer-Conde, M., Meylahn, F., Mhaske, A., Miani, A., Miao, H., Michaloliakos, I., Michel, C., Michimura, Y., Middleton, H., Miller, A. L., Miller, S., Millhouse, M., Milotti, E., Milotti, V., Minenkov, Y., Mio, N., Mir, Ll. M., Mirasola, L., Miravet-Tenés, M., Miritescu, C. -A., Mishra, A. K., Mishra, A., Mishra, C., Mishra, T., Mitchell, A. L., Mitchell, J. G., Mitra, S., Mitrofanov, V. P., Mittleman, R., Miyakawa, O., Miyamoto, S., Miyoki, S., Mo, G., Mobilia, L., Mohapatra, S. R. P., Mohite, S. R., Molina-Ruiz, M., Mondal, C., Mondin, M., Montani, M., Moore, C. J., Moraru, D., More, A., More, S., Moreno, G., Morgan, C., Morisaki, S., Moriwaki, Y., Morras, G., Moscatello, A., Mourier, P., Mours, B., Mow-Lowry, C. M., Muciaccia, F., Mukherjee, Arunava, Mukherjee, D., Mukherjee, Samanwaya, Mukherjee, Soma, Mukherjee, Subroto, Mukherjee, Suvodip, Mukund, N., Mullavey, A., Munch, J., Mundi, J., Mungioli, C. L., Oberg, W. R. Munn, Murakami, Y., Murakoshi, M., Murray, P. G., Muusse, S., Nabari, D., Nadji, S. L., Nagar, A., Nagarajan, N., Nagler, K. N., Nakagaki, K., Nakamura, K., Nakano, H., Nakano, M., Nandi, D., Napolano, V., Narayan, P., Nardecchia, I., Narola, H., Naticchioni, L., Nayak, R. K., Neilson, J., Nelson, A., Nelson, T. J. N., Nery, M., Neunzert, A., Ng, S., Quynh, L. Nguyen, Nichols, S. A., Nielsen, A. B., Nieradka, G., Niko, A., Nishino, Y., Nishizawa, A., Nissanke, S., Nitoglia, E., Niu, W., Nocera, F., Norman, M., North, C., Novak, J., Siles, J. F. Nuño, Nuttall, L. K., Obayashi, K., Oberling, J., O'Dell, J., Oertel, M., Offermans, A., Oganesyan, G., Oh, J. J., Oh, K., O'Hanlon, T., Ohashi, M., Ohkawa, M., Ohme, F., Oliveira, A. S., Oliveri, R., O'Neal, B., Oohara, K., O'Reilly, B., Ormsby, N. D., Orselli, M., O'Shaughnessy, R., O'Shea, S., Oshima, Y., Oshino, S., Ossokine, S., Osthelder, C., Ota, I., Ottaway, D. J., Ouzriat, A., Overmier, H., Owen, B. J., Pace, A. E., Pagano, R., Page, M. A., Pai, A., Pal, A., Pal, S., Palaia, M. A., Pálfi, M., Palma, P. P., Palomba, C., Palud, P., Pan, H., Pan, J., Pan, K. C., Panai, R., Panda, P. K., Pandey, S., Panebianco, L., Pang, P. T. H., Pannarale, F., Pannone, K. A., Pant, B. C., Panther, F. H., Paoletti, F., Paolone, A., Papalexakis, E. E., Papalini, L., Papigkiotis, G., Paquis, A., Parisi, A., Park, B. -J., Park, J., Parker, W., Pascale, G., Pascucci, D., Pasqualetti, A., Passaquieti, R., Passenger, L., Passuello, D., Patane, O., Pathak, D., Pathak, M., Patra, A., Patricelli, B., Patron, A. S., Paul, K., Paul, S., Payne, E., Pearce, T., Pedraza, M., Pegna, R., Pele, A., Arellano, F. E. Peña, Penn, S., Penuliar, M. D., Perego, A., Pereira, Z., Perez, J. J., Périgois, C., Perna, G., Perreca, A., Perret, J., Perriès, S., Perry, J. W., Pesios, D., Petracca, S., Petrillo, C., Pfeiffer, H. P., Pham, H., Pham, K. A., Phukon, K. S., Phurailatpam, H., Piarulli, M., Piccari, L., Piccinni, O. J., Pichot, M., Piendibene, M., Piergiovanni, F., Pierini, L., Pierra, G., Pierro, V., Pietrzak, M., Pillas, M., Pilo, F., Pinard, L., Pinto, I. M., Pinto, M., Piotrzkowski, B. J., Pirello, M., Pitkin, M. D., Placidi, A., Placidi, E., Planas, M. L., Plastino, W., Poggiani, R., Polini, E., Pompili, L., Poon, J., Porcelli, E., Porter, E. K., Posnansky, C., Poulton, R., Powell, J., Pracchia, M., Pradhan, B. K., Pradier, T., Prajapati, A. K., Prasai, K., Prasanna, R., Prasia, P., Pratten, G., Principe, G., Principe, M., Prodi, G. A., Prokhorov, L., Prosposito, P., Puecher, A., Pullin, J., Punturo, M., Puppo, P., Pürrer, M., Qi, H., Qin, J., Quéméner, G., Quetschke, V., Quigley, C., Quinonez, P. J., Quitzow-James, R., Raab, F. J., Raabith, S. S., Raaijmakers, G., Raja, S., Rajan, C., Rajbhandari, B., Ramirez, K. E., Vidal, F. A. Ramis, Ramos-Buades, A., Rana, D., Ranjan, S., Ransom, K., Rapagnani, P., Ratto, B., Rawat, S., Ray, A., Raymond, V., Razzano, M., Read, J., Payo, M. Recaman, Regimbau, T., Rei, L., Reid, S., Reitze, D. H., Relton, P., Renzini, A. I., Rettegno, P., Revenu, B., Reyes, R., Rezaei, A. S., Ricci, F., Ricci, M., Ricciardone, A., Richardson, J. W., Richardson, M., Rijal, A., Riles, K., Riley, H. K., Rinaldi, S., Rittmeyer, J., Robertson, C., Robinet, F., Robinson, M., Rocchi, A., Rolland, L., Rollins, J. G., Romano, A. E., Romano, R., Romero, A., Romero-Shaw, I. M., Romie, J. H., Ronchini, S., Roocke, T. J., Rosa, L., Rosauer, T. J., Rose, C. A., Rosińska, D., Ross, M. P., Rossello, M., Rowan, S., Roy, S. K., Roy, S., Rozza, D., Ruggi, P., Ruhama, N., Morales, E. Ruiz, Ruiz-Rocha, K., Sachdev, S., Sadecki, T., Sadiq, J., Saffarieh, P., Sah, M. R., Saha, S. S., Saha, S., Sainrat, T., Menon, S. Sajith, Sakai, K., Sakellariadou, M., Sakon, S., Salafia, O. S., Salces-Carcoba, F., Salconi, L., Saleem, M., Salemi, F., Sallé, M., Salvador, S., Sanchez, A., Sanchez, E. J., Sanchez, J. H., Sanchez, L. E., Sanchis-Gual, N., Sanders, J. R., Sänger, E. M., Santoliquido, F., Saravanan, T. R., Sarin, N., Sasaoka, S., Sasli, A., Sassi, P., Sassolas, B., Satari, H., Sato, R., Sato, Y., Sauter, O., Savage, R. L., Sawada, T., Sawant, H. L., Sayah, S., Scacco, V., Schaetzl, D., Scheel, M., Schiebelbein, A., Schiworski, M. G., Schmidt, P., Schmidt, S., Schnabel, R., Schneewind, M., Schofield, R. M. S., Schouteden, K., Schulte, B. W., Schutz, B. F., Schwartz, E., Scialpi, M., Scott, J., Scott, S. M., Seetharamu, T. C., Seglar-Arroyo, M., Sekiguchi, Y., Sellers, D., Sengupta, A. S., Sentenac, D., Seo, E. G., Seo, J. W., Sequino, V., Serra, M., Servignat, G., Sevrin, A., Shaffer, T., Shah, U. S., Shaikh, M. A., Shao, L., Sharma, A. K., Sharma, P., Sharma-Chaudhary, S., Shaw, M. R., Shawhan, P., Shcheblanov, N. S., Sheridan, E., Shikano, Y., Shikauchi, M., Shimode, K., Shinkai, H., Shiota, J., Shoemaker, D. H., Shoemaker, D. M., Short, R. W., ShyamSundar, S., Sider, A., Siegel, H., Sieniawska, M., Sigg, D., Silenzi, L., Simmonds, M., Singer, L. P., Singh, A., Singh, D., Singh, M. K., Singh, S., Singha, A., Sintes, A. M., Sipala, V., Skliris, V., Slagmolen, B. J. J., Slaven-Blair, T. J., Smetana, J., Smith, J. R., Smith, L., Smith, R. J. E., Smith, W. J., Soldateschi, J., Somiya, K., Song, I., Soni, K., Soni, S., Sordini, V., Sorrentino, F., Sorrentino, N., Sotani, H., Soulard, R., Southgate, A., Spagnuolo, V., Spencer, A. P., Spera, M., Spinicelli, P., Spoon, J. B., Sprague, C. A., Srivastava, A. K., Stachurski, F., Steer, D. A., Steinlechner, J., Steinlechner, S., Stergioulas, N., Stevens, P., StPierre, M., Stratta, G., Strong, M. D., Strunk, A., Sturani, R., Stuver, A. L., Suchenek, M., Sudhagar, S., Sueltmann, N., Suleiman, L., Sullivan, K. D., Sun, L., Sunil, S., Suresh, J., Sutton, P. J., Suzuki, T., Suzuki, Y., Swinkels, B. L., Syx, A., Szczepańczyk, M. J., Szewczyk, P., Tacca, M., Tagoshi, H., Tait, S. C., Takahashi, H., Takahashi, R., Takamori, A., Takase, T., Takatani, K., Takeda, H., Takeshita, K., Talbot, C., Tamaki, M., Tamanini, N., Tanabe, D., Tanaka, K., Tanaka, S. J., Tanaka, T., Tang, D., Tanioka, S., Tanner, D. B., Tao, L., Tapia, R. D., Martín, E. N. Tapia San, Tarafder, R., Taranto, C., Taruya, A., Tasson, J. D., Teloi, M., Tenorio, R., Themann, H., Theodoropoulos, A., Thirugnanasambandam, M. P., Thomas, L. M., Thomas, M., Thomas, P., Thompson, J. E., Thondapu, S. R., Thorne, K. A., Thrane, E., Tissino, J., Tiwari, A., Tiwari, P., Tiwari, S., Tiwari, V., Todd, M. R., Toivonen, A. M., Toland, K., Tolley, A. E., Tomaru, T., Tomita, K., Tomura, T., Tong-Yu, C., Toriyama, A., Toropov, N., Torres-Forné, A., Torrie, C. I., Toscani, M., Melo, I. Tosta e, Tournefier, E., Trapananti, A., Travasso, F., Traylor, G., Trevor, M., Tringali, M. C., Tripathee, A., Troian, G., Troiano, L., Trovato, A., Trozzo, L., Trudeau, R. J., Tsang, T. T. L., Tso, R., Tsuchida, S., Tsukada, L., Tsutsui, T., Turbang, K., Turconi, M., Turski, C., Ubach, H., Uchiyama, T., Udall, R. P., Uehara, T., Uematsu, M., Ueno, K., Ueno, S., Undheim, V., Ushiba, T., Vacatello, M., Vahlbruch, H., Vaidya, N., Vajente, G., Vajpeyi, A., Valdes, G., Valencia, J., Valentini, M., Vallejo-Peña, S. A., Vallero, S., Valsan, V., van Bakel, N., van Beuzekom, M., van Dael, M., Brand, J. F. J. van den, Broeck, C. Van Den, Vander-Hyde, D. C., van der Sluys, M., Van de Walle, A., van Dongen, J., Vandra, K., van Haevermaet, H., van Heijningen, J. V., Van Hove, P., VanKeuren, M., Vanosky, J., van Putten, M. H. P. M., van Ranst, Z., van Remortel, N., Vardaro, M., Vargas, A. F., Varghese, J. J., Varma, V., Vasúth, M., Vecchio, A., Vedovato, G., Veitch, J., Veitch, P. J., Venikoudis, S., Venneberg, J., Verdier, P., Verkindt, D., Verma, B., Verma, P., Verma, Y., Vermeulen, S. M., Vetrano, F., Veutro, A., Vibhute, A. M., Viceré, A., Vidyant, S., Viets, A. D., Vijaykumar, A., Vilkha, A., Villa-Ortega, V., Vincent, E. T., Vinet, J. -Y., Viret, S., Virtuoso, A., Vitale, S., Vives, A., Vocca, H., Voigt, D., von Reis, E. R. G., von Wrangel, J. S. A., Vyatchanin, S. P., Wade, L. E., Wade, M., Wagner, K. J., Wajid, A., Walker, M., Wallace, G. S., Wallace, L., Wang, H., Wang, J. Z., Wang, W. H., Wang, Z., Waratkar, G., Warner, J., Was, M., Washimi, T., Washington, N. Y., Watarai, D., Wayt, K. E., Weaver, B. R., Weaver, B., Weaving, C. R., Webster, S. A., Weinert, M., Weinstein, A. J., Weiss, R., Wellmann, F., Wen, L., Weßels, P., Wette, K., Whelan, J. T., Whiting, B. F., Whittle, C., Wildberger, J. B., Wilk, O. S., Wilken, D., Wilkin, A. T., Willadsen, D. J., Willetts, K., Williams, D., Williams, M. J., Williams, N. S., Willis, J. L., Willke, B., Wils, M., Winterflood, J., Wipf, C. C., Woan, G., Woehler, J., Wofford, J. K., Wolfe, N. E., Wong, H. T., Wong, H. W. Y., Wong, I. C. F., Wright, J. L., Wright, M., Wu, C., Wu, D. S., Wu, H., Wuchner, E., Wysocki, D. M., Xu, V. A., Xu, Y., Yadav, N., Yamamoto, H., Yamamoto, K., Yamamoto, T. S., Yamamoto, T., Yamamura, S., Yamazaki, R., Yan, S., Yan, T., Yang, F. W., Yang, F., Yang, K. Z., Yang, Y., Yarbrough, Z., Yasui, H., Yeh, S. -W., Yelikar, A. B., Yin, X., Yokoyama, J., Yokozawa, T., Yoo, J., Yu, H., Yuan, S., Yuzurihara, H., Zadrożny, A., Zanolin, M., Zeeshan, M., Zelenova, T., Zendri, J. -P., Zeoli, M., Zerrad, M., Zevin, M., Zhang, A. C., Zhang, L., Zhang, R., Zhang, T., Zhang, Y., Zhao, C., Zhao, Yue, Zhao, Yuhang, Zheng, Y., Zhong, H., Zhou, R., Zhu, X. -J., Zhu, Z. -H., Zucker, M. E., and Zweizig, J.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
The magnetar SGR 1935+2154 is the only known Galactic source of fast radio bursts (FRBs). FRBs from SGR 1935+2154 were first detected by CHIME/FRB and STARE2 in 2020 April, after the conclusion of the LIGO, Virgo, and KAGRA Collaborations' O3 observing run. Here we analyze four periods of gravitational wave (GW) data from the GEO600 detector coincident with four periods of FRB activity detected by CHIME/FRB, as well as X-ray glitches and X-ray bursts detected by NICER and NuSTAR close to the time of one of the FRBs. We do not detect any significant GW emission from any of the events. Instead, using a short-duration GW search (for bursts $\leq$ 1 s) we derive 50\% (90\%) upper limits of $10^{48}$ ($10^{49}$) erg for GWs at 300 Hz and $10^{49}$ ($10^{50}$) erg at 2 kHz, and constrain the GW-to-radio energy ratio to $\leq 10^{14} - 10^{16}$. We also derive upper limits from a long-duration search for bursts with durations between 1 and 10 s. These represent the strictest upper limits on concurrent GW emission from FRBs., Comment: 15 pages of text including references, 4 figures, 5 tables
- Published
- 2024
41. HpEIS: Learning Hand Pose Embeddings for Multimedia Interactive Systems
- Author
-
Xu, Songpei, Ge, Xuri, Kaul, Chaitanya, and Murray-Smith, Roderick
- Subjects
Computer Science - Computer Vision and Pattern Recognition ,Computer Science - Human-Computer Interaction - Abstract
We present a novel Hand-pose Embedding Interactive System (HpEIS) as a virtual sensor, which maps users' flexible hand poses to a two-dimensional visual space using a Variational Autoencoder (VAE) trained on a variety of hand poses. HpEIS enables visually interpretable and guidable support for user explorations in multimedia collections, using only a camera as an external hand pose acquisition device. We identify general usability issues associated with system stability and smoothing requirements through pilot experiments with expert and inexperienced users. We then design stability and smoothing improvements, including hand-pose data augmentation, an anti-jitter regularisation term added to loss function, stabilising post-processing for movement turning points and smoothing post-processing based on One Euro Filters. In target selection experiments (n=12), we evaluate HpEIS by measures of task completion time and the final distance to target points, with and without the gesture guidance window condition. Experimental responses indicate that HpEIS provides users with a learnable, flexible, stable and smooth mid-air hand movement interaction experience., Comment: 6 pages, 8 figures, 3 tables
- Published
- 2024
- Full Text
- View/download PDF
42. Assessing Core-Powered Mass Loss in the Context of Early Boil-Off: Minimal Long-Lived Mass Loss for the Sub-Neptune Population
- Author
-
Tang, Yao, Fortney, Jonathan J., and Murray-Clay, Ruth
- Subjects
Astrophysics - Earth and Planetary Astrophysics - Abstract
We develop a python-based state-of-the-art sub-Neptune evolution model that incorporates both the post-formation boil-off at young ages $\leq$ 1 Myr and long-lived core-powered mass loss ($\sim$ Gyrs) from interior cooling. We investigate the roles of initial H/He entropy, core luminosity, energy advection, radiative atmospheric structure, and the transition to an XUV-driven mass-loss phase, with an eye on relevant timescales for planetary mass loss and thermal evolution. With particular attention to the re-equilibration process of the H/He envelope, including the energy sources that fuel the hydrodynamic wind, and energy transport timescales, we find boil-off and core-powered escape are primarily driven by stellar bolometric radiation. We further find that both boil-off and core-powered escape are decoupled from the thermal evolution. We show that, with a boil-off phase that accounts for the initial H/He mass fraction and initial entropy, post-boil-off core-powered escape has an insignificant influence on the demographics of small planets, as it is only able to remove at most 0.1% of the H/He mass fraction. Our numerical results are directly compared to previous work on analytical core-powered mass loss modeling for individual evolutionary trajectories and populations of small planets. We examine a number of assumptions made in previous studies that cause significant differences compared to our findings. We find that boil-off, though able to completely strip the gaseous envelope from a highly irradiated ($F \geq 100 F_\oplus$) planet that has a low-mass core ($M_c \leq 4M_\oplus$), cannot by itself form a pronounced radius gap as is seen in the observed population., Comment: 41 pages, 23 figures, accepted by ApJ
- Published
- 2024
43. Certifying the quantumness of a nuclear spin qudit through its uniform precession
- Author
-
Vaartjes, Arjen, Nurizzo, Martin, Zaw, Lin Htoo, Wilhelm, Benjamin, Yu, Xi, Holmes, Danielle, Schwienbacher, Daniel, Kringhøj, Anders, van Blankenstein, Mark R., Jakob, Alexander M., Hudson, Fay E., Itoh, Kohei M., Murray, Riley J., Blume-Kohout, Robin, Anand, Namit, Dzurak, Andrew S., Jamieson, David N., Scarani, Valerio, and Morello, Andrea
- Subjects
Quantum Physics ,Condensed Matter - Mesoscale and Nanoscale Physics - Abstract
Spin precession is a textbook example of dynamics of a quantum system that exactly mimics its classical counterpart. Here we challenge this view by certifying the quantumness of exotic states of a nuclear spin through its uniform precession. The key to this result is measuring the positivity, instead of the expectation value, of the $x$-projection of the precessing spin, and using a spin > 1/2 qudit, that is not restricted to semi-classical spin coherent states. The experiment is performed on a single spin-7/2 $^{123}$Sb nucleus, implanted in a silicon nanoelectronic device, amenable to high-fidelity preparation, control, and projective single-shot readout. Using Schr\"odinger cat states and other bespoke states of the nucleus, we violate the classical bound by 19 standard deviations, proving that no classical probability distribution can explain the statistic of this spin precession, and highlighting our ability to prepare quantum resource states with high fidelity in a single atomic-scale qudit., Comment: Main text: 11 pages, 5 figures. Supplementary information: 13 pages, 11 figures
- Published
- 2024
44. Observation of disorder-free localization and efficient disorder averaging on a quantum processor
- Author
-
Gyawali, Gaurav, Cochran, Tyler, Lensky, Yuri, Rosenberg, Eliott, Karamlou, Amir H., Kechedzhi, Kostyantyn, Berndtsson, Julia, Westerhout, Tom, Asfaw, Abraham, Abanin, Dmitry, Acharya, Rajeev, Beni, Laleh Aghababaie, Andersen, Trond I., Ansmann, Markus, Arute, Frank, Arya, Kunal, Astrakhantsev, Nikita, Atalaya, Juan, Babbush, Ryan, Ballard, Brian, Bardin, Joseph C., Bengtsson, Andreas, Bilmes, Alexander, Bortoli, Gina, Bourassa, Alexandre, Bovaird, Jenna, Brill, Leon, Broughton, Michael, Browne, David A., Buchea, Brett, Buckley, Bob B., Buell, David A., Burger, Tim, Burkett, Brian, Bushnell, Nicholas, Cabrera, Anthony, Campero, Juan, Chang, Hung-Shen, Chen, Zijun, Chiaro, Ben, Claes, Jahan, Cleland, Agnetta Y., Cogan, Josh, Collins, Roberto, Conner, Paul, Courtney, William, Crook, Alexander L., Das, Sayan, Debroy, Dripto M., De Lorenzo, Laura, Barba, Alexander Del Toro, Demura, Sean, Di Paolo, Agustin, Donohoe, Paul, Drozdov, Ilya, Dunsworth, Andrew, Earle, Clint, Eickbusch, Alec, Elbag, Aviv Moshe, Elzouka, Mahmoud, Erickson, Catherine, Faoro, Lara, Fatemi, Reza, Ferreira, Vinicius S., Burgos, Leslie Flores, Forati, Ebrahim, Fowler, Austin G., Foxen, Brooks, Ganjam, Suhas, Gasca, Robert, Giang, William, Gidney, Craig, Gilboa, Dar, Gosula, Raja, Dau, Alejandro Grajales, Graumann, Dietrich, Greene, Alex, Gross, Jonathan A., Habegger, Steve, Hamilton, Michael C., Hansen, Monica, Harrigan, Matthew P., Harrington, Sean D., Heslin, Stephen, Heu, Paula, Hill, Gordon, Hilton, Jeremy, Hoffmann, Markus R., Huang, Hsin-Yuan, Huff, Ashley, Huggins, William J., Ioffe, Lev B., Isakov, Sergei V., Jeffrey, Evan, Jiang, Zhang, Jones, Cody, Jordan, Stephen, Joshi, Chaitali, Juhas, Pavol, Kafri, Dvir, Kang, Hui, Khaire, Trupti, Khattar, Tanuj, Khezri, Mostafa, Kieferová, Mária, Kim, Seon, Klimov, Paul V., Klots, Andrey R., Kobrin, Bryce, Korotkov, Alexander N., Kostritsa, Fedor, Kreikebaum, John Mark, Kurilovich, Vladislav D., Landhuis, David, Lange-Dei, Tiano, Langley, Brandon W., Laptev, Pavel, Lau, Kim-Ming, Guevel, Loïck Le, Ledford, Justin, Lee, Joonho, Lee, Kenny, Lester, Brian J., Li, Wing Yan, Lill, Alexander T., Liu, Wayne, Livingston, William P., Locharla, Aditya, Lundahl, Daniel, Lunt, Aaron, Madhuk, Sid, Maloney, Ashley, Mandrà, Salvatore, Martin, Leigh S., Martin, Steven, Martin, Orion, Maxfield, Cameron, McClean, Jarrod R., McEwen, Matt, Meeks, Seneca, Megrant, Anthony, Mi, Xiao, Miao, Kevin C., Mieszala, Amanda, Molina, Sebastian, Montazeri, Shirin, Morvan, Alexis, Movassagh, Ramis, Neill, Charles, Nersisyan, Ani, Newman, Michael, Nguyen, Anthony, Nguyen, Murray, Ni, Chia-Hung, Niu, Murphy Yuezhen, Oliver, William D., Ottosson, Kristoffer, Pizzuto, Alex, Potter, Rebecca, Pritchard, Orion, Pryadko, Leonid P., Quintana, Chris, Reagor, Matthew J., Rhodes, David M., Roberts, Gabrielle, Rocque, Charles, Rubin, Nicholas C., Saei, Negar, Sankaragomathi, Kannan, Satzinger, Kevin J., Schurkus, Henry F., Schuster, Christopher, Shearn, Michael J., Shorter, Aaron, Shutty, Noah, Shvarts, Vladimir, Sivak, Volodymyr, Skruzny, Jindra, Small, Spencer, Smith, W. Clarke, Springer, Sofia, Sterling, George, Suchard, Jordan, Szalay, Marco, Szasz, Aaron, Sztein, Alex, Thor, Douglas, Torunbalci, M. Mert, Vaishnav, Abeer, Vdovichev, Sergey, Vidal, Guifré, Heidweiller, Catherine Vollgraff, Waltman, Steven, Wang, Shannon X., White, Theodore, Wong, Kristi, Woo, Bryan W. K., Xing, Cheng, Yao, Z. Jamie, Yeh, Ping, Ying, Bicheng, Yoo, Juhwan, Yosri, Noureldin, Young, Grayson, Zalcman, Adam, Zhang, Yaxing, Zhu, Ningfeng, Zobrist, Nicholas, Boixo, Sergio, Kelly, Julian, Lucero, Erik, Chen, Yu, Smelyanskiy, Vadim, Neven, Hartmut, Kovrizhin, Dmitry, Knolle, Johannes, Halimeh, Jad C., Aleiner, Igor, Moessner, Roderich, and Roushan, Pedram
- Subjects
Quantum Physics ,Condensed Matter - Disordered Systems and Neural Networks ,Condensed Matter - Strongly Correlated Electrons ,High Energy Physics - Lattice - Abstract
One of the most challenging problems in the computational study of localization in quantum manybody systems is to capture the effects of rare events, which requires sampling over exponentially many disorder realizations. We implement an efficient procedure on a quantum processor, leveraging quantum parallelism, to efficiently sample over all disorder realizations. We observe localization without disorder in quantum many-body dynamics in one and two dimensions: perturbations do not diffuse even though both the generator of evolution and the initial states are fully translationally invariant. The disorder strength as well as its density can be readily tuned using the initial state. Furthermore, we demonstrate the versatility of our platform by measuring Renyi entropies. Our method could also be extended to higher moments of the physical observables and disorder learning.
- Published
- 2024
45. An Intermediate Mass Black Hole Hidden Behind Thick Obscuration
- Author
-
Boorman, Peter G., Stern, Daniel, Assef, Roberto J., Borkar, Abhijeet, Brightman, Murray, Buchner, Johannes, Chen, Chien-Ting, Earnshaw, Hannah P., Harrison, Fiona A., Matzeu, Gabriele A., Pfeifle, Ryan W., Ricci, Claudio, Svoboda, Jiří, Torres-Albà, Núria, and Zaw, Ingyin
- Subjects
Astrophysics - High Energy Astrophysical Phenomena ,Astrophysics - Astrophysics of Galaxies - Abstract
Recent models suggest approximately half of all accreting supermassive black holes (SMBHs; $M_{\rm BH}$ $\gtrsim$ 10$^{5}$ M$_{\odot}$) are expected to undergo intense growth phases behind Compton-thick ($N_{\rm H}$ $>$ 1.5 $\times$ 10$^{24}$ cm$^{-2}$) veils of obscuring gas. However, despite being a viable source for the seeding of SMBHs, there are currently no examples known of a Compton-thick accreting intermediate mass black hole (IMBH; $M_{\rm BH}$ $\sim$ 10$^{2}$ $-$ 10$^{5}$ M$_{\odot}$). We present a detailed X-ray spectral analysis of IC 750 $-$ the only AGN to-date with a precise megamaser-based intermediate mass $<$ 10$^{5}$ M$_{\odot}$. We find the equivalent width of neutral 6.4 keV Fe K$\alpha$ to be 1.9$^{+2.2}_{-1.0}$ keV via phenomenological modelling of the co-added 177 ks Chandra spectrum. Such large equivalent widths are seldom produced by processes other than fluorescence from dense obscuration. We fit three physically-motivated X-ray spectral models to infer a range of possible intrinsic 2$-$10 keV luminosity posteriors that encompass the systematic uncertainties associated with a choice of model. Despite a wide range of predicted intrinsic 2$-$10 keV luminosities between $\sim$ 10$^{41}$ and 10$^{43}$ erg s$^{-1}$, all three models agree that IC 750 has a Compton-thick line-of-sight column density to $>$ 99\% confidence. Compton-thick obscuration is well-documented to impinge substantial bias on the pursuit of SMBH AGN. Our results thus provide the first indication that Compton-thick obscuration should also be properly considered to uncover and understand the IMBH population in an unbiased manner., Comment: Accepted for publication in ApJ. 15 pages, 6 figures
- Published
- 2024
46. The NuSTAR Local AGN $N_{\rm H}$ Distribution Survey (NuLANDS) I: Towards a Truly Representative Column Density Distribution in the Local Universe
- Author
-
Boorman, Peter G., Gandhi, Poshak, Buchner, Johannes, Stern, Daniel, Ricci, Claudio, Baloković, Mislav, Asmus, Daniel, Harrison, Fiona A., Svoboda, Jiří, Greenwell, Claire, Koss, Michael, Alexander, David M., Annuar, Adlyka, Bauer, Franz, Brandt, William N., Brightman, Murray, Panessa, Francesca, Chen, Chien-Ting J., Farrah, Duncan, Forster, Karl, Grefenstette, Brian, Hönig, Sebastian F., Hill, Adam B., Kammoun, Elias, Lansbury, George, Lanz, Lauranne, LaMassa, Stephanie, Madsen, Kristin, Marchesi, Stefano, Middleton, Matthew, Mingo, Beatriz, Parker, Michael L., Treister, Ezequiel, Ueda, Yoshihiro, Urry, C. Megan, and Zappacosta, Luca
- Subjects
Astrophysics - Astrophysics of Galaxies ,Astrophysics - High Energy Astrophysical Phenomena - Abstract
Hard X-ray-selected samples of Active Galactic Nuclei (AGN) provide one of the cleanest views of supermassive black hole accretion, but are biased against objects obscured by Compton-thick gas column densities of $N_{\rm H}$ $>$ 10$^{24}$ cm$^{-2}$. To tackle this issue, we present the NuSTAR Local AGN $N_{\rm H}$ Distribution Survey (NuLANDS)$-$a legacy sample of 122 nearby ($z$ $<$ 0.044) AGN primarily selected to have warm infrared colors from IRAS between 25$-$60 $\mu$m. We show that optically classified type 1 and 2 AGN in NuLANDS are indistinguishable in terms of optical [OIII] line flux and mid-to-far infrared AGN continuum bolometric indicators, as expected from an isotropically selected AGN sample, while type 2 AGN are deficient in terms of their observed hard X-ray flux. By testing many X-ray spectroscopic models, we show the measured line-of-sight column density varies on average by $\sim$ 1.4 orders of magnitude depending on the obscurer geometry. To circumvent such issues we propagate the uncertainties per source into the parent column density distribution, finding a directly measured Compton-thick fraction of 35 $\pm$ 9%. By construction, our sample will miss sources affected by severe narrow-line reddening, and thus segregates sources dominated by small-scale nuclear obscuration from large-scale host-galaxy obscuration. This bias implies an even higher intrinsic obscured AGN fraction may be possible, although tests for additional biases arising from our infrared selection find no strong effects on the measured column-density distribution. NuLANDS thus holds potential as an optimized sample for future follow-up with current and next-generation instruments aiming to study the local AGN population in an isotropic manner., Comment: Accepted for publication in ApJ. 50 pages (78 including appendix and bibliography), 21 figures
- Published
- 2024
47. SF-R You Sure? The Conflicting Role of Star Formation Rates in Constraining the Evolution of Milky Way Analogues in Cosmological Simulations
- Author
-
Savelli, Alicia M., Speagle, Joshua S., Mackereth, J. Ted, Murray, Norman, and Iyer, Kartheik G.
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
Milky Way analogues (MWAs) have long been studied by astronomers to place our Galaxy within an extragalactic context. With the power of cosmological simulations, we are now able to not only characterize MWAs today, but also watch as they evolve through cosmic time. We use the EAGLE and IllustrisTNG simulations to study a group of MWAs defined by their stellar mass (SM) and star formation rate (SFR). We trace these galaxies back along their evolution to investigate the star forming and mass assembly tracks taken by a galaxy to become a MWA today in light of these chosen parameters. We also take mock-observations of "MWAs" at $z>0$ and trace them forwards in time to determine if galaxies that looked similar to the Milky Way earlier in their evolution still look like the Milky Way today, thus quantifying a selection efficiency which could inform future observational studies of MWAs. We find that most galaxies with Milky Way-SM follow a similar evolution regardless of present-day SFR, although MWAs in IllustrisTNG generally have not quenched, leading to star formation histories that produce "too-blue" galaxies today. Additionally, we find contamination by MWA-"imposters" in our mock-observations, with low selection efficiency at high redshift due to the tight constraint requiring convergence to the Milky Way's present-day SFR. Our work suggests present-day SM may suffice as a stand-alone selection parameter and helps to clarify how MWAs should be selected, and thus will be an important reference for future studies of both simulated and observed MWAs., Comment: 31 pages, 15 figures. Submitted to ApJ. Comments welcome!
- Published
- 2024
48. Upsample or Upweight? Balanced Training on Heavily Imbalanced Datasets
- Author
-
Li, Tianjian, Xu, Haoran, Tan, Weiting, Murray, Kenton, and Khashabi, Daniel
- Subjects
Computer Science - Computation and Language ,Computer Science - Machine Learning ,Statistics - Machine Learning - Abstract
Data availability across domains often follows a long-tail distribution: a few domains have abundant data, while most face dat . a scarcity. This imbalance poses challenges in training language models uniformly across all domains. In our study, we focus on multilingual settings, where data sizes vary significantly between high- and low-resource languages. Common strategies to address this include upsampling low-resource languages (Temperature Sampling) or upweighting their loss (Scalarization). Although often considered equivalent, this assumption has not been proven, which motivates our study. Through both theoretical and empirical analysis, we identify the conditions under which these approaches are equivalent and when they diverge. Specifically, we demonstrate that these two methods are equivalent under full gradient descent, but this equivalence breaks down with stochastic gradient descent. Empirically, we observe that Temperature Sampling converges more quickly but is prone to overfitting. We argue that this faster convergence is likely due to the lower variance in gradient estimations, as shown theoretically. Based on these insights, we propose Cooldown, a strategy that reduces sampling temperature during training, accelerating convergence without overfitting to low-resource languages. Our method is competitive with existing data re-weighting and offers computational efficiency., Comment: 19 pages
- Published
- 2024
49. X-ALMA: Plug & Play Modules and Adaptive Rejection for Quality Translation at Scale
- Author
-
Xu, Haoran, Murray, Kenton, Koehn, Philipp, Hoang, Hieu, Eriguchi, Akiko, and Khayrallah, Huda
- Subjects
Computer Science - Computation and Language - Abstract
Large language models (LLMs) have achieved remarkable success across various NLP tasks, yet their focus has predominantly been on English due to English-centric pre-training and limited multilingual data. While some multilingual LLMs claim to support for hundreds of languages, models often fail to provide high-quality response for mid- and low-resource languages, leading to imbalanced performance heavily skewed in favor of high-resource languages like English and Chinese. In this paper, we prioritize quality over scaling number of languages, with a focus on multilingual machine translation task, and introduce X-ALMA, a model designed with a commitment to ensuring top-tier performance across 50 diverse languages, regardless of their resource levels. X-ALMA surpasses state-of-the-art open-source multilingual LLMs, such as Aya-101 and Aya-23, in every single translation direction on the FLORES and WMT'23 test datasets according to COMET-22. This is achieved by plug-and-play language-specific module architecture to prevent language conflicts during training and a carefully designed training regimen with novel optimization methods to maximize the translation performance. At the final stage of training regimen, our proposed Adaptive Rejection Preference Optimization (ARPO) surpasses existing preference optimization methods in translation tasks.
- Published
- 2024
50. A Fourth Planet in the Kepler-51 System Revealed by Transit Timing Variations
- Author
-
Masuda, Kento, Libby-Roberts, Jessica E., Livingston, John H., Stevenson, Kevin B., Gao, Peter, Vissapragada, Shreyas, Fu, Guangwei, Han, Te, Greklek-McKeon, Michael, Mahadevan, Suvrath, Agol, Eric, Bello-Arufe, Aaron, Berta-Thompson, Zachory, Canas, Caleb I., Chachan, Yayaati, Hebb, Leslie, Hu, Renyu, Kawashima, Yui, Knutson, Heather A., Morley, Caroline V., Murray, Catriona A., Ohno, Kazumasa, Tokadjian, Armen, Zhang, Xi, Welbanks, Luis, Nixon, Matthew C., Freedman, Richard, Narita, Norio, Fukui, Akihiko, de Leon, Jerome P., Mori, Mayuko, Palle, Enric, Murgas, Felipe, Parviainen, Hannu, Esparza-Borges, Emma, Jontof-Hutter, Daniel, Collins, Karen A., Benni, Paul, Barkaoui, Khalid, Pozuelos, Francisco J., Gillon, Michael, Jehin, Emmanuel, Benkhaldoun, Zouhair, Hawley, Suzanne, Lin, Andrea S. J., Stefansson, Gudmundur, Bieryla, Allyson, Yilmaz, Mesut, Senavci, Hakan Volkan, Girardin, Eric, Marino, Giuseppe, and Wang, Gavin
- Subjects
Astrophysics - Earth and Planetary Astrophysics - Abstract
Kepler-51 is a $\lesssim 1\,\mathrm{Gyr}$-old Sun-like star hosting three transiting planets with radii $\approx 6$-$9\,R_\oplus$ and orbital periods $\approx 45$-$130\,\mathrm{days}$. Transit timing variations (TTVs) measured with past Kepler and Hubble Space Telescope (HST) observations have been successfully modeled by considering gravitational interactions between the three transiting planets, yielding low masses and low mean densities ($\lesssim 0.1\,\mathrm{g/cm^3}$) for all three planets. However, the transit time of the outermost transiting planet Kepler-51d recently measured by the James Webb Space Telescope (JWST) 10 years after the Kepler observations is significantly discrepant from the prediction made by the three-planet TTV model, which we confirmed with ground-based and follow-up HST observations. We show that the departure from the three-planet model is explained by including a fourth outer planet, Kepler-51e, in the TTV model. A wide range of masses ($\lesssim M_\mathrm{Jup}$) and orbital periods ($\lesssim 10\,\mathrm{yr}$) are possible for Kepler-51e. Nevertheless, all the coplanar solutions found from our brute-force search imply masses $\lesssim 10\,M_\oplus$ for the inner transiting planets. Thus their densities remain low, though with larger uncertainties than previously estimated. Unlike other possible solutions, the one in which Kepler-51e is around the $2:1$ mean motion resonance with Kepler-51d implies low orbital eccentricities ($\lesssim 0.05$) and comparable masses ($\sim 5\,M_\oplus$) for all four planets, as is seen in other compact multi-planet systems. This work demonstrates the importance of long-term follow-up of TTV systems for probing longer period planets in a system., Comment: 48 pages, 26 figures, accepted for publication in AJ
- Published
- 2024
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.