1. Metal-enhanced fluorescence biosensor integrated in capillary flow-driven microfluidic cartridge for highly sensitive immunoassays.
- Author
-
Augustine S, Chinnamani MV, Mun CW, Shin JY, Trung TQ, Hong SJ, Huyen LTN, Lee EH, Lee SH, Rha JJ, Jung S, Lee Y, Park SG, and Lee NE
- Subjects
- Humans, Microfluidics, Immunoassay methods, Biomarkers, Gold, Biosensing Techniques methods, Microfluidic Analytical Techniques methods
- Abstract
Point-of-care testing (POCT) for low-concentration protein biomarkers remains challenging due to limitations in biosensor sensitivity and platform integration. This study addresses this gap by presenting a novel approach that integrates a metal-enhanced fluorescence (MEF) biosensor within a capillary flow-driven microfluidic cartridge (CFMC) for the ultrasensitive detection of the Parkinson's disease biomarker, aminoacyl-tRNA synthetase complex interacting multi-functional protein 2 (AIMP-2). Crucial point to this approach is the orientation-controlled immobilization of capture antibody on a nanodimple-structured MEF substrate within the CFMC. This strategy significantly enhances fluorescence signals without quenching, enabling accurate quantification of low-concentration AIMP-2 using a simple digital fluorescence microscope with a light-emitting diode excitation source and a digital camera. The resulting platform exhibits exceptional sensitivity, achieving a limit of detection in the pg/mL range for AIMP-2 in human serum. Additionally, the CFMC design incorporates a capillary-driven passive sample transport mechanism, eliminating the need for external pumps and further simplifying the detection process. Overall, this work demonstrates the successful integration of MEF biosensing with capillary microfluidics for point-of-care applications., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF