5 results on '"Mulvihill LA"'
Search Results
2. Identification of skewed X chromosome inactivation using exome and transcriptome sequencing in patients with suspected rare genetic disease.
- Author
-
Fadra N, Schultz-Rogers LE, Chanana P, Cousin MA, Macke EL, Ferrer A, Pinto E Vairo F, Olson RJ, Oliver GR, Mulvihill LA, Jenkinson G, and Klee EW
- Subjects
- Adult, Humans, Female, Transcriptome, Exome Sequencing, Chromosomes, Human, X genetics, X Chromosome Inactivation, Exome
- Abstract
Background: X-chromosome inactivation (XCI) is an epigenetic process that occurs during early development in mammalian females by randomly silencing one of two copies of the X chromosome in each cell. The preferential inactivation of either the maternal or paternal copy of the X chromosome in a majority of cells results in a skewed or non-random pattern of X inactivation and is observed in over 25% of adult females. Identifying skewed X inactivation is of clinical significance in patients with suspected rare genetic diseases due to the possibility of biased expression of disease-causing genes present on the active X chromosome. The current clinical test for the detection of skewed XCI relies on the methylation status of the methylation-sensitive restriction enzyme (Hpall) binding site present in proximity of short tandem polymorphic repeats on the androgen receptor (AR) gene. This approach using one locus results in uninformative or inconclusive data for 10-20% of tests. Further, recent studies have shown inconsistency between methylation of the AR locus and the state of inactivation of the X chromosome. Herein, we develop a method for estimating X inactivation status, using exome and transcriptome sequencing data derived from blood in 227 female samples. We built a reference model for evaluation of XCI in 135 females from the GTEx consortium. We tested and validated the model on 11 female individuals with different types of undiagnosed rare genetic disorders who were clinically tested for X-skew using the AR gene assay and compared results to our outlier-based analysis technique., Results: In comparison to the AR clinical test for identification of X inactivation, our method was concordant with the AR method in 9 samples, discordant in 1, and provided a measure of X inactivation in 1 sample with uninformative clinical results. We applied this method on an additional 81 females presenting to the clinic with phenotypes consistent with different hereditary disorders without a known genetic diagnosis., Conclusions: This study presents the use of transcriptome and exome sequencing data to provide an accurate and complete estimation of X-inactivation and skew status in a cohort of female patients with different types of suspected rare genetic disease., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
3. Implementation of genomic medicine for rare disease in a tertiary healthcare system: Mayo Clinic Program for Rare and Undiagnosed Diseases (PRaUD).
- Author
-
Pinto E Vairo F, Kemppainen JL, Vitek CRR, Whalen DA, Kolbert KJ, Sikkink KJ, Kroc SA, Kruisselbrink T, Shupe GF, Knudson AK, Burke EM, Loftus EC, Bandel LA, Prochnow CA, Mulvihill LA, Thomas B, Gable DM, Graddy CB, Garzon GGM, Ekpoh IU, Porquera EMC, Fervenza FC, Hogan MC, El Ters M, Warrington KJ, Davis JM 3rd, Koster MJ, Orandi AB, Basiaga ML, Vella A, Kumar S, Creo AL, Lteif AN, Pittock ST, Tebben PJ, Abate EG, Joshi AY, Ristagno EH, Patnaik MS, Schimmenti LA, Dhamija R, Sabrowsky SM, Wierenga KJ, Keddis MT, Samadder NJJ, Presutti RJ, Robinson SI, Stephens MC, Roberts LR, Faubion WA Jr, Driscoll SW, Wong-Kisiel LC, Selcen D, Flanagan EP, Ramanan VK, Jackson LM, Mauermann ML, Ortega VE, Anderson SA, Aoudia SL, Klee EW, McAllister TM, and Lazaridis KN
- Subjects
- United States, Humans, Tertiary Healthcare, Genomic Medicine, Genetic Testing, Genetic Counseling, Rare Diseases diagnosis, Rare Diseases genetics, Rare Diseases therapy, Undiagnosed Diseases
- Abstract
Background: In the United States, rare disease (RD) is defined as a condition that affects fewer than 200,000 individuals. Collectively, RD affects an estimated 30 million Americans. A significant portion of RD has an underlying genetic cause; however, this may go undiagnosed. To better serve these patients, the Mayo Clinic Program for Rare and Undiagnosed Diseases (PRaUD) was created under the auspices of the Center for Individualized Medicine (CIM) aiming to integrate genomics into subspecialty practice including targeted genetic testing, research, and education., Methods: Patients were identified by subspecialty healthcare providers from 11 clinical divisions/departments. Targeted multi-gene panels or custom exome/genome-based panels were utilized. To support the goals of PRaUD, a new clinical service model, the Genetic Testing and Counseling (GTAC) unit, was established to improve access and increase efficiency for genetic test facilitation. The GTAC unit includes genetic counselors, genetic counseling assistants, genetic nurses, and a medical geneticist. Patients receive abbreviated point-of-care genetic counseling and testing through a partnership with subspecialty providers., Results: Implementation of PRaUD began in 2018 and GTAC unit launched in 2020 to support program expansion. Currently, 29 RD clinical indications are included in 11 specialty divisions/departments with over 142 referring providers. To date, 1152 patients have been evaluated with an overall solved or likely solved rate of 17.5% and as high as 66.7% depending on the phenotype. Noteworthy, 42.7% of the solved or likely solved patients underwent changes in medical management and outcome based on genetic test results., Conclusion: Implementation of PRaUD and GTAC have enabled subspecialty practices advance expertise in RD where genetic counselors have not historically been embedded in practice. Democratizing access to genetic testing and counseling can broaden the reach of patients with RD and increase the diagnostic yield of such indications leading to better medical management as well as expanding research opportunities., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
4. Impact of integrated translational research on clinical exome sequencing.
- Author
-
Klee EW, Cousin MA, Pinto E Vairo F, Morales-Rosado JA, Macke EL, Jenkinson WG, Ferrer A, Schultz-Rogers LE, Olson RJ, Oliver GR, Sigafoos AN, Schwab TL, Zimmermann MT, Urrutia RA, Kaiwar C, Gupta A, Blackburn PR, Boczek NJ, Prochnow CA, Lowy RJ, Mulvihill LA, McAllister TM, Aoudia SL, Kruisselbrink TM, Gunderson LB, Kemppainen JL, Fisher LJ, Tarnowski JM, Hager MM, Kroc SA, Bertsch NL, Agre KE, Jackson JL, Macklin-Mantia SK, Murphree MI, Rust LM, Summer Bolster JM, Beck SA, Atwal PS, Ellingson MS, Barnett SS, Rasmussen KJ, Lahner CA, Niu Z, Hasadsri L, Ferber MJ, Marcou CA, Clark KJ, Pichurin PN, Deyle DR, Morava-Kozicz E, Gavrilova RH, Dhamija R, Wierenga KJ, Lanpher BC, Babovic-Vuksanovic D, Farrugia G, Schimmenti LA, Stewart AK, and Lazaridis KN
- Published
- 2023
- Full Text
- View/download PDF
5. Impact of integrated translational research on clinical exome sequencing.
- Author
-
Klee EW, Cousin MA, Pinto E Vairo F, Morales-Rosado JA, Macke EL, Jenkinson WG, Ferrer A, Schultz-Rogers LE, Olson RJ, Oliver GR, Sigafoos AN, Schwab TL, Zimmermann MT, Urrutia RA, Kaiwar C, Gupta A, Blackburn PR, Boczek NJ, Prochnow CA, Lowy RJ, Mulvihill LA, McAllister TM, Aoudia SL, Kruisselbrink TM, Gunderson LB, Kemppainen JL, Fisher LJ, Tarnowski JM, Hager MM, Kroc SA, Bertsch NL, Agre KE, Jackson JL, Macklin-Mantia SK, Murphree MI, Rust LM, Summer Bolster JM, Beck SA, Atwal PS, Ellingson MS, Barnett SS, Rasmussen KJ, Lahner CA, Niu Z, Hasadsri L, Ferber MJ, Marcou CA, Clark KJ, Pichurin PN, Deyle DR, Morava-Kozicz E, Gavrilova RH, Dhamija R, Wierenga KJ, Lanpher BC, Babovic-Vuksanovic D, Farrugia G, Schimmenti LA, Stewart AK, and Lazaridis KN
- Subjects
- Genetic Testing, Humans, Phenotype, Translational Research, Biomedical, Exome Sequencing, Exome genetics, Undiagnosed Diseases
- Abstract
Purpose: Exome sequencing often identifies pathogenic genetic variants in patients with undiagnosed diseases. Nevertheless, frequent findings of variants of uncertain significance necessitate additional efforts to establish causality before reaching a conclusive diagnosis. To provide comprehensive genomic testing to patients with undiagnosed disease, we established an Individualized Medicine Clinic, which offered clinical exome testing and included a Translational Omics Program (TOP) that provided variant curation, research activities, or research exome sequencing., Methods: From 2012 to 2018, 1101 unselected patients with undiagnosed diseases received exome testing. Outcomes were reviewed to assess impact of the TOP and patient characteristics on diagnostic rates through descriptive and multivariate analyses., Results: The overall diagnostic yield was 24.9% (274 of 1101 patients), with 174 (15.8% of 1101) diagnosed on the basis of clinical exome sequencing alone. Four hundred twenty-three patients with nondiagnostic or without access to clinical exome sequencing were evaluated by the TOP, with 100 (9% of 1101) patients receiving a diagnosis, accounting for 36.5% of the diagnostic yield. The identification of a genetic diagnosis was influenced by the age at time of testing and the disease phenotype of the patient., Conclusion: Integration of translational research activities into clinical practice of a tertiary medical center can significantly increase the diagnostic yield of patients with undiagnosed disease.
- Published
- 2021
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.