113 results on '"Moritz Langer"'
Search Results
2. First Quantification of the Permafrost Heat Sink in the Earth's Climate System
- Author
-
Jan Nitzbon, Gerhard Krinner, Thomas Schneider von Deimling, Martin Werner, and Moritz Langer
- Subjects
permafrost ,Earth’s energy imbalance ,essential climate variable ,heat sink ,CryoGrid ,land surface model ,Geophysics. Cosmic physics ,QC801-809 - Abstract
Abstract Due to an imbalance between incoming and outgoing radiation at the top of the atmosphere, excess heat has accumulated in Earth's climate system in recent decades, driving global warming and climatic changes. To date, it has not been quantified how much of this excess heat is used to melt ground ice in permafrost. Here, we diagnose changes in sensible and latent ground heat contents in the northern terrestrial permafrost region from ensemble‐simulations of a tailored land surface model. We find that between 1980 and 2018, about 3.9+1.4−1.6 ZJ of heat, of which 1.7+1.3−1.4 ZJ (44%) were used to melt ground ice, were absorbed by permafrost. Our estimate, which does not yet account for the potentially increased heat uptake due to thermokarst processes in ice‐rich terrain, suggests that permafrost is a persistent heat sink comparable in magnitude to other components of the cryosphere and must be explicitly considered when assessing Earth's energy imbalance.
- Published
- 2023
- Full Text
- View/download PDF
3. ArcticBeach v1.0: A physics-based parameterization of pan-Arctic coastline erosion
- Author
-
Rebecca Rolph, Pier Paul Overduin, Thomas Ravens, Hugues Lantuit, and Moritz Langer
- Subjects
permafrost ,erosion ,modelling ,arctic ,climate change ,Science - Abstract
In the Arctic, air temperatures are increasing and sea ice is declining, resulting in larger waves and a longer open water season, all of which intensify the thaw and erosion of ice-rich coasts. Climate change has been shown to increase the rate of Arctic coastal erosion, causing problems for Arctic cultural heritage, existing industrial, military, and civil infrastructure, as well as changes in nearshore biogeochemistry. Numerical models that reproduce historical and project future Arctic erosion rates are necessary to understand how further climate change will affect these problems, and no such model yet exists to simulate the physics of erosion on a pan-Arctic scale. We have coupled a bathystrophic storm surge model to a simplified physical erosion model of a permafrost coastline. This Arctic erosion model, called ArcticBeach v1.0, is a first step toward a physical parameterization of Arctic shoreline erosion for larger-scale models. It is forced by wind speed and direction, wave period and height, sea surface temperature, all of which are masked during times of sea ice cover near the coastline. Model tuning requires observed historical retreat rates (at least one value), as well as rough nearshore bathymetry. These parameters are already available on a pan-Arctic scale. The model is validated at three study sites at 1) Drew Point (DP), Alaska, 2) Mamontovy Khayata (MK), Siberia, and 3) Veslebogen Cliffs, Svalbard. Simulated cumulative retreat rates for DP and MK respectively (169 and 170 m) over the time periods studied at each site (2007–2016, and 1995–2018) are found to the same order of magnitude as observed cumulative retreat (172 and 120 m). The rocky Veslebogen cliffs have small observed cumulative retreat rates (0.05 m over 2014–2016), and our model was also able to reproduce this same order of magnitude of retreat (0.08 m). Given the large differences in geomorphology between the study sites, this study provides a proof-of-concept that ArcticBeach v1.0 can be applied on very different permafrost coastlines. ArcticBeach v1.0 provides a promising starting point to project retreat of Arctic shorelines, or to evaluate historical retreat in places that have had few observations.
- Published
- 2022
- Full Text
- View/download PDF
4. Fast response of cold ice-rich permafrost in northeast Siberia to a warming climate
- Author
-
Jan Nitzbon, Sebastian Westermann, Moritz Langer, Léo C. P. Martin, Jens Strauss, Sebastian Laboor, and Julia Boike
- Subjects
Science - Abstract
Siberian Arctic permafrost contains vast stores of carbon, the fate of which is dependent on the climate. Here the authors use models of future scenarios to show that under the direst climate changes up to 2/3 of the stored organic carbon could thaw.
- Published
- 2020
- Full Text
- View/download PDF
5. The Potential of UAV Imagery for the Detection of Rapid Permafrost Degradation: Assessing the Impacts on Critical Arctic Infrastructure
- Author
-
Soraya Kaiser, Julia Boike, Guido Grosse, and Moritz Langer
- Subjects
permafrost degradation ,consumer-grade unoccupied aerial vehicle ,North Slope Alaska ,land surface displacement ,point cloud alignment ,structure from motion ,Science - Abstract
Ground subsidence and erosion processes caused by permafrost thaw pose a high risk to infrastructure in the Arctic. Climate warming is increasingly accelerating the thawing of permafrost, emphasizing the need for thorough monitoring to detect damages and hazards at an early stage. The use of unoccupied aerial vehicles (UAVs) allows a fast and uncomplicated analysis of sub-meter changes across larger areas compared to manual surveys in the field. In our study, we investigated the potential of photogrammetry products derived from imagery acquired with off-the-shelf UAVs in order to provide a low-cost assessment of the risks of permafrost degradation along critical infrastructure. We tested a minimal drone setup without ground control points to derive high-resolution 3D point clouds via structure from motion (SfM) at a site affected by thermal erosion along the Dalton Highway on the North Slope of Alaska. For the sub-meter change analysis, we used a multiscale point cloud comparison which we improved by applying (i) denoising filters and (ii) alignment procedures to correct for horizontal and vertical offsets. Our results show a successful reduction in outliers and a thorough correction of the horizontal and vertical point cloud offset by a factor of 6 and 10, respectively. In a defined point cloud subset of an erosion feature, we derive a median land surface displacement of −0.35 m from 2018 to 2019. Projecting the development of the erosion feature, we observe an expansion to NNE, following the ice-wedge polygon network. With a land surface displacement of −0.35 m and an alignment root mean square error of 0.99 m, we find our workflow is best suitable for detecting and quantifying rapid land surface changes. For a future improvement of the workflow, we recommend using alternate flight patterns and an enhancement of the point cloud comparison algorithm.
- Published
- 2022
- Full Text
- View/download PDF
6. Serpentine (Floating) Ice Channels and their Interaction with Riverbed Permafrost in the Lena River Delta, Russia
- Author
-
Bennet Juhls, Sofia Antonova, Michael Angelopoulos, Nikita Bobrov, Mikhail Grigoriev, Moritz Langer, Georgii Maksimov, Frederieke Miesner, and Pier Paul Overduin
- Subjects
river ice ,lena river delta ,remote sensing ,geophysics ,permafrost ,hydrology ,Science - Abstract
Arctic deltas and their river channels are characterized by three components of the cryosphere: snow, river ice, and permafrost, making them especially sensitive to ongoing climate change. Thinning river ice and rising river water temperatures may affect the thermal state of permafrost beneath the riverbed, with consequences for delta hydrology, erosion, and sediment transport. In this study, we use optical and radar remote sensing to map ice frozen to the riverbed (bedfast ice) vs. ice, resting on top of the unfrozen water layer (floating or so-called serpentine ice) within the Arctic’s largest delta, the Lena River Delta. The optical data is used to differentiate elevated floating ice from bedfast ice, which is flooded ice during the spring melt, while radar data is used to differentiate floating from bedfast ice during the winter months. We use numerical modeling and geophysical field surveys to investigate the temperature field and sediment properties beneath the riverbed. Our results show that the serpentine ice identified with both types of remote sensing spatially coincides with the location of thawed riverbed sediment observed with in situ geoelectrical measurements and as simulated with the thermal model. Besides insight into sub-river thermal properties, our study shows the potential of remote sensing for identifying river channels with active sub-ice flow during winter vs. channels, presumably disconnected for winter water flow. Furthermore, our results provide viable information for the summer navigation for shallow-draught vessels.
- Published
- 2021
- Full Text
- View/download PDF
7. A Quantitative Graph-Based Approach to Monitoring Ice-Wedge Trough Dynamics in Polygonal Permafrost Landscapes
- Author
-
Tabea Rettelbach, Moritz Langer, Ingmar Nitze, Benjamin Jones, Veit Helm, Johann-Christoph Freytag, and Guido Grosse
- Subjects
patterned ground ,ice wedges ,degradation ,computer vision ,graph analysis ,remote sensing ,Science - Abstract
In response to increasing Arctic temperatures, ice-rich permafrost landscapes are undergoing rapid changes. In permafrost lowlands, polygonal ice wedges are especially prone to degradation. Melting of ice wedges results in deepening troughs and the transition from low-centered to high-centered ice-wedge polygons. This process has important implications for surface hydrology, as the connectivity of such troughs determines the rate of drainage for these lowland landscapes. In this study, we present a comprehensive, modular, and highly automated workflow to extract, to represent, and to analyze remotely sensed ice-wedge polygonal trough networks as a graph (i.e., network structure). With computer vision methods, we efficiently extract the trough locations as well as their geomorphometric information on trough depth and width from high-resolution digital elevation models and link these data within the graph. Further, we present and discuss the benefits of graph analysis algorithms for characterizing the erosional development of such thaw-affected landscapes. Based on our graph analysis, we show how thaw subsidence has progressed between 2009 and 2019 following burning at the Anaktuvuk River fire scar in northern Alaska, USA. We observed a considerable increase in the number of discernible troughs within the study area, while simultaneously the number of disconnected networks decreased from 54 small networks in 2009 to only six considerably larger disconnected networks in 2019. On average, the width of the troughs has increased by 13.86%, while the average depth has slightly decreased by 10.31%. Overall, our new automated approach allows for monitoring ice-wedge dynamics in unprecedented spatial detail, while simultaneously reducing the data to quantifiable geometric measures and spatial relationships.
- Published
- 2021
- Full Text
- View/download PDF
8. Monitoring the Transformation of Arctic Landscapes: Automated Shoreline Change Detection of Lakes Using Very High Resolution Imagery
- Author
-
Soraya Kaiser, Guido Grosse, Julia Boike, and Moritz Langer
- Subjects
change detection ,shoreline movement rate ,shoreline movement direction ,arctic water bodies ,permafrost lowlands ,automated monitoring ,Science - Abstract
Water bodies are a highly abundant feature of Arctic permafrost ecosystems and strongly influence their hydrology, ecology and biogeochemical cycling. While very high resolution satellite images enable detailed mapping of these water bodies, the increasing availability and abundance of this imagery calls for fast, reliable and automatized monitoring. This technical work presents a largely automated and scalable workflow that removes image noise, detects water bodies, removes potential misclassifications from infrastructural features, derives lake shoreline geometries and retrieves their movement rate and direction on the basis of ortho-ready very high resolution satellite imagery from Arctic permafrost lowlands. We applied this workflow to typical Arctic lake areas on the Alaska North Slope and achieved a successful and fast detection of water bodies. We derived representative values for shoreline movement rates ranging from 0.40–0.56 m yr−1 for lake sizes of 0.10 ha–23.04 ha. The approach also gives an insight into seasonal water level changes. Based on an extensive quantification of error sources, we discuss how the results of the automated workflow can be further enhanced by incorporating additional information on weather conditions and image metadata and by improving the input database. The workflow is suitable for the seasonal to annual monitoring of lake changes on a sub-meter scale in the study areas in northern Alaska and can readily be scaled for application across larger regions within certain accuracy limitations.
- Published
- 2021
- Full Text
- View/download PDF
9. Size Distributions of Arctic Waterbodies Reveal Consistent Relations in Their Statistical Moments in Space and Time
- Author
-
Sina Muster, William J. Riley, Kurt Roth, Moritz Langer, Fabio Cresto Aleina, Charles D. Koven, Stephan Lange, Annett Bartsch, Guido Grosse, Cathy J. Wilson, Benjamin M. Jones, and Julia Boike
- Subjects
permafrost ,hydrology ,waterbodies ,size distribution ,thermokarst ,statistical moments ,Science - Abstract
Arctic lowlands are characterized by large numbers of small waterbodies, which are known to affect surface energy budgets and the global carbon cycle. Statistical analysis of their size distributions has been hindered by the shortage of observations at sufficiently high spatial resolutions. This situation has now changed with the high-resolution (
- Published
- 2019
- Full Text
- View/download PDF
10. Climate change reduces winter overland travel across the Pan-Arctic even under low-end global warming scenarios
- Author
-
Anne Gädeke, Moritz Langer, Julia Boike, Eleanor J Burke, Jinfeng Chang, Melissa Head, Christopher P O Reyer, Sibyll Schaphoff, Wim Thiery, and Kirsten Thonicke
- Subjects
permafrost ,climate change ,land surface models ,Arctic transport ,winter roads ,ice roads ,Environmental technology. Sanitary engineering ,TD1-1066 ,Environmental sciences ,GE1-350 ,Science ,Physics ,QC1-999 - Abstract
Amplified climate warming has led to permafrost degradation and a shortening of the winter season, both impacting cost-effective overland travel across the Arctic. Here we use, for the first time, four state-of-the-art Land Surface Models that explicitly consider ground freezing states, forced by a subset of bias-adjusted CMIP5 General Circulation Models to estimate the impact of different global warming scenarios (RCP2.6, 6.0, 8.5) on two modes of winter travel: overland travel days (OTDs) and ice road construction days (IRCDs). We show that OTDs decrease by on average −13% in the near future (2021–2050) and between −15% (RCP2.6) and −40% (RCP8.5) in the far future (2070–2099) compared to the reference period (1971–2000) when 173 d yr ^−1 are simulated across the Pan-Arctic. Regionally, we identified Eastern Siberia (Sakha (Yakutia), Khabarovsk Krai, Magadan Oblast) to be most resilient to climate change, while Alaska (USA), the Northwestern Russian regions (Yamalo, Arkhangelsk Oblast, Nenets, Komi, Khanty-Mansiy), Northern Europe and Chukotka are highly vulnerable. The change in OTDs is most pronounced during the shoulder season, particularly in autumn. The IRCDs reduce on average twice as much as the OTDs under all climate scenarios resulting in shorter operational duration. The results of the low-end global warming scenario (RCP2.6) emphasize that stringent climate mitigation policies have the potential to reduce the impact of climate change on winter mobility in the second half of the 21st century. Nevertheless, even under RCP2.6, our results suggest substantially reduced winter overland travel implying a severe threat to livelihoods of remote communities and increasing costs for resource exploration and transport across the Arctic.
- Published
- 2021
- Full Text
- View/download PDF
11. Sensitivity of ecosystem-protected permafrost under changing boreal forest structures
- Author
-
Simone M Stuenzi, Julia Boike, Anne Gädeke, Ulrike Herzschuh, Stefan Kruse, Luidmila A Pestryakova, Sebastian Westermann, and Moritz Langer
- Subjects
global warming impact ,boreal forest ,permafrost ,Environmental technology. Sanitary engineering ,TD1-1066 ,Environmental sciences ,GE1-350 ,Science ,Physics ,QC1-999 - Abstract
Boreal forests efficiently insulate underlying permafrost. The magnitude of this insulation effect is dependent on forest density and composition. A change therein modifies the energy and water fluxes within and below the canopy. The direct influence of climatic change on forests and the indirect effect through a change in permafrost dynamics lead to extensive ecosystem shifts such as a change in composition or density, which will, in turn, affect permafrost persistence. We derive future scenarios of forest density and plant functional type composition by analyzing future projections provided by the dynamic global vegetation model (LPJ-GUESS) under global warming scenarios. We apply a detailed permafrost-multilayer canopy model to study the spatial impact-variability of simulated future scenarios of forest densities and compositions for study sites throughout eastern Siberia. Our results show that a change in forest density has a clear effect on the ground surface temperatures (GST) and the maximum active layer thickness (ALT) at all sites, but the direction depends on local climate conditions. At two sites, higher forest density leads to a significant decrease in GSTs in the snow-free period, while leading to an increase at the warmest site. Complete forest loss leads to a deepening of the ALT up to 0.33 m and higher GSTs of over 8 ^∘ C independently of local climatic conditions. Forest loss can induce both, active layer wetting up to four times or drying by 50%, depending on precipitation and soil type. Deciduous-dominated canopies reveal lower GSTs compared to evergreen stands, which will play an important factor in the spreading of evergreen taxa and permafrost persistence under warming conditions. Our study highlights that changing density and composition will significantly modify the thermal and hydrological state of the underlying permafrost. The induced soil changes will likely affect key forest functions such as the carbon pools and related feedback mechanisms such as swamping, droughts, fires, or forest loss.
- Published
- 2021
- Full Text
- View/download PDF
12. Undercovereisagenten - Integrating Low-Cost UAVS and Community Insights for Enhanced Permafrost Monitoring.
- Author
-
Marlin M. Mueller, Steffen Dietenberger, Maximilian Nestler, Clémence Dubois, Soraya Kaiser, Josefine Lenz, Moritz Langer, Oliver Fritz, Sabrina Marx, and Christian Thiel 0001
- Published
- 2024
- Full Text
- View/download PDF
13. Forensic Recognition of Codec-Specific Image Compression Artefacts.
- Author
-
Michael Häfner, Aleksandar Radovic, Moritz Langer, Stefan Findenig, and Andreas Uhl
- Published
- 2024
- Full Text
- View/download PDF
14. Thaw Subsidence of a Yedoma Landscape in Northern Siberia, Measured In Situ and Estimated from TerraSAR-X Interferometry
- Author
-
Sofia Antonova, Henriette Sudhaus, Tazio Strozzi, Simon Zwieback, Andreas Kääb, Birgit Heim, Moritz Langer, Niko Bornemann, and Julia Boike
- Subjects
permafrost ,thaw subsidence ,in situ measurements ,DInSAR ,TerraSAR-X ,Lena River Delta ,yedoma ,Science - Abstract
In permafrost areas, seasonal freeze-thaw cycles result in upward and downward movements of the ground. For some permafrost areas, long-term downward movements were reported during the last decade. We measured seasonal and multi-year ground movements in a yedoma region of the Lena River Delta, Siberia, in 2013–2017, using reference rods installed deep in the permafrost. The seasonal subsidence was 1.7 ± 1.5 cm in the cold summer of 2013 and 4.8 ± 2 cm in the warm summer of 2014. Furthermore, we measured a pronounced multi-year net subsidence of 9.3 ± 5.7 cm from spring 2013 to the end of summer 2017. Importantly, we observed a high spatial variability of subsidence of up to 6 cm across a sub-meter horizontal scale. In summer 2013, we accompanied our field measurements with Differential Synthetic Aperture Radar Interferometry (DInSAR) on repeat-pass TerraSAR-X (TSX) data from the summer of 2013 to detect summer thaw subsidence over the same study area. Interferometry was strongly affected by a fast phase coherence loss, atmospheric artifacts, and possibly the choice of reference point. A cumulative ground movement map, built from a continuous interferogram stack, did not reveal a subsidence on the upland but showed a distinct subsidence of up to 2 cm in most of the thermokarst basins. There, the spatial pattern of DInSAR-measured subsidence corresponded well with relative surface wetness identified with the near infra-red band of a high-resolution optical image. Our study suggests that (i) although X-band SAR has serious limitations for ground movement monitoring in permafrost landscapes, it can provide valuable information for specific environments like thermokarst basins, and (ii) due to the high sub-pixel spatial variability of ground movements, a validation scheme needs to be developed and implemented for future DInSAR studies in permafrost environments.
- Published
- 2018
- Full Text
- View/download PDF
15. Monitoring Bedfast Ice and Ice Phenology in Lakes of the Lena River Delta Using TerraSAR-X Backscatter and Coherence Time Series
- Author
-
Sofia Antonova, Claude R. Duguay, Andreas Kääb, Birgit Heim, Moritz Langer, Sebastian Westermann, and Julia Boike
- Subjects
lake ice ,bedfast ice ,ice phenology ,SAR ,TerraSAR-X ,backscatter intensity ,interferometric coherence ,time series ,Lena River Delta ,CLIMo ,Science - Abstract
Thermokarst lakes and ponds are major elements of permafrost landscapes, occupying up to 40% of the land area in some Arctic regions. Shallow lakes freeze to the bed, thus preventing permafrost thaw underneath them and limiting the length of the period with greenhouse gas production in the unfrozen lake sediments. Radar remote sensing permits to distinguish lakes with bedfast ice due to the difference in backscatter intensities from bedfast and floating ice. This study investigates the potential of a unique time series of three-year repeat-pass TerraSAR-X (TSX) imagery with high temporal (11 days) and spatial (10 m) resolution for monitoring bedfast ice as well as ice phenology of lakes in the zone of continuous permafrost in the Lena River Delta, Siberia. TSX backscatter intensity is shown to be an excellent tool for monitoring floating versus bedfast lake ice as well as ice phenology. TSX-derived timing of ice grounding and the ice growth model CLIMo are used to retrieve the ice thicknesses of the bedfast ice at points where in situ ice thickness measurements were available. Comparison shows good agreement in the year of field measurements. Additionally, for the first time, an 11-day sequential interferometric coherence time series is analyzed as a supplementary approach for the bedfast ice monitoring. The coherence time series detects most of the ice grounding as well as spring snow/ice melt onset. Overall, the results show the great value of TSX time series for monitoring Arctic lake ice and provide a basis for various applications: for instance, derivation of shallow lakes bathymetry, evaluation of winter water resources and locating fish winter habitat as well as estimation of taliks extent in permafrost.
- Published
- 2016
- Full Text
- View/download PDF
16. From Images to Hydrologic Networks - Understanding the Arctic Landscape with Graphs.
- Author
-
Tabea Rettelbach, Moritz Langer, Ingmar Nitze, Benjamin M. Jones, Veit Helm, Johann-Christoph Freytag, and Guido Grosse
- Published
- 2022
- Full Text
- View/download PDF
17. The CryoGrid community model (version 1.0) – a multi-physics toolbox for climate-driven simulations in the terrestrial cryosphere
- Author
-
Sebastian Westermann, Thomas Ingeman-Nielsen, Johanna Scheer, Kristoffer Aalstad, Juditha Aga, Nitin Chaudhary, Bernd Etzelmüller, Simon Filhol, Andreas Kääb, Cas Renette, Louise Steffensen Schmidt, Thomas Vikhamar Schuler, Robin B. Zweigel, Léo Martin, Sarah Morard, Matan Ben-Asher, Michael Angelopoulos, Julia Boike, Brian Groenke, Frederieke Miesner, Jan Nitzbon, Paul Overduin, Simone M. Stuenzi, Moritz Langer, and Earth and Climate
- Subjects
General Medicine - Abstract
The CryoGrid community model is a flexible toolbox for simulating the ground thermal regime and the ice–water balance for permafrost and glaciers, extending a well-established suite of permafrost models (CryoGrid 1, 2, and 3). The CryoGrid community model can accommodate a wide variety of application scenarios, which is achieved by fully modular structures through object-oriented programming. Different model components, characterized by their process representations and parameterizations, are realized as classes (i.e., objects) in CryoGrid. Standardized communication protocols between these classes ensure that they can be stacked vertically. For example, the CryoGrid community model features several classes with different complexity for the seasonal snow cover, which can be flexibly combined with a range of classes representing subsurface materials, each with their own set of process representations (e.g., soil with and without water balance, glacier ice). We present the CryoGrid architecture as well as the model physics and defining equations for the different model classes, focusing on one-dimensional model configurations which can also interact with external heat and water reservoirs. We illustrate the wide variety of simulation capabilities for a site on Svalbard, with point-scale permafrost simulations using, e.g., different soil freezing characteristics, drainage regimes, and snow representations, as well as simulations for glacier mass balance and a shallow water body. The CryoGrid community model is not intended as a static model framework but aims to provide developers with a flexible platform for efficient model development. In this study, we document both basic and advanced model functionalities to provide a baseline for the future development of novel cryosphere models.
- Published
- 2023
- Full Text
- View/download PDF
18. Tap Reactor for Temporally and Spatially Resolved Analysis of the CO 2 Methanation Reaction
- Author
-
Timo Engl, Moritz Langer, Hannsjörg Freund, Michael Rubin, and Roland Dittmeyer
- Subjects
Technology ,General Chemical Engineering ,General Chemistry ,ddc:600 ,Industrial and Manufacturing Engineering - Abstract
Chemical energy carriers produced according to power-to-X concepts will play a crucial role in the future energy system. Here, CO$_{2}$ methanation is described as one promising route. However, transient operating conditions and the resulting effects on catalyst stability are to be considered. In this contribution, a tap reactor for spatially and temporally resolved analysis of the methanation reaction is presented. The Ni catalyst investigated was implemented as coating. Reaction data as a function of time and reactor coordinate under various operating conditions are presented and discussed. A comparison with simulation data validates the presented tap reactor concept.
- Published
- 2023
- Full Text
- View/download PDF
19. Reply on RC1
- Author
-
Moritz Langer
- Published
- 2023
- Full Text
- View/download PDF
20. Continental heat storage: contributions from the ground, inland waters, and permafrost thawing
- Author
-
Francisco José Cuesta-Valero, Hugo Beltrami, Almudena García-García, Gerhard Krinner, Moritz Langer, Andrew H. MacDougall, Jan Nitzbon, Jian Peng, Karina von Schuckmann, Sonia I. Seneviratne, Wim Thiery, Inne Vanderkelen, Tonghua Wu, Earth and Climate, Faculty of Engineering, and Hydrology and Hydraulic Engineering
- Subjects
General Earth and Planetary Sciences ,SDG 14 - Life Below Water - Abstract
Heat storage within the Earth system is a fundamental metric for understanding climate change. The current energy imbalance at the top of the atmosphere causes changes in energy storage within the ocean, the atmosphere, the cryosphere, and the continental landmasses. After the ocean, heat storage in land is the second largest term of the Earth heat inventory, affecting physical processes relevant to society and ecosystems, such as the stability of the soil carbon pool. Here, we present an update of the continental heat storage, combining for the first time the heat in the land subsurface, inland water bodies, and permafrost thawing. The continental landmasses stored 23.8 ± 2.0 × 10(21) J during the period 1960–2020, but the distribution of heat among the three components is not homogeneous. The sensible diffusion of heat through the ground accounts for ∼90 % of the continental heat storage, with inland water bodies and permafrost degradation (i.e. latent heat) accounting for ∼0.7 % and ∼9 % of the continental heat, respectively. Although the inland water bodies and permafrost soils store less heat than the solid ground, we argue that their associated climate phenomena justify their monitoring and inclusion in the Earth heat inventory., Earth System Dynamics, 14 (3), ISSN:2190-4987, ISSN:2190-4979
- Published
- 2023
- Full Text
- View/download PDF
21. Is Arctic Permafrost a Climate Tipping Element? – Potentials for Rapid Permafrost Loss Across Spatial Scales
- Author
-
Jan Nitzbon, Thomas Schneider von Deimling, Sarah Chadburn, Guido Grosse, Sebastian Laboor, Hanna Lee, Norman Julius Steinert, Simone Maria Stuenzi, Sebastian Westermann, and Moritz Langer
- Abstract
Arctic permafrost is yet the largest non-seasonal component of Earth's cryosphere and has been proposed as a climate tipping element. Already today, permafrost thaw and ground ice loss have detrimental consequences for Arctic communities and are affecting the global climate via carbon-cycle–feedbacks. However, it is an open question whether climatic changes drive permafrost loss in a way that gives rise to a tipping point, crossing of which would imply abrupt acceleration of thaw and disproportional unfolding of its impacts.Here, we address this question by geospatial analyses and a comprehensive literature review of the mechanisms and feedbacks driving permafrost thaw across spatial scales. We find that neither observation-constrained nor model-based projections of permafrost loss provide evidence for the existence of a global-scale tipping point, and instead suggest a quasi-linear response to global warming. We identify a range of processes that drive rapid permafrost thaw and irreversible ground ice loss on a local scale, but these do not accumulate to a non-linear response beyond regional scales.We emphasize that it is precisely because of this overall linear response, that there is no „safe space“ for Arctic permafrost where its loss could be acceptable. Every additional amount of global warming will proportionally subject additional land areas underlain by permafrost to thaw, implying further local impacts and carbon emissions.
- Published
- 2023
- Full Text
- View/download PDF
22. Exploring physics-informed machine learning for accelerated simulation of permafrost processes
- Author
-
Brian Groenke, Moritz Langer, Guillermo Gallego, and Julia Boike
- Abstract
Permafrost, i.e. ground material that remains perennially frozen, plays a key role in Arctic ecosystems. Monitoring the response of permafrost to rapid climate change remains difficult due to the sparse availability of long-term, high quality measurements of the subsurface. Numerical models are therefore an indispensable tool for understanding the evolution of Arctic permafrost. However, large scale simulation of the hydrothermal processes affecting permafrost is challenging due to the highly nonlinear effects of phase change in porous media. The resulting computational cost of such simulations is especially prohibitive for sensitivity analysis and parameter estimation tasks where a large number of simulations may be necessary for robust inference of quantities such as temperature, water fluxes, and soil properties. In this work, we explore the applicability of recently developed physics-informed machine learning (PIML) methods for accelerating numerical models of permafrost hydrothermal dynamics. We present a preliminary assessment of two possible applications of PIML in this context: (1) linearization of the nonlinear PDE system according to Koopman operator theory in order to reduce the computational burden of large scale simulations, and (2) efficient parameterization of the surface energy balance and snow dynamics on the subsurface hydrothermal regime. By combining the predictive power of machine learning with the underlying conservation laws, PIML can potentially enable researchers and practitioners interested in permafrost to explore complex process interactions at larger spatiotemporal scales.
- Published
- 2023
- Full Text
- View/download PDF
23. UndercoverEisAgenten - Monitoring Permafrost Thaw in the Arctic using Local Knowledge and UAVs
- Author
-
Marlin M. Mueller, Christian Thiel, Soraya Kaiser, Josefine Lenz, Moritz Langer, Hugues Lantuit, Sabrina Marx, Oliver Fritz, and Alexander Zipf
- Subjects
Climate Change ,Permafrost ,UAVs ,Crowdmapping ,Cryosphere - Abstract
The Arctic is experiencing severe changes to its landscapes due to the thawing of permafrost influenced by the twofold increase of temperature across the Arctic due to global warming compared to the global average. This process, which affects the livelihoods of indigenous people, is also associated with the further release of greenhouse gases and also connected to ecological impacts on the arctic flora and fauna. These small-scale changes and disturbances to the land surface caused by permafrost thaw have been inadequately documented.To better understand and monitor land surface changes, the project "UndercoverEisAgenten" is using a combination of local knowledge, satellite remote sensing, and data from unmanned aerial vehicles (UAVs) to study permafrost thaw impacts in Northwest Canada. The high-resolution UAV data will serve as a baseline for further analysis of optical and radar remote sensing time series data. The project aims to achieve two main goals: 1) to demonstrate the value of using unmanned aerial vehicle (UAV) data in remote regions of the global north, and 2) to involve young citizen scientists from schools in Canada and Germany in the process. By involving students in the project, the project aims to not only expand the use of remote sensing in these regions, but also provides educational opportunities for the participating students. By using UAVs and satellite imagery, the project aims to develop a comprehensive archive of observable surface features that indicate the degree of permafrost degradation. This will be accomplished through the use of automatic image enhancement techniques, as well as classical image processing approaches and machine learning-based classification methods. The data is being prepared to be shared and analyzed through a web-based crowd mapping application. The project aims to involve the students in independently acquiring data and developing their own scientific questions through the use of this application.In September 2022, a first expedition was conducted in the Northwest Territories, Canada and UAV data was collected with the assistance of students from Moose Kerr School in Aklavik. The data consists of approximately 30,000 individual photos taken over an area of around 13 km². The expedition also provided an opportunity for the students to learn about the basics of data collection and the goals of the collaborative permafrost survey, which included the incorporation of local knowledge to address the questions of the local community.By involving school students in the data acquisition, classification and evaluation process, the project also seeks to transfer knowledge and raise awareness about global warming, permafrost, and related regional and global challenges. Additionally, a connection through the shared research experience between students in Germany and Canada is established to enable the exchange of knowledge. The resulting scientific data will provide new insights into biophysical processes in Arctic regions and contribute to a better understanding of the state and change of permafrost in the Arctic. This project is funded by the German Federal Ministry of Education and Research and was initiated in 2021.
- Published
- 2023
24. An Arctic delta reduced-complexity model and its reproduction of key geomorphological structures
- Author
-
Ngai-Ham Chan, Moritz Langer, Bennet Juhls, Tabea Rettelbach, Paul Overduin, Kimberly Huppert, Jean Braun, and Earth and Climate
- Subjects
Geophysics ,SDG 14 - Life Below Water ,Earth-Surface Processes - Abstract
Arctic river deltas define the interface between the terrestrial Arctic and the Arctic Ocean. They are the site of sediment, nutrient, and soil organic carbon discharge to the Arctic Ocean. Arctic deltas are unique globally because they are underlain by permafrost and acted on by river and sea ice, and many are surrounded by a broad shallow ramp. Such ramps may buffer the delta from waves, but as the climate warms and permafrost thaws, the evolution of Arctic deltas will likely take a different course, with implications for both the local scale and the wider Arctic Ocean. One important way to understand and predict the evolution of Arctic deltas is through numerical models. Here we present ArcDelRCM.jl, an improved reduced-complexity model (RCM) of arctic delta evolution based on the DeltaRCM-Arctic model (Lauzon et al., 2019), which we have reconstructed in Julia language using published information. Unlike previous models, ArcDelRCM.jl is able to replicate the ramp around the delta. We have found that the delayed breakup of the so-called “bottom-fast ice” (i.e. ice that is in direct contact with the bed of the channel or the sea, also known as “bed-fast ice”) on and around the deltas is ultimately responsible for the appearance of the ramp feature in our models. However, changes made to the modelling of permafrost erosion and the protective effects of bottom-fast ice are also important contributors. Graph analyses of the delta network performed on ensemble runs show that deltas produced by ArcDelRCM.jl have more interconnected channels and contain less abandoned subnetworks. This may suggest a more even feeding of sediments to all sections of the delta shoreline, supporting ramp growth. Moreover, we showed that the morphodynamic processes during the summer months remain active enough to contribute significant sediment input to the growth and evolution of Arctic deltas and thus should not be neglected in simulations gauging the multi-year evolution of delta features. Finally, we tested a strong climate-warming scenario on the simulated deltas of ArcDelRCM.jl, with temperature, discharge, and ice conditions consistent with RCP7–8.5. We found that the ramp features degrade on the timescale of centuries and effectively disappear in under 1 millennium. Ocean processes, which are not included in these models, may further shorten the timescale. With the degradation of the ramps, any dissipative effects on wave energy they offered would also decrease. This could expose the sub-aerial parts of the deltas to increased coastal erosion, thus impacting permafrost degradation, nutrients, and carbon releases.
- Published
- 2023
- Full Text
- View/download PDF
25. Supplementary material to 'Simulating ice segregation and thaw consolidation in permafrost environments with the CryoGrid community model'
- Author
-
Juditha Aga, Julia Boike, Moritz Langer, Thomas Ingeman-Nielsen, and Sebastian Westermann
- Published
- 2023
- Full Text
- View/download PDF
26. Supplementary material to 'Simulated methane emissions from Arctic ponds are highly sensitive to warming'
- Author
-
Zoé Rehder, Thomas Kleinen, Lars Kutzbach, Victor Stepanenko, Moritz Langer, and Victor Brovkin
- Published
- 2023
- Full Text
- View/download PDF
27. Simulated methane emissions from Arctic ponds are highly sensitive to warming
- Author
-
Zoé Rehder, Thomas Kleinen, Lars Kutzbach, Victor Stepanenko, Moritz Langer, and Victor Brovkin
- Abstract
The Arctic is warming at an above-average rate, and small, shallow waterbodies such as ponds are vulnerable to this warming due to their low thermal inertia compared to larger lakes. While ponds are a relevant landscape-scale source of methane under the current climate, the response of pond methane emissions to warming is uncertain. We employ a new, process-based model for methane emissions from ponds (MeEP) to investigate the methane emission response of polygonal-tundra ponds in northeastern Siberia to warming. MeEP is the first dedicated model of pond methane emissions which differentiates between the three main pond types of the polygonal-tundra, ice-wedge, polygonal-center, and merged polygonal ponds and resolves the three main pathways of methane emissions – diffusion, ebullition, and plant-mediated transport. We perform idealized warming experiments, with increases in the mean annual temperature of 2.5, 5, and 7.5 ∘C on top of a historical simulation. The simulations reveal an approximately linear increase in emissions from ponds of 1.33 g CH4 yr−1 ∘C−1 m−2 in this temperature range. Under annual temperatures 5 ∘C above present temperatures, pond methane emissions are more than 3 times higher than now. Most of this emission increase is due to the additional substrate provided by the increased net productivity of the vascular plants. Furthermore, plant-mediated transport is the dominating pathway of methane emissions in all simulations. We conclude that vascular plants as a substrate source and efficient methane pathway should be included in future pan-Arctic assessments of pond methane emissions.
- Published
- 2023
- Full Text
- View/download PDF
28. Heat stored in the Earth system 1960-2020:where does the energy go?
- Author
-
Karina von Schuckmann, Audrey Minière, Flora Gues, Francisco José Cuesta-Valero, Gottfried Kirchengast, Susheel Adusumilli, Fiammetta Straneo, Michaël Ablain, Richard P. Allan, Paul M. Barker, Hugo Beltrami, Alejandro Blazquez, Tim Boyer, Lijing Cheng, John Church, Damien Desbruyeres, Han Dolman, Catia M. Domingues, Almudena García-García, Donata Giglio, John E. Gilson, Maximilian Gorfer, Leopold Haimberger, Maria Z. Hakuba, Stefan Hendricks, Shigeki Hosoda, Gregory C. Johnson, Rachel Killick, Brian King, Nicolas Kolodziejczyk, Anton Korosov, Gerhard Krinner, Mikael Kuusela, Felix W. Landerer, Moritz Langer, Thomas Lavergne, Isobel Lawrence, Yuehua Li, John Lyman, Florence Marti, Ben Marzeion, Michael Mayer, Andrew H. MacDougall, Trevor McDougall, Didier Paolo Monselesan, Jan Nitzbon, Inès Otosaka, Jian Peng, Sarah Purkey, Dean Roemmich, Kanako Sato, Katsunari Sato, Abhishek Savita, Axel Schweiger, Andrew Shepherd, Sonia I. Seneviratne, Leon Simons, Donald A. Slater, Thomas Slater, Andrea K. Steiner, Toshio Suga, Tanguy Szekely, Wim Thiery, Mary-Louise Timmermans, Inne Vanderkelen, Susan E. Wjiffels, Tonghua Wu, Michael Zemp, Earth and Climate, and Hydrology and Hydraulic Engineering
- Subjects
General Earth and Planetary Sciences - Abstract
The Earth climate system is out of energy balance, and heat has accumulated continuously over the past decades, warming the ocean, the land, the cryosphere, and the atmosphere. According to the Sixth Assessment Report by Working Group I of the Intergovernmental Panel on Climate Change, this planetary warming over multiple decades is human-driven and results in unprecedented and committed changes to the Earth system, with adverse impacts for ecosystems and human systems. The Earth heat inventory provides a measure of the Earth energy imbalance (EEI) and allows for quantifying how much heat has accumulated in the Earth system, as well as where the heat is stored. Here we show that the Earth system has continued to accumulate heat, with 381±61 ZJ accumulated from 1971 to 2020. This is equivalent to a heating rate (i.e., the EEI) of 0.48±0.1 W m−2. The majority, about 89 %, of this heat is stored in the ocean, followed by about 6 % on land, 1 % in the atmosphere, and about 4 % available for melting the cryosphere. Over the most recent period (2006–2020), the EEI amounts to 0.76±0.2 W m−2. The Earth energy imbalance is the most fundamental global climate indicator that the scientific community and the public can use as the measure of how well the world is doing in the task of bringing anthropogenic climate change under control. Moreover, this indicator is highly complementary to other established ones like global mean surface temperature as it represents a robust measure of the rate of climate change and its future commitment. We call for an implementation of the Earth energy imbalance into the Paris Agreement's Global Stocktake based on best available science. The Earth heat inventory in this study, updated from von Schuckmann et al. (2020), is underpinned by worldwide multidisciplinary collaboration and demonstrates the critical importance of concerted international efforts for climate change monitoring and community-based recommendations and we also call for urgently needed actions for enabling continuity, archiving, rescuing, and calibrating efforts to assure improved and long-term monitoring capacity of the global climate observing system. The data for the Earth heat inventory are publicly available, and more details are provided in Table 4.
- Published
- 2023
- Full Text
- View/download PDF
29. Kinetic modeling of dynamically operated heterogeneously catalyzed reactions: Microkinetic model reduction and semi-mechanistic approach on the example of the CO2 methanation
- Author
-
Moritz Langer, David Kellermann, and Hannsjörg Freund
- Subjects
General Chemical Engineering ,Environmental Chemistry ,General Chemistry ,Industrial and Manufacturing Engineering - Published
- 2023
- Full Text
- View/download PDF
30. Investigating the thermal state of permafrost with Bayesian inverse modeling of heat transfer
- Author
-
Brian Groenke, Moritz Langer, Jan Nitzbon, Sebastian Westermann, Guillermo Gallego, and Julia Boike
- Abstract
Long-term measurements of permafrost temperatures do not provide a complete picture of the Arctic subsurface thermal regime. Regions with warmer permafrost often show little to no long-term change in ground temperature due to the uptake and release of latent heat during freezing and thawing. Thus, regions where the least warming is observed may also be the most vulnerable to permafrost degradation. Since direct measurements of ice and liquid water contents in the permafrost layer are not widely available, thermal modeling of the subsurface plays a crucial role in understanding how permafrost responds to changes in the local energy balance. In this work, we first analyze trends in observed air and permafrost temperatures at four sites within the continuous permafrost zone, where we find substantial variation in the apparent relationship between long-term changes in permafrost temperatures (0.02 K yr−1 to 0.16 K yr−1) and air temperature (0.09 K yr−1 to 0.11 K yr−1). We then apply recently developed Bayesian inversion methods to link observed changes in borehole temperatures to unobserved changes in latent heat and thaw depth using a transient model of heat conduction with phase change. Our results suggest that the degree to which recent warming trends correlate with permafrost thaw and variations in latent heat is heavily dependent on both local soil properties as well as historical climatology. At the warmest site, a nine meter borehole near Ny-Ålesund, Svalbard, modeled annual maximum thaw depth increases by an average of (12 ± 1) cm K−1 rise in mean annual ground temperature. In stark contrast, modeled thaw rates for a borehole on Samoylov Island in the Lena River Delta (northeastern Siberia) appear far less sensitive to temperature change, with an almost negligible increase of (1 ± 1) cm K−1. Although our study is limited to just four sites, the results urge caution in the interpretation and comparison of warming trends in Arctic boreholes, indicating substantial uncertainty in their implications for the current and future thermal state of permafrost.
- Published
- 2022
31. Supplementary material to 'Continental heat storage: Contributions from ground, inland waters, and permafrost thawing'
- Author
-
Francisco José Cuesta-Valero, Hugo Beltrami, Almudena García-García, Gerhard Krinner, Moritz Langer, Andrew H. MacDougall, Jan Nitzbon, Jian Peng, Karina von Schuckmann, Sonia I. Seneviratne, Noah Smith, Wim Thiery, Inne Vanderkelen, and Tonghua Wu
- Published
- 2022
- Full Text
- View/download PDF
32. Continental heat storage: Contributions from ground, inland waters, and permafrost thawing
- Author
-
Francisco José Cuesta-Valero, Hugo Beltrami, Almudena García-García, Gerhard Krinner, Moritz Langer, Andrew H. MacDougall, Jan Nitzbon, Jian Peng, Karina von Schuckmann, Sonia I. Seneviratne, Noah Smith, Wim Thiery, Inne Vanderkelen, and Tonghua Wu
- Abstract
Heat storage within the Earth system is a fundamental metric to understand climate change. The current energy imbalance at the top of the atmosphere causes changes in energy storage within the ocean, the atmosphere, the cryosphere, and the continental landmasses. After the ocean, heat storage in land is the second largest term of the Earth heat inventory, affecting physical processes relevant to society and ecosystems, such as the stability of the soil carbon pool. Here, we present an update of the continental heat storage combining for the first time the heat in the land subsurface, inland water bodies, and permafrost thawing. The continental landmasses stored 23.9±0.4×1021 J during the period 1960–2020, but the distribution of heat among the three components is not homogeneous. The ground stores ~90 % of the continental heat storage, with inland water bodies and permafrost degradation accounting for ~0.7 % and ~9 % of the continental heat, respectively. Although the inland water bodies and permafrost soils store less heat than the ground, we argue that their associated climate phenomena justify their monitoring and inclusion in the Earth heat inventory.
- Published
- 2022
33. Heat stored in the Earth system 1960–2020: Where does the energy go?
- Author
-
Karina von Schuckmann, Audrey Minère, Flora Gues, Francisco José Cuesta-Valero, Gottfried Kirchengast, Susheel Adusumilli, Fiammetta Straneo, Richard Allan, Paul M. Barker, Hugo Beltrami, Tim Boyer, Lijing Cheng, John Church, Damien Desbruyeres, Han Dolman, Catia M. Domingues, Almudena García-García, Donata Giglio, John E. Gilson, Maximilian Gorfer, Leopold Haimberger, Stefan Hendricks, Shigeki Hosoda, Gregory C. Johnson, Rachel Killick, Brian King, Nikolas Kolodziejczyk, Anton Korosov, Gerhard Krinner, Mikael Kuusela, Moritz Langer, Thomas Lavergne, Isobel Lawrence, Yuehua Li, John Lyman, Ben Marzeion, Michael Mayer, Andrew H. MacDougall, Trevor McDougall, Didier Paolo Monselesan, Jan Nitzbon, Inès Otosaka, Jian Peng, Sarah Purkey, Dean Roemmich, Kanako Sato, Katsunari Sato, Abhishek Savita, Axel Schweiger, Andrew Shepherd, Sonia I. Seneviratne, Leon Simons, Donald A. Slater, Thomas Slater, Noah Smith, Andrea Steiner, Toshio Suga, Tanguy Szekely, Wim Thiery, Mary-Louise Timmermans, Inne Vanderkelen, Susan E. Wjiffels, Tonghua Wu, and Michael Zemp
- Abstract
The Earth climate system is out of energy balance and heat has accumulated continuously over the past decades, warming the ocean, the land, the cryosphere and the atmosphere. According to the 6th Assessment Report of the Intergovernmental Panel on Climate Change, this planetary warming over multiple decades is human-driven and results in unprecedented and committed changes to the Earth system, with adverse impacts for ecosystems and human systems. The Earth heat inventory provides a measure of the Earth energy imbalance, and allows for quantifying how much heat has accumulated in the Earth system, and where the heat is stored. Here we show that 380 ± 62 ZJ of heat has accumulated in the Earth system from 1971 to 2020, at a rate of 0.48 ± 0.1 W m−2, with 89 ± 17 % of this heat stored in the ocean, 6 ± 0.1 % on land, 4 ± 1 % in the cryosphere and 1 ± 0.2 % in the atmosphere. Over the most recent decade (2006–2020), the Earth heat inventory shows increased warming at rate of 0.48 ± 0.3 W m−2/decade, and the Earth climate system is out of energy balance by 0.76 ± 0.2 Wm−2. The Earth heat inventory is the most fundamental global climate indicator that the scientific community and the public can use as the measure of how well the world is doing in the task of bringing anthropogenic climate change under control. We call for an implementation of the Earth heat inventory into the Paris agreement’s global stocktake based on best available science. The Earth heat inventory in this study, updated from von Schuckmann et al, 2020, is underpinned by worldwide multidisciplinary collaboration and demonstrates the critical importance of concerted international efforts for climate change monitoring and community-based recommendations as coordinated by the Global Climate Observing System (GCOS). We also call for urgently needed actions for enabling continuity, archiving, rescuing and calibrating efforts to assure improved and long-term monitoring capacity of the relevant GCOS Essential Climate Variables (ECV) for the Earth heat inventory.
- Published
- 2022
34. Recent ground thermo-hydrological changes in a Tibetan endorheic catchment and implications for lake level changes
- Author
-
Léo C. P. Martin, Sebastian Westermann, Michele Magni, Fanny Brun, Joel Fiddes, Yanbin Lei, Philip Kraaijenbrink, Tamara Mathys, Moritz Langer, Simon Allen, Walter W. Immerzeel, Universiteit Utrecht, University of Oslo (UiO), Institut des Géosciences de l’Environnement (IGE), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Institut Fédéral de Recherches sur la Forêt, la Neige et le Paysage (WSL), Institut Fédéral de Recherches [Suisse], Chinese Academy of Sciences [Beijing] (CAS), Université de Fribourg = University of Fribourg (UNIFR), Humboldt University Of Berlin, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Partenaires INRAE, Universität Zürich [Zürich] = University of Zurich (UZH), and Department of Physical Geography [Urecht]
- Subjects
[SDU.STU]Sciences of the Universe [physics]/Earth Sciences - Abstract
Climate change modifies the water and energy fluxes between the atmosphere and the surface in mountainous regions. This is particularly true over the Qinghai-Tibet Plateau (QTP), a major headwater region of the world, which has shown substantial hydrological changes over the last decades. Among them, the rapid lake level variations observed throughout the plateau remain puzzling and much is still to be understood regarding the spatial distribution of lake level trends (increase/decrease) and paces. The ground across the QTP hosts either permafrost or seasonally frozen ground and both are affected by climate change. In this environment, the ground thermal regime influences liquid water availability, evaporation and runoff. Therefore, climate-driven modifications of the ground thermal regime may contribute to lake level variations. For now, this hypothesis has been overlooked by modelers because of the scarcity of field data and the difficulty to account for the spatial variability of the climate and its influence on the ground thermo-hydrological regime in a numerical framework. This study focuses on the cryo-hydrology of the catchment of Lake Paiku (Southern Tibet) for the 1980–2019 period. We use TopoSCALE and TopoSUB to downscale ERA5 data and capture the spatial variability of the climate in our forcing data. We use a distributed setup of the CryoGrid community model (version 1.0) to quantify thermo-hydrological changes in the ground during the period. Forcing data and simulation outputs are validated with weather station data, surface temperature logger data and the lake level variations. We show that both seasonal frozen ground and permafrost have warmed (1.7 °C per century 2 m deep), increasing the availability of liquid water in the ground and the duration of seasonal thaw. Both phenomena promote evaporation and runoff but ground warming drives a strong increase in subsurface runoff, so that the runoff/(evaporation + runoff) ratio increases over time. Summer evaporation is an important energy sink and we find active layer deepening only where evaporation is limited. The presence of permafrost is found to promote evaporation at the expense of runoff, consistent with recent studies. Yet, this relationship seems to be climate dependent and we show that a colder and wetter climate produces the opposite effect. This ambivalent influence of permafrost may help to understand the contrasting lake level variations observed between the south and north of the QTP, opening new perspectives for future investigations.
- Published
- 2022
- Full Text
- View/download PDF
35. Reply on CC1
- Author
-
Moritz Langer
- Published
- 2022
- Full Text
- View/download PDF
36. Arctic Delta Reduced Complexity Model and its Reproduction of Key Geomorphological Structures
- Author
-
Ngai-Ham Chan, Moritz Langer, Bennet Juhls, Tabea Rettelbach, Paul Overduin, Kimberly Huppert, and Jean Braun
- Abstract
Arctic river deltas define the interface between the terrestrial Arctic and the Arctic Ocean. They discharge sediments, nutrients, and soil organic carbon to the Arctic Ocean and provide key stratigraphic records of permafrost landscape evolution. As the climate warms, the future evolution of Arctic deltas will likely take a different course, with implications both local in scale and on the wider Arctic Ocean. One important way to understand and predict the evolution of Arctic deltas is through numerical models. Here we present ArcDelRCM.jl, an improved reduced complexity model (RCM) of arctic delta evolution based on the DeltaRCM-Arctic model (Lauzon et al., 2019). We have rewritten the DeltaRCM-Arctic model entirely in the Julia language and the final ArcDelRCM.jl model retains the option to execute as the former. Unlike previous models, ArcDelRCM.jl is able to replicate an important and ubiquitous feature observed in Arctic deltas — the underwater ramps extending from the shoreline of deltas tens of kilometres towards the ocean at a depth of roughly 2 m. This feature may form a buffer between ocean processes and the land portions of the deltas. We have found that the delayed breakup of bed-fast ice on and around the deltas is ultimately responsible for the development of the ramp feature. However, changes made to the modelling of permafrost erosion and protective effects of bed-fast ice are also important contributors. Through a simple graph analysis performed on ensemble runs, including the non-Arctic DeltaRCM (Liang et al., 2015a), we found that the Arctic processes considered in all the models and modifications did not lead to significant differences in the channel structures. Moreover, we found that the summer months contribute significantly to the growth and evolution of Arctic deltas, thus should not be neglected in simulations. Finally, we tested a strong climate-warming scenario on the simulated deltas of ArcDelRCM.jl. We found that the ramp features degrade on the time scale of centuries and effectively disappear in under a millennium. Ocean processes, which are not included in these models, may further shorten the time scale. With the degradations of the ramps, any dissipative effects on wave energy they offered would also decrease. This could expose the sub-aerial parts of the deltas to increased coastal erosion, thus impacting permafrost degradation, nutrients and carbon releases.
- Published
- 2022
- Full Text
- View/download PDF
37. The evolution of Arctic permafrost over the last three centuries
- Author
-
Moritz Langer, Jan Nitzbon, Brian Groenke, Lisa-Marie Assmann, Thomas Schneider von Deimling, Simone Maria Stuenzi, and Sebastian Westermann
- Abstract
Understanding the future evolution of permafrost requires a better understanding of its climatological past. This requires permafrost models to efficiently simulate the thermal dynamics of permafrost over the past centuries to millennia, taking into account highly uncertain soil and snow properties. In this study, we present a computationally efficient numerical permafrost model which satisfactorily reproduces the current thermal state of permafrost in the Arctic and its recent trend over the last decade. Also, the active layer dynamics and its trend is realistically captured. The performed simulations provide insights into the evolution of permafrost since the 18th century and show that permafrost on the North American continent is subject to early degradation, while permafrost on the Eurasian continent is relatively stable over the investigated 300-year period. Permafrost warming since industrialization has occurred primarily in three "hotspot" regions in northeastern Canada, northern Alaska, and, to a lesser extent, western Siberia. The extent of near-surface permafrost has changed substantially since the 18th century. In particular, loss of continuous permafrost has accelerated from low (−0.10 × 105 km2 dec−1) to moderate (−0.77 × 105 km2 dec−1) rates for the 18th and 19th centuries, respectively. In the 20th century, the loss rate nearly doubled (−1.36 × 105 km2 dec−1), with the highest near-surface permafrost losses occurring in the last 50 years. Our simulations further indicate that climate disturbances due to large volcanic eruptions in the Northern Hemisphere, can only counteract near-surface permafrost loss for a relatively short period of a few decades. Despite some limitations, the presented model shows great potential for further investigation of the climatological past of permafrost, especially in conjunction with paleoclimate modeling.
- Published
- 2022
38. Supplementary material to 'The CryoGrid community model (version 1.0) – a multi-physics toolbox for climate-driven simulations in the terrestrial cryosphere'
- Author
-
Sebastian Westermann, Thomas Ingeman-Nielsen, Johanna Scheer, Kristoffer Aalstad, Juditha Aga, Nitin Chaudhary, Bernd Etzelmüller, Simon Filhol, Andreas Kääb, Cas Renette, Louise Steffensen Schmidt, Thomas Vikhamar Schuler, Robin B. Zweigel, Léo Martin, Sarah Morard, Matan Ben-Asher, Michael Angelopoulos, Julia Boike, Brian Groenke, Frederieke Miesner, Jan Nitzbon, Paul Overduin, Simone M. Stuenzi, and Moritz Langer
- Published
- 2022
- Full Text
- View/download PDF
39. Human-robot-interaction using cloud-based speech recognition systems
- Author
-
Jörg Franke, Peter Heß, Moritz Langer, Julian Seßner, and Christian Deuerlein
- Subjects
0209 industrial biotechnology ,business.industry ,Computer science ,Interface (computing) ,Speech recognition ,Cloud computing ,02 engineering and technology ,010501 environmental sciences ,Speaker recognition ,Speech processing ,01 natural sciences ,Human–robot interaction ,020901 industrial engineering & automation ,Software ,Proof of concept ,General Earth and Planetary Sciences ,Robot ,business ,0105 earth and related environmental sciences ,General Environmental Science - Abstract
Progress in natural speech processing has enabled significantly more powerful speech processing systems, primarily due to the use of machine learning technologies. In order to integrate cloud-based speech recognition systems for human-robot interaction, an interface for the voice control of a lightweight robot was developed. The main contribution of this work is the design and implementation of a software interface to recognize commands via cloud-based speech processing and the subsequently conversion into machine-readable code. Requirements for the evaluation of different cloud-services for the control of robots are determined. Furthermore, the control architecture for the robot is modeled and implemented. An example application, which enables users to control robot movements via speech, is realized as a proof of concept and for additional studies. This application includes the basic features of cloud-based speech processing: intent recognition from utterances, slot filling and dialogue-based interaction. Lastly, the influence of background noise on process safety was examined within an experiment. It turns out that a feasible process reliability can be achieved with the system despite the presence of background noises.
- Published
- 2021
- Full Text
- View/download PDF
40. Thermohydrological Impact of Forest Disturbances on Ecosystem‐Protected Permafrost
- Author
-
Simone Maria Stuenzi, Stefan Kruse, Julia Boike, Ulrike Herzschuh, Alexander Oehme, Luidmila A. Pestryakova, Sebastian Westermann, Moritz Langer, and Earth and Climate
- Subjects
disturbance ,Siberia ,Atmospheric Science ,periglacial process ,Ecology ,Paleontology ,Soil Science ,Forestry ,boreal forest ,Aquatic Science ,larch forest ,permafrost ,Water Science and Technology - Abstract
Boreal forests cover over half of the global permafrost area and protect underlying permafrost. Boreal forest development, therefore, has an impact on permafrost evolution, especially under a warming climate. Forest disturbances and changing climate conditions cause vegetation shifts and potentially destabilize the carbon stored within the vegetation and permafrost. Disturbed permafrost-forest ecosystems can develop into a dry or swampy bush- or grasslands, shift toward broadleaf- or evergreen needleleaf-dominated forests, or recover to the pre-disturbance state. An increase in the number and intensity of fires, as well as intensified logging activities, could lead to a partial or complete ecosystem and permafrost degradation. We study the impact of forest disturbances (logging, surface, and canopy fires) on the thermal and hydrological permafrost conditions and ecosystem resilience. We use a dynamic multilayer canopy-permafrost model to simulate different scenarios at a study site in eastern Siberia. We implement expected mortality, defoliation, and ground surface changes and analyze the interplay between forest recovery and permafrost. We find that forest loss induces soil drying of up to 44%, leading to lower active layer thicknesses and abrupt or steady decline of a larch forest, depending on disturbance intensity. Only after surface fires, the most common disturbances, inducing low mortality rates, forests can recover and overpass pre-disturbance leaf area index values. We find that the trajectory of larch forests after surface fires is dependent on the precipitation conditions in the years after the disturbance. Dryer years can drastically change the direction of the larch forest development within the studied period.
- Published
- 2022
- Full Text
- View/download PDF
41. A probabilistic analysis of permafrost temperature trends with ensemble modeling of heat transfer
- Author
-
Brian Groenke, Moritz Langer, Guillermo Gallego, and Julia Boike
- Abstract
Over the past few decades, polar research teams around the world have deployed long-term measurement sites to monitor changes in permafrost environments. Many of these sites include borehole sensor arrays which provide measurements of ground temperature as deep as 50 meters or more below the surface. Recent studies have attempted to leverage these borehole data from the Global Terrestrial Network of Permafrost to quantify changes in permafrost temperatures at a global scale. However, temperature measurements provide an incomplete picture of the Earth's subsurface thermal regime. It is well known that regions with warmer permafrost, i.e. where mean annual ground temperatures are close to zero, often show little to no long-term change in ground temperature due to the latent heat effect. Thus, regions where the least warming is observed may also be the most vulnerable to rapid permafrost thaw. Since direct measurements of soil moisture in the permafrost layer are not widely available, thermal modeling of the subsurface plays a crucial role in understanding how permafrost responds to changes in the local energy balance. In this work, we explore a new probabilistic method to link observed annual temperatures in boreholes to permafrost thaw via Bayesian parameter estimation and Monte Carlo simulation with a transient heat model. We apply our approach to several sites across the Arctic and demonstrate the impact of local landscape variability on the relationship between long term changes in temperature and latent heat.
- Published
- 2022
- Full Text
- View/download PDF
42. Novel coupled permafrost–forest model (LAVESI–CryoGrid v1.0) revealing the interplay between permafrost, vegetation, and climate across eastern Siberia
- Author
-
Stefan Kruse, Simone M. Stuenzi, Julia Boike, Moritz Langer, Josias Gloy, Ulrike Herzschuh, and Earth and Climate
- Abstract
Boreal forests of Siberia play a relevant role in the global carbon cycle. However, global warming threatens the existence of summergreen larch-dominated ecosystems, likely enabling a transition to evergreen tree taxa with deeper active layers. Complex permafrost–vegetation interactions make it uncertain whether these ecosystems could develop into a carbon source rather than continuing atmospheric carbon sequestration under global warming. Consequently, shedding light on the role of current and future active layer dynamics and the feedbacks with the apparent tree species is crucial to predict boreal forest transition dynamics and thus for aboveground forest biomass and carbon stock developments. Hence, we established a coupled model version amalgamating a one-dimensional permafrost multilayer forest land-surface model (CryoGrid) with LAVESI, an individual-based and spatially explicit forest model for larch species (Larix Mill.), extended for this study by including other relevant Siberian forest species and explicit terrain. Following parameterization, we ran simulations with the coupled version to the near future to 2030 with a mild climate-warming scenario. We focus on three regions covering a gradient of summergreen forests in the east at Spasskaya Pad, mixed summergreen–evergreen forests close to Nyurba, and the warmest area at Lake Khamra in the southeast of Yakutia, Russia. Coupled simulations were run with the newly implemented boreal forest species and compared to runs allowing only one species at a time, as well as to simulations using just LAVESI. Results reveal that the coupled version corrects for overestimation of active layer thickness (ALT) and soil moisture, and large differences in established forests are simulated. We conclude that the coupled version can simulate the complex environment of eastern Siberia by reproducing vegetation patterns, making it an excellent tool to disentangle processes driving boreal forest dynamics.
- Published
- 2022
43. Thawing permafrost poses environmental threat to thousands of sites with legacy industrial contamination
- Author
-
Moritz Langer, Thomas Schneider von Deimling, Sebastian Westermann, Rebecca Rolph, Ralph Rutte, Volker Rachold, Michael Schultz, and Guido Grosse
- Abstract
Permafrost thaw is expected to become widespread in this century, threatening Arctic ecosystems, communities, and infrastructure. To date, industrial contaminants that have accumulated in Arctic permafrost regions have largely been neglected in climate impact analyses. Using publicly available data, we estimate that more than 10,000 contaminated sites originate from industrial activities in Arctic permafrost regions. We find a wide range of toxic substances, most of which are associated with industrial activities in mineral exploration and extraction, processing, and energy. By 2050 to 2100, climate change will significantly increase the risk of pollution and mobilization of toxic substances by exposing 500 to 1,500 additional known industrial sites and 1,000 to 3,500 estimated contaminated sites to permafrost degradation. Our analysis points to the severe environmental hazard posed by the legacy of past and ongoing industrial activities in the Arctic, which will be exacerbated by permafrost thaw.
- Published
- 2022
- Full Text
- View/download PDF
44. The Potential of UAV Imagery for the Detection of Rapid Permafrost Degradation: Assessing the Impacts on Critical Arctic Infrastructure
- Author
-
Julia Boike, Guido Grosse, Moritz Langer, Soraya Kaiser, and Earth and Climate
- Subjects
permafrost degradation ,consumer-grade unoccupied aerial vehicle ,North Slope Alaska ,land surface displacement ,point cloud alignment ,structure from motion ,M3C2 ,General Earth and Planetary Sciences - Abstract
Ground subsidence and erosion processes caused by permafrost thaw pose a high risk to infrastructure in the Arctic. Climate warming is increasingly accelerating the thawing of permafrost, emphasizing the need for thorough monitoring to detect damages and hazards at an early stage. The use of unoccupied aerial vehicles (UAVs) allows a fast and uncomplicated analysis of sub-meter changes across larger areas compared to manual surveys in the field. In our study, we investigated the potential of photogrammetry products derived from imagery acquired with off-the-shelf UAVs in order to provide a low-cost assessment of the risks of permafrost degradation along critical infrastructure. We tested a minimal drone setup without ground control points to derive high-resolution 3D point clouds via structure from motion (SfM) at a site affected by thermal erosion along the Dalton Highway on the North Slope of Alaska. For the sub-meter change analysis, we used a multiscale point cloud comparison which we improved by applying (i) denoising filters and (ii) alignment procedures to correct for horizontal and vertical offsets. Our results show a successful reduction in outliers and a thorough correction of the horizontal and vertical point cloud offset by a factor of 6 and 10, respectively. In a defined point cloud subset of an erosion feature, we derive a median land surface displacement of (Formula presented.) m from 2018 to 2019. Projecting the development of the erosion feature, we observe an expansion to NNE, following the ice-wedge polygon network. With a land surface displacement of (Formula presented.) m and an alignment root mean square error of (Formula presented.) m, we find our workflow is best suitable for detecting and quantifying rapid land surface changes. For a future improvement of the workflow, we recommend using alternate flight patterns and an enhancement of the point cloud comparison algorithm.
- Published
- 2022
- Full Text
- View/download PDF
45. Novel coupled permafrost-forest model revealing the interplay between permafrost, vegetation, and climate across eastern Siberia
- Author
-
Julia Boike, Josias Gloy, Simone Maria Stuenzi, Moritz Langer, Stefan Kruse, and Ulrike Herzschuh
- Subjects
Biomass (ecology) ,biology ,Global warming ,Taiga ,Atmospheric carbon cycle ,Vegetation ,15. Life on land ,biology.organism_classification ,Permafrost ,Carbon cycle ,13. Climate action ,Environmental science ,Physical geography ,Larch - Abstract
Boreal forests of Siberia play a relevant role in the global carbon cycle. However, global warming threatens the existence of summergreen larch-dominated ecosystems likely enabling a transition to evergreen tree taxa with deeper active layers. Complex permafrost-vegetation interactions make it uncertain whether these ecosystems could develop into a carbon source rather than continuing atmospheric carbon sequestration under global warming. Consequently, shedding light on the role of current and future active-layer dynamics and the feedbacks with the apparent tree species is crucial to predict boreal forest transition dynamics, and thus for aboveground forest biomass and carbon stock developments. Hence, we established a coupled model version amalgamating a one-dimensional permafrost-multilayer forest land-surface model (CryoGrid), with LAVESI, an individual-based and spatially explicit forest model for larch species (Larix Mill.), extended for this study by including other relevant Siberian forest species and explicit terrain. Following parametrization, we ran simulations with the coupled version to the near future to 2030 with a mild climate-warming scenario. We focus on three regions, covering a gradient of summergreen forests in the east at Spasskaya Pad to mixed summergreen-evergreen forests close to Nyurba, and the warmest area at Lake Khamra in the south-east of Yakutia, Russia. Coupled simulations were run with the newly implemented boreal forest species and compared to runs allowing only one species at a time, as well as to simulations using just LAVESI. Results reveal that the coupled version corrects for overestimation of active-layer thickness (ALT) and soil moisture and large differences in established forests are simulated. We conclude that the coupled version can simulate the complex environment of central Siberia reproducing vegetation patterns making it an excellent tool to disentangle processes driving boreal forest dynamics.
- Published
- 2021
- Full Text
- View/download PDF
46. A Quantitative Graph-Based Approach to Monitoring Ice-Wedge Trough Dynamics in Polygonal Permafrost Landscapes
- Author
-
Johann-Christoph Freytag, Guido Grosse, Benjamin M. Jones, Tabea Rettelbach, Ingmar Nitze, Moritz Langer, Veit Helm, and Earth and Climate
- Subjects
Power graph analysis ,010504 meteorology & atmospheric sciences ,ice wedges ,Science ,Trough (geology) ,010502 geochemistry & geophysics ,Permafrost ,01 natural sciences ,computer vision ,Ice wedge ,remote sensing ,Geomorphology ,0105 earth and related environmental sciences ,Patterned ground ,degradation ,620 Ingenieurwissenschaften und zugeordnete Tätigkeiten ,Subsidence ,15. Life on land ,graph analysis ,image processing ,Arctic ,13. Climate action ,General Earth and Planetary Sciences ,Graph (abstract data type) ,ddc:620 ,Geology ,patterned ground ,permafrost - Abstract
In response to increasing Arctic temperatures, ice-rich permafrost landscapes are undergoing rapid changes. In permafrost lowlands, polygonal ice wedges are especially prone to degradation. Melting of ice wedges results in deepening troughs and the transition from low-centered to high-centered ice-wedge polygons. This process has important implications for surface hydrology, as the connectivity of such troughs determines the rate of drainage for these lowland landscapes. In this study, we present a comprehensive, modular, and highly automated workflow to extract, to represent, and to analyze remotely sensed ice-wedge polygonal trough networks as a graph (i.e., network structure). With computer vision methods, we efficiently extract the trough locations as well as their geomorphometric information on trough depth and width from high-resolution digital elevation models and link these data within the graph. Further, we present and discuss the benefits of graph analysis algorithms for characterizing the erosional development of such thaw-affected landscapes. Based on our graph analysis, we show how thaw subsidence has progressed between 2009 and 2019 following burning at the Anaktuvuk River fire scar in northern Alaska, USA. We observed a considerable increase in the number of discernible troughs within the study area, while simultaneously the number of disconnected networks decreased from 54 small networks in 2009 to only six considerably larger disconnected networks in 2019. On average, the width of the troughs has increased by 13.86%, while the average depth has slightly decreased by 10.31%. Overall, our new automated approach allows for monitoring ice-wedge dynamics in unprecedented spatial detail, while simultaneously reducing the data to quantifiable geometric measures and spatial relationships. BMBF PermaRisk National Science Foundation
- Published
- 2021
- Full Text
- View/download PDF
47. Monitoring the Transformation of Arctic Landscapes: Automated Shoreline Change Detection of Lakes Using Very High Resolution Imagery
- Author
-
Guido Grosse, Julia Boike, Soraya Kaiser, Moritz Langer, and Earth and Climate
- Subjects
North Slope ,010504 meteorology & atmospheric sciences ,Science ,0211 other engineering and technologies ,02 engineering and technology ,Permafrost ,shoreline movement direction ,01 natural sciences ,arctic water bodies ,Hydrology (agriculture) ,permafrost lowlands ,Satellite imagery ,shoreline movement rate ,change detection ,automated monitoring ,021101 geological & geomatics engineering ,0105 earth and related environmental sciences ,Remote sensing ,ddc:910 ,Shore ,geography ,geography.geographical_feature_category ,910 Geografie und Reisen ,15. Life on land ,very high resolution imagery ,Very high resolution imagery ,Water level ,Arctic ,13. Climate action ,General Earth and Planetary Sciences ,Environmental science ,Scale (map) ,Change detection - Abstract
Water bodies are a highly abundant feature of Arctic permafrost ecosystems and strongly influence their hydrology, ecology and biogeochemical cycling. While very high resolution satellite images enable detailed mapping of these water bodies, the increasing availability and abundance of this imagery calls for fast, reliable and automatized monitoring. This technical work presents a largely automated and scalable workflow that removes image noise, detects water bodies, removes potential misclassifications from infrastructural features, derives lake shoreline geometries and retrieves their movement rate and direction on the basis of ortho-ready very high resolution satellite imagery from Arctic permafrost lowlands. We applied this workflow to typical Arctic lake areas on the Alaska North Slope and achieved a successful and fast detection of water bodies. We derived representative values for shoreline movement rates ranging from 0.40–0.56 m.yr−1 for lake sizes of 0.10 ha–23.04 ha. The approach also gives an insight into seasonal water level changes. Based on an extensive quantification of error sources, we discuss how the results of the automated workflow can be further enhanced by incorporating additional information on weather conditions and image metadata and by improving the input database. The workflow is suitable for the seasonal to annual monitoring of lake changes on a sub-meter scale in the study areas in northern Alaska and can readily be scaled for application across larger regions within certain accuracy limitations. Bundesministerium für Bildung und Forschung
- Published
- 2021
48. Surface temperatures and their influence on the permafrost thermal regime in high-Arctic rock walls on Svalbard
- Author
-
Juditha Schmidt, Bernd Etzelmüller, Thomas Schuler, Julia Boike, Moritz Langer, and Sebastian Westermann
- Abstract
Permafrost degradation in steep rock walls and associated slope destabilization have been studied increasingly in recent years. While most studies focus on mountainous and sub-Arctic regions, the occurring thermo-mechanical processes also play an important role in the high Arctic. A more precise understanding is required to assess the risk of natural hazards enhanced by permafrost warming in high-Arctic rock walls. This study presents one of the first comprehensive datasets of rock surface temperature measurements of steep rock walls in the high Arctic, comparing coastal and near-coastal settings. We applied the surface energy balance model CryoGrid3 for evaluation, including adjusted radiative forcing to account for vertical rock walls. Our measurements comprise 4years of rock surface temperature data from summer 2016 to summer 2020. Mean annual rock surface temperatures ranged from−0.6in a coastal rock wall in 2017/18 to−4.3 ∘Cin a near-coastal rock wall in 2019/20. Our measurements and model results indicate that rock surface temperatures at coastal cliffs are up to 1.5 ∘Chigher than at near-coastal rock walls when the fjord is ice-free in winter, resulting from additional energy input due to higher air temperatures at the coast and radiative warming by relatively warm seawater. An ice layer on the fjord counteracts this effect, leading to similar rock surface temperatures to those in near-coastal settings. Our results include a simulated surface energy balance with shortwave radiation as the dominant energy source during spring and summer with net average seasonal values of up to 100 W m−2and longwave radiation being the main energy loss with net seasonal averages between 16 and 39 W m−2. While sensible heat fluxes can both warm and cool the surface, latent heat fluxes are mostly insignificant. Simulations for future climate conditions result in a warming of rock surface temperatures and a deepening of active layer thickness for both coastal and near-coastal rock walls. Our field data present a unique dataset of rock surface temperatures in steep high-Arctic rock walls, while our model can contribute towards the understanding of factors influencing coastal and near-coastal settings and the associated surface energy balance.
- Published
- 2021
49. Pathways of ice-wedge degradation in polygonal tundra under different hydrological conditions
- Author
-
Léo Martin, Julia Boike, Sebastian Westermann, Moritz Langer, Kjetil Schanke Aas, Jan Nitzbon, and Earth and Climate
- Subjects
010504 meteorology & atmospheric sciences ,0207 environmental engineering ,02 engineering and technology ,010502 geochemistry & geophysics ,Permafrost ,01 natural sciences ,Ice wedge ,Thermokarst ,14. Life underwater ,020701 environmental engineering ,lcsh:Environmental sciences ,0105 earth and related environmental sciences ,Earth-Surface Processes ,Water Science and Technology ,lcsh:GE1-350 ,geography ,geography.geographical_feature_category ,River delta ,Landform ,Lead (sea ice) ,lcsh:QE1-996.5 ,15. Life on land ,Snow ,Tundra ,lcsh:Geology ,13. Climate action ,Physical geography ,Geology - Abstract
Ice-wedge polygons are common features of lowland tundra in the continuous permafrost zone and prone to rapid degradation through melting of ground ice. There are many inter-related processes involved in ice-wedge thermokarst and it is a major challenge to quantify their influence on the stability of the permafrost underlying the landscape. In this study we used a numerical modelling approach to investigate the degradation of ice-wedges with a focus on the influence of hydrological conditions. Our study area was Samoylov Island in the Lena River delta of Northern Siberia, for which we had in-situ measurements to evaluate the model. The tailored version of the CryoGrid3 Land Surface Model was capable of simulating the changing micro-topography of polygonal tundra and also regarded lateral fluxes of heat, water, and snow. We demonstrated that the approach is capable of simulating ice-wedge degradation and the associated transition from a low-centred to a high-centred polygonal micro-topography. The model simulations showed ice-wedge degradation under recent climatic conditions of the study area, irrespective of hydrological conditions. However, we found that wetter conditions lead to an earlier onset of degradation and cause more rapid ground subsidence. We set our findings in correspondence to observed types of ice-wedge polygons in the study area and hypothesized on remaining discrepancies between modelled and observed ice-wedge thermokarst activity. Our quantitative approach provides a valuable complement to previous, more qualitative and conceptual, descriptions of the possible pathways of ice-wedge polygon evolution. We concluded that our study is a blueprint for investigating thermokarst landforms and marks a step forward in understanding the complex interrelationships between various processes shaping ice-rich permafrost landscapes.
- Published
- 2019
50. Thaw processes in ice-rich permafrost landscapes represented with laterally coupled tiles in a land surface model
- Author
-
Julia Boike, Moritz Langer, Kjetil Schanke Aas, Hanna Lee, Sebastian Westermann, Léo Martin, Jan Nitzbon, Terje Koren Berntsen, and Earth and Climate
- Subjects
lcsh:GE1-350 ,geography ,Plateau ,geography.geographical_feature_category ,Peat ,010504 meteorology & atmospheric sciences ,lcsh:QE1-996.5 ,Subsidence (atmosphere) ,15. Life on land ,010502 geochemistry & geophysics ,Atmospheric sciences ,Permafrost ,Snow ,01 natural sciences ,Tundra ,Atmosphere ,lcsh:Geology ,13. Climate action ,Soil water ,Environmental science ,lcsh:Environmental sciences ,0105 earth and related environmental sciences ,Earth-Surface Processes ,Water Science and Technology - Abstract
Earth system models (ESMs) are our primary tool for projecting future climate change, but their ability to represent small-scale land surface processes is currently limited. This is especially true for permafrost landscapes in which melting of excess ground ice and subsequent subsidence affect lateral processes which can substantially alter soil conditions and fluxes of heat, water, and carbon to the atmosphere. Here we demonstrate that dynamically changing microtopography and related lateral fluxes of snow, water, and heat can be represented through a tiling approach suitable for implementation in large-scale models, and we investigate which of these lateral processes are important to reproduce observed landscape evolution. Combining existing methods for representing excess ground ice, snow redistribution, and lateral water and energy fluxes in two coupled tiles, we show that the model approach can simulate observed degradation processes in two very different permafrost landscapes. We are able to simulate the transition from low-centered to high-centered polygons, when applied to polygonal tundra in the cold, continuous permafrost zone, which results in (i) a more realistic representation of soil conditions through drying of elevated features and wetting of lowered features with related changes in energy fluxes, (ii) up to 2 ∘C reduced average permafrost temperatures in the current (2000–2009) climate, (iii) delayed permafrost degradation in the future RCP4.5 scenario by several decades, and (iv) more rapid degradation through snow and soil water feedback mechanisms once subsidence starts. Applied to peat plateaus in the sporadic permafrost zone, the same two-tile system can represent an elevated peat plateau underlain by permafrost in a surrounding permafrost-free fen and its degradation in the future following a moderate warming scenario. These results demonstrate the importance of representing lateral fluxes to realistically simulate both the current permafrost state and its degradation trajectories as the climate continues to warm. Implementing laterally coupled tiles in ESMs could improve the representation of a range of permafrost processes, which is likely to impact the simulated magnitude and timing of the permafrost–carbon feedback.
- Published
- 2019
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.