1. Dynamic photosynthesis under a fluctuating environment: a modelling-based analysis
- Author
-
Struik, Paul, Molenaar, Jaap, Yin, Xinyou, Harbinson, Jeremy, Morales Sierra, Alejandro, Struik, Paul, Molenaar, Jaap, Yin, Xinyou, Harbinson, Jeremy, and Morales Sierra, Alejandro
- Abstract
In their natural environment, leaves are exposed to rapid fluctuations of irradiance. Research on CO2 assimilation under fluctuating irradiance often relies on measurements of gas exchange during transients where irradiance is rapidly increased or decreased, after the leaf has adapted to a particular set of environmental conditions. In the field, such increases and decreases occur mostly because of sunflecks (rapid increases in irradiance on a low irradiance background) created by gaps in the canopy and plant movement by wind, and cloudflecks (rapid decreases in irradiance on a high irradiance background) generated by clouds that transiently block the sun. In this dissertation, the metabolic regulation of photosynthesis and how this may limit dynamic CO2 assimilation is studied in silico with the development and application of simulation models. In order to support the development of the models, a review of the literature was performed as well as an experiment designed to generate data on dynamic CO2 assimilation for different photosynthetic mutants of Arabidopsis thaliana. In addition to providing these models to the research community, this dissertation also identifies multiple targets that may be used for improving dynamic CO2 assimilation in plants. It further demonstrates that the dynamic responses of CO2 assimilation to changes in irradiance has a significant effect on canopy CO2 assimilation, even for dense canopies exposed to open skies, resembling the conditions of commercial crops. In Chapter 1, the context of this dissertation is presented. The societal relevance of this research is argued, making reference to the role that photosynthesis could play in addressing global problems such as food and energy security. The necessary background on the physiology of photosynthesis is provided, with special emphasis on the terminology and concepts required to understand the rest of the dissertation, with the aim of making the contents more accessible to a wider aud
- Published
- 2017