6 results on '"Moradbeygi F"'
Search Results
2. A Review on Romiplostim Mechanism of Action and the Expressive Approach in E. coli .
- Author
-
Hashemzaei M, Ghoshoon MB, Jamshidi M, Moradbeygi F, and Hashemzehi A
- Subjects
- Humans, Escherichia coli genetics, Patents as Topic, Blood Platelets, Thrombopoietin pharmacology, Purpura, Thrombocytopenic, Idiopathic drug therapy, Receptors, Fc, Recombinant Fusion Proteins
- Abstract
Immune thrombocytopenic purpura (ITP) is an autoimmune disorder determined by immune-mediated platelet demolition and reduction of platelet production. Romiplostim is a new thrombopoiesis motivating peptibody that binds and stimulates the human thrombopoietin receptor the patent of which was registered in 2008. It is used to treat thrombocytopenia in patients with chronic immune thrombocytopenic purpura. Romiplostim is a 60 kDa peptibody designed to inhibit cross-reacting immune responses. It consists of four high-affinity TPO-receptor binding domains for the Mpl receptor and one human IgG1 Fc domain. Escherichia coli is a good host for the fabrication of recombinant proteins such as romiplostim. The expression of a gene intended in E. coli is dependent on many factors such as a protein's inherent ability to fold, mRNA's secondary structure, its solubility, its toxicity preferential codon use, and its need for post-translational modification (PTM). This review focuses on the structure, function, mechanism of action, and expressive approach to romiplostim in E. coli ., (Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.net.)
- Published
- 2024
- Full Text
- View/download PDF
3. Doxorubicin-loaded Niosomes functionalized with gelatine and alginate as pH-responsive drug delivery system: A 3D printing approach.
- Author
-
Zaer M, Moeinzadeh A, Abolhassani H, Rostami N, Tavakkoli Yaraki M, Seyedi SA, Nabipoorashrafi SA, Bashiri Z, Moeinabadi-Bidgoli K, Moradbeygi F, Farmani AR, and Hossein-Khannazer N
- Subjects
- Humans, Female, Liposomes therapeutic use, Gelatin, Alginates therapeutic use, Doxorubicin pharmacology, Doxorubicin therapeutic use, Drug Delivery Systems, Hydrogen-Ion Concentration, MCF-7 Cells, Drug Carriers therapeutic use, Drug Liberation, Breast Neoplasms pathology, Nanoparticles
- Abstract
Despite many efforts, breast cancer remains one of the deadliest cancers and its treatment faces challenges related to cancer drug side effects and metastasis. Combining 3D printing and nanocarriers has created new opportunities in cancer treatment. In this work, 3D-printed gelatin-alginate nanocomposites containing doxorubicin-loaded niosomes (Nio-DOX@GT-AL) were recruited as an advanced potential pH-sensitive drug delivery system. Morphology, degradation, drug release, flow cytometry, cell cytotoxicity, cell migration, caspase activity, and gene expression of nanocomposites and controls (Nio-DOX and Free-DOX) were evaluated. Results show that the obtained niosome has a spherical shape and size of 60-80 nm. Sustained drug release and biodegradability were presented by Nio-DOX@GT-AL and Nio-DOX. Cytotoxicity analysis revealed that the engineered Nio-DOX@GT-AL scaffold had 90 % cytotoxicity against breast cancer cells (MCF-7), whereas exhibited <5 % cytotoxicity against the non-tumor breast cell line (MCF-10A), which was significantly more than the antitumor effect of the control samples. Scratch-assay as an indicator cell migration demonstrated a reduction of almost 60 % of the covered surface. Gene expression could provide an explanation for the antitumor effect of engineered nanocarriers, which significantly reduced metastasis-promoting genes (Bcl2, MMP-2, and MMP-9), and significantly enhanced the expression and activity of genes that promote apoptosis (CASP-3, CASP-8, and CASP-9). Also, considerable inhibition of metastasis-associated genes (Bax and p53) was observed. Moreover, flow-cytometry data demonstrated that Nio-DOX@GT-AL decreased necrosis and enhanced apoptosis drastically. The findings of this research can confirm that employing 3D-printing and niosomal formulation can be an effective strategy in designing novel nanocarriers for efficient drug delivery applications., Competing Interests: Declaration of competing interest The authors declare that they have no competing interests., (Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
4. Glucarpidase (carboxypeptidase G2): Biotechnological production, clinical application as a methotrexate antidote, and placement in targeted cancer therapy.
- Author
-
Moradbeygi F, Ghasemi Y, Farmani AR, and Hemmati S
- Subjects
- Humans, Methotrexate therapeutic use, gamma-Glutamyl Hydrolase genetics, gamma-Glutamyl Hydrolase therapeutic use, Antidotes, Antibodies therapeutic use, Polymers therapeutic use, Prodrugs, Neoplasms
- Abstract
Patients receiving high-dose methotrexate (HDMTX) for malignancies are exposed to diverse complications, including nephrotoxicity, hepatotoxicity, mucositis, myelotoxicity, neurological symptoms, and death. Glucarpidase is a recombinant carboxypeptidase G2 (CPG2) that converts MTX into nontoxic metabolites. In this study, the role of vector type, gene optimization, orientation, and host on the expression of CPG2 is investigated. The effectiveness of various therapeutic regimens containing glucarpidase is classified and perspectives on the dose adjustment based on precision medicine are provided. Conjugation with cell-penetrating peptides, human serum albumin, and polymers such as PEG and dextran for delivery, higher stability, and production of the biobetter variants of CPG2 is highlighted. Conjugation of CPG2 to F(ab՜)
2 or scFv antibody fragments against tumor-specific antigens and the corresponding prodrugs for tumor-targeted drug delivery using the antibody-directed enzyme prodrug therapy (ADEPT) is communicated. Trials to reduce the off-target effects and the possibility of repeated ADEPT cycles by adding pro-domains sensitive to tumor-overexpressed proteases, antiCPG2 antibodies, CPG2 mutants with immune-system-unrecognizable epitopes, and protective polymers are reported. Intracellular cpg2 gene expression by gene-directed enzyme prodrug therapy (GDEPT) and the concerns regarding the safety and transfection efficacy of the GDEPT vectors are described. A novel bifunctional platform using engineered CAR-T cell micropharmacies, known as Synthetic Enzyme-Armed KillER (SEAKER) cells, expressing CPG2 to activate prodrugs at the tumor niche is introduced. Taken together, integrated data in this review and recruiting combinatorial strategies in novel drug delivery systems define the future directions of ADEPT, GDEPT, and SEAKER cell therapy and the placement of CPG2 therein., Competing Interests: Declaration of Competing Interest The authors of this article declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 The Authors. Published by Elsevier Masson SAS.. All rights reserved.)- Published
- 2023
- Full Text
- View/download PDF
5. Li-Doped Bioactive Ceramics: Promising Biomaterials for Tissue Engineering and Regenerative Medicine.
- Author
-
Farmani AR, Salmeh MA, Golkar Z, Moeinzadeh A, Ghiasi FF, Amirabad SZ, Shoormeij MH, Mahdavinezhad F, Momeni S, Moradbeygi F, Ai J, Hardy JG, and Mostafaei A
- Abstract
Lithium (Li) is a metal with critical therapeutic properties ranging from the treatment of bipolar depression to antibacterial, anticancer, antiviral and pro-regenerative effects. This element can be incorporated into the structure of various biomaterials through the inclusion of Li chloride/carbonate into polymeric matrices or being doped in bioceramics. The biocompatibility and multifunctionality of Li-doped bioceramics present many opportunities for biomedical researchers and clinicians. Li-doped bioceramics (capable of immunomodulation) have been used extensively for bone and tooth regeneration, and they have great potential for cartilage/nerve regeneration, osteochondral repair, and wound healing. The synergistic effect of Li in combination with other anticancer drugs as well as the anticancer properties of Li underline the rationale that bioceramics doped with Li may be impactful in cancer treatments. The role of Li in autophagy may explain its impact in regenerative, antiviral, and anticancer research. The combination of Li-doped bioceramics with polymers can provide new biomaterials with suitable flexibility, especially as bio-ink used in 3D printing for clinical applications of tissue engineering. Such Li-doped biomaterials have significant clinical potential in the foreseeable future.
- Published
- 2022
- Full Text
- View/download PDF
6. The interplay of aryl hydrocarbon receptor/WNT/CTNNB1/Notch signaling pathways regulate amyloid beta precursor mRNA/protein expression and effected the learning and memory of mice.
- Author
-
Keshavarzi M, Moradbeygi F, Mobini K, Ghaffarian Bahraman A, Mohammadi P, Ghaedi A, and Mohammadi-Bardbori A
- Abstract
The amyloid beta precursor protein (APP) plays a pathophysiological role in the development of Alzheimer's disease as well as a physiological role in neuronal growth and synaptogenesis. The aryl hydrocarbon receptor (AhR)/WNT/Catenin Beta 1 (CTNNB1)/Notch signaling pathways stamp in many functions, including development and growth of neurons. However, the regulatory role of AhR-/WNT-/CTNNB1-/Notch-induced APP expression and its influence on hippocampal-dependent learning and memory deficits is not clear. Male BALB/C mice received 6-formylindolo[3,2-b]carbazole (an AhR agonist), CH223191(an AhR antagonist), DAPT (an inhibitor of Notch signaling), and XAV-939 (a WNT pathway inhibitor) at a single dose of 100 μg/kg, 1, 5 , and 5 mg/kg of body weight, respectively, via intraperitoneal injection alone or in combination. Gene expression analyses and protein assay were performed on the 7th and 29th days. To assess the hippocampal-dependent memory, all six mice also underwent contextual fear conditioning on the 28th day after treatments. Our results showed that endogenous ligand of AhR has a regulatory effect on APP gene. Also, the interaction of AhR/WNT/CTNNB1 has a positive regulatory effect, but Notch has a negative regulatory effect on the mRNA and protein expression of APP, which have a correlation with mice's learning skills and memory., (© The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2021
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.