51 results on '"Mora-Poblete F"'
Search Results
2. Plants for Extreme and Changing Environments: Domestication, Evolution, Crop Breeding and Genetics.
- Author
-
Mora-Poblete F and Campostrini E
- Abstract
In this Special Issue, researchers investigated the genetic, physiological, and biological mechanisms that enable plants to thrive in challenging environmental conditions [...].
- Published
- 2024
- Full Text
- View/download PDF
3. Enhancing prediction accuracy of foliar essential oil content, growth, and stem quality in Eucalyptus globulus using multi-trait deep learning models.
- Author
-
Mieres-Castro D, Maldonado C, and Mora-Poblete F
- Abstract
Eucalyptus globulus Labill., is a recognized multipurpose tree, which stands out not only for the valuable qualities of its wood but also for the medicinal applications of the essential oil extracted from its leaves. In this study, we implemented an integrated strategy comprising genomic and phenomic approaches to predict foliar essential oil content, stem quality, and growth-related traits within a 9-year-old breeding population of E. globulus . The strategy involved evaluating Uni/Multi-trait deep learning (DL) models by incorporating genomic data related to single nucleotide polymorphisms (SNPs) and haplotypes, as well as the phenomic data from leaf near-infrared (NIR) spectroscopy. Our results showed that essential oil content (oil yield) ranged from 0.01 to 1.69% v/fw and had no significant correlation with any growth-related traits. This suggests that selection solely based on growth-related traits did n The emphases (colored text) from revisions were removed throughout the article. Confirm that this change is fine. ot influence the essential oil content. Genomic heritability estimates ranged from 0.25 (diameter at breast height (DBH) and oil yield) to 0.71 (DBH and stem straightness (ST)), while pedigree-based heritability exhibited a broader range, from 0.05 to 0.88. Notably, oil yield was found to be moderate to highly heritable, with genomic values ranging from 0.25 to 0.60, alongside a pedigree-based estimate of 0.48. The DL prediction models consistently achieved higher prediction accuracy (PA) values with a Multi-trait approach for most traits analyzed, including oil yield (0.699), tree height (0.772), DBH (0.745), slenderness coefficient (0.616), stem volume (0.757), and ST (0.764). The Uni-trait approach achieved superior PA values solely for branching quality (0.861). NIR spectral absorbance was the best omics data for CNN or MLP models with a Multi-trait approach. These results highlight considerable genetic variation within the Eucalyptus progeny trial, particularly regarding oil production. Our results contribute significantly to understanding omics-assisted deep learning models as a breeding strategy to improve growth-related traits and optimize essential oil production in this species., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2024 Mieres-Castro, Maldonado and Mora-Poblete.)
- Published
- 2024
- Full Text
- View/download PDF
4. Editorial: Microbial resilience in plant nutrient management towards sustainable farming.
- Author
-
Solanki MK, Verma KK, Dastogeer KMG, Mora-Poblete F, and Mundra S
- Abstract
Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. The author(s) declared that they were an editorial board member of Frontiers, at the time of submission. This had no impact on the peer review process and the final decision.
- Published
- 2023
- Full Text
- View/download PDF
5. Multi-trait and multi-environment genomic prediction for flowering traits in maize: a deep learning approach.
- Author
-
Mora-Poblete F, Maldonado C, Henrique L, Uhdre R, Scapim CA, and Mangolim CA
- Abstract
Maize ( Zea mays L.), the third most widely cultivated cereal crop in the world, plays a critical role in global food security. To improve the efficiency of selecting superior genotypes in breeding programs, researchers have aimed to identify key genomic regions that impact agronomic traits. In this study, the performance of multi-trait, multi-environment deep learning models was compared to that of Bayesian models (Markov Chain Monte Carlo generalized linear mixed models (MCMCglmm), Bayesian Genomic Genotype-Environment Interaction (BGGE), and Bayesian Multi-Trait and Multi-Environment (BMTME)) in terms of the prediction accuracy of flowering-related traits (Anthesis-Silking Interval: ASI, Female Flowering: FF, and Male Flowering: MF). A tropical maize panel of 258 inbred lines from Brazil was evaluated in three sites (Cambira-2018, Sabaudia-2018, and Iguatemi-2020 and 2021) using approximately 290,000 single nucleotide polymorphisms (SNPs). The results demonstrated a 14.4% increase in prediction accuracy when employing multi-trait models compared to the use of a single trait in a single environment approach. The accuracy of predictions also improved by 6.4% when using a single trait in a multi-environment scheme compared to using multi-trait analysis. Additionally, deep learning models consistently outperformed Bayesian models in both single and multiple trait and environment approaches. A complementary genome-wide association study identified associations with 26 candidate genes related to flowering time traits, and 31 marker-trait associations were identified, accounting for 37%, 37%, and 22% of the phenotypic variation of ASI, FF and MF, respectively. In conclusion, our findings suggest that deep learning models have the potential to significantly improve the accuracy of predictions, regardless of the approach used and provide support for the efficacy of this method in genomic selection for flowering-related traits in tropical maize., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2023 Mora-Poblete, Maldonado, Henrique, Uhdre, Scapim and Mangolim.)
- Published
- 2023
- Full Text
- View/download PDF
6. Application of Near-Infrared Reflectance Spectroscopy for Predicting Damage Severity in a Diverse Panel of Tectona grandis Caused by Ceratocystis fimbriata .
- Author
-
Anjos IVD, Ali M, Mora-Poblete F, Araujo KL, Gilio TAS, and Neves LG
- Abstract
Tectona grandis Linn., also known as teak, is a highly valued species with adaptability to a wide range of climatic conditions and high tolerance to soil variations, making it an attractive option for both commercial and conservation purposes. In this sense, the classification of cultivated teak genotypes is crucial for both breeding programs and conservation efforts. This study examined the relationship between traits related to damage in the stem of teak plants caused by Ceratocystis fimbriata (a soil-borne pathogen that negatively impacts the productivity of teak plantations) and the spectral reflectance of 110 diverse clones, using near-infrared spectroscopy (NIRS) data and partial least squares regression (PLSR) analysis. Cross-validation models had R
2 = 0.894 (ratio of standard error of prediction to standard deviation: RPD = 3.1), R2 = 0.883 (RPD = 2.7), and R2 = 0.893 (RPD = 2.8) for predicting stem lesion area, lesion length, and severity of infection, respectively. Teak genotypes (clones) can benefit from the creation of a calibration model utilizing NIRS-generated data paired with PLSR, which can effectively screen the magnitude of damage caused by the fungus. Overall, while the study provides valuable information for teak breeding and conservation efforts, a long-term perspective would be essential to evaluate the sustainability of teak genotypes over various growth stages and under continuous pathogen pressure.- Published
- 2023
- Full Text
- View/download PDF
7. Editorial: Integrating advanced high-throughput technologies to improve plant resilience to environmental challenges.
- Author
-
Mora-Poblete F, Heidari P, and Fuentes S
- Abstract
Competing Interests: The authors declare that the research was conducted without any commercial or financial relationships that could be construed as a potential conflict of interest.
- Published
- 2023
- Full Text
- View/download PDF
8. Exploring the Potential of Heterosis to Improve Nitrogen Use Efficiency in Popcorn Plants.
- Author
-
Santos TO, Amaral Junior ATD, Bispo RB, Bernado WP, Simão BR, de Lima VJ, Freitas MSM, Mora-Poblete F, Trindade RDS, Kamphorst SH, Pereira Rodrigues W, Campostrini E, Nicácio Viana F, and Cruz CD
- Abstract
Nitrogen is crucial for plant growth and development, and improving nitrogen use efficiency (NUE) is a viable strategy for reducing dependence on nitrogen inputs and promoting sustainability. While the benefits of heterosis in corn are well known, the physiological mechanisms underlying this phenomenon in popcorn are less understood. We aimed to investigate the effects of heterosis on growth and physiological traits in four popcorn lines and their hybrids under two contrasting nitrogen conditions. We evaluated morpho-agronomic and physiological traits such as leaf pigments, the maximum photochemical efficiency of PSII, and leaf gas exchange. Components associated with NUE were also evaluated. N deprivation caused reductions of up to 65% in terms of plant architecture, 37% in terms of leaf pigments, and 42% in terms of photosynthesis-related traits. Heterosis had significant effects on growth traits, NUE, and foliar pigments, particularly under low soil nitrogen conditions. N-utilization efficiency was found to be the mechanism favoring superior hybrid performance for NUE. Non-additive genetic effects were predominant in controlling the studied traits, indicating that exploring heterosis is the most effective strategy for obtaining superior hybrids to promote NUE. The findings are relevant and beneficial for agro farmers seeking sustainable agricultural practices and improved crop productivity through the optimization of nitrogen utilization.
- Published
- 2023
- Full Text
- View/download PDF
9. Genome-Wide Characterization of the Sulfate Transporter Gene Family in Oilseed Crops: Camelina sativa and Brassica napus .
- Author
-
Heidari P, Hasanzadeh S, Faraji S, Ercisli S, and Mora-Poblete F
- Abstract
Sulfate transporters (SULTRs) are responsible for the uptake of sulfate (SO
4 2- ) ions in the rhizosphere by roots and their distribution to plant organs. In this study, SULTR family members in the genomes of two oilseed crops ( Camelina sativa and Brassica napus ) were identified and characterized based on their sequence structures, duplication events, phylogenetic relationships, phosphorylation sites, and expression levels. In total, 36 and 45 putative SULTR genes were recognized in the genomes of C. sativa and B. napus , respectively. SULTR proteins were predicted to be basophilic proteins with low hydrophilicity in both studied species. According to the observed phylogenetic relationships, we divided the SULTRs into five groups, out of which the SULTR 3 group showed the highest variation. Additionally, several duplication events were observed between the SULTRs . The first duplication event occurred approximately five million years ago between three SULTR 3.1 genes in C. sativa. Furthermore, two subunits were identified in the 3D structures of the SULTRs, which demonstrated that the active binding sites differed between C. sativa and B. napus . According to the available RNA-seq data, the SULTRs showed diverse expression levels in tissues and diverse responses to stimuli. SULTR 3 was expressed in all tissues. SULTR 3.1 was more upregulated in response to abiotic stresses in C. sativa , while SULTR 3.3 and SULTR 2.1 were upregulated in B. napus . Furthermore, SULTR 3 and SULTR 4.1 were upregulated in response to biotic stresses in B. napus . Additionally, the qPCR data showed that the SULTRs in C. sativa were involved in the plant's response to salinity. Based on the distribution of cis-regulatory elements in the promoter region, we speculated that SULTRs might be controlled by phytohormones, such as ABA and MeJA. Therefore, it seems likely that SULTR genes in C. sativa have been more heavily influenced by evolutionary processes and have acquired further diversity. The results reveal new insights of the structures and functions of SULTRs in oilseed crops. However, further analyses, related to functional studies, are needed to uncover the role of SULTRs in the plants' development and growth processes, as well as in their response to stimuli.- Published
- 2023
- Full Text
- View/download PDF
10. Exploring plant responses to abiotic stress by contrasting spectral signature changes.
- Author
-
Estrada F, Flexas J, Araus JL, Mora-Poblete F, Gonzalez-Talice J, Castillo D, Matus IA, Méndez-Espinoza AM, Garriga M, Araya-Riquelme C, Douthe C, Castillo B, Del Pozo A, and Lobos GA
- Abstract
In this study, daily changes over a short period and diurnal progression of spectral reflectance at the leaf level were used to identify spring wheat genotypes ( Triticum aestivum L.) susceptible to adverse conditions. Four genotypes were grown in pots experiments under semi-controlled conditions in Chile and Spain. Three treatments were applied: i) control ( C ), ii) water stress ( WS ), and iii) combined water and heat shock ( WS+T ). Spectral reflectance, gas exchange and chlorophyll fluorescence measurements were performed on flag leaves for three consecutive days at anthesis. High canopy temperature ( H
CT ) genotypes showed less variability in their mean spectral reflectance signature and chlorophyll fluorescence, which was related to weaker responses to environmental fluctuations. While low canopy temperature ( LCT ) genotypes showed greater variability. The genotypes spectral signature changes, in accordance with environmental fluctuation, were associated with variations in their stomatal conductance under both stress conditions ( WS and WS+T ); LCT genotypes showed an anisohydric response compared that of HCT , which was isohydric. This approach could be used in breeding programs for screening a large number of genotypes through proximal or remote sensing tools and be a novel but simple way to identify groups of genotypes with contrasting performances., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2023 Estrada, Flexas, Araus, Mora-Poblete, Gonzalez-Talice, Castillo, Matus, Méndez-Espinoza, Garriga, Araya-Riquelme, Douthe, Castillo, del Pozo and Lobos.)- Published
- 2023
- Full Text
- View/download PDF
11. Saponins: Research Progress and Their Potential Role in the Post-COVID-19 Pandemic Era.
- Author
-
Mieres-Castro D and Mora-Poblete F
- Abstract
In the post-COVID-19 pandemic era, the new global situation and the limited therapeutic management of the disease make it necessary to take urgent measures in more effective therapies and drug development in order to counteract the negative global impacts caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its new infectious variants. In this context, plant-derived saponins-glycoside-type compounds constituted from a triterpene or steroidal aglycone and one or more sugar residues-may offer fewer side effects and promising beneficial pharmacological activities. This can then be used for the development of potential therapeutic agents against COVID-19, either as a therapy or as a complement to conventional pharmacological strategies for the treatment of the disease and its prevention. The main objective of this review was to examine the primary and current evidence in regard to the therapeutic potential of plant-derived saponins against the COVID-19 disease. Further, the aim was to also focus on those studies that highlight the potential use of saponins as a treatment against SARS-CoV-2. Saponins are antiviral agents that inhibit different pharmacological targets of the virus, as well as exhibit anti-inflammatory and antithrombotic activity in relieving symptoms and clinical complications related to the disease. In addition, saponins also possess immunostimulatory effects, which improve the efficacy and safety of vaccines for prolonging immunogenicity against SARS-CoV-2 and its infectious variants.
- Published
- 2023
- Full Text
- View/download PDF
12. Spectral-Based Classification of Genetically Differentiated Groups in Spring Wheat Grown under Contrasting Environments.
- Author
-
Ballesta P, Maldonado C, Mora-Poblete F, Mieres-Castro D, Del Pozo A, and Lobos GA
- Abstract
The global concern about the gap between food production and consumption has intensified the research on the genetics, ecophysiology, and breeding of cereal crops. In this sense, several genetic studies have been conducted to assess the effectiveness and sustainability of collections of germplasm accessions of major crops. In this study, a spectral-based classification approach for the assignment of wheat cultivars to genetically differentiated subpopulations (genetic structure) was carried out using a panel of 316 spring bread cultivars grown in two environments with different water regimes (rainfed and fully irrigated). For that, different machine-learning models were trained with foliar spectral and genetic information to assign the wheat cultivars to subpopulations. The results revealed that, in general, the hyperparameters ReLU (as the activation function), adam (as the optimizer), and a size batch of 10 give neural network models better accuracy. Genetically differentiated groups showed smaller differences in mean wavelengths under rainfed than under full irrigation, which coincided with a reduction in clustering accuracy in neural network models. The comparison of models indicated that the Convolutional Neural Network (CNN) was significantly more accurate in classifying individuals into their respective subpopulations, with 92 and 93% of correct individual assignments in water-limited and fully irrigated environments, respectively, whereas 92% (full irrigation) and 78% (rainfed) of cultivars were correctly assigned to their respective classes by the multilayer perceptron method and partial least squares discriminant analysis, respectively. Notably, CNN did not show significant differences between both environments, which indicates stability in the prediction independent of the different water regimes. It is concluded that foliar spectral variation can be used to accurately infer the belonging of a cultivar to its respective genetically differentiated group, even considering radically different environments, which is highly desirable in the context of crop genetic resources management.
- Published
- 2023
- Full Text
- View/download PDF
13. Effect of nano-silicon on the regulation of ascorbate-glutathione contents, antioxidant defense system and growth of copper stressed wheat ( Triticum aestivum L.) seedlings.
- Author
-
Riaz M, Zhao S, Kamran M, Ur Rehman N, Mora-Poblete F, Maldonado C, Hamzah Saleem M, Parveen A, Ahmed Al-Ghamdi A, Al-Hemaid FM, Ali S, and Elshikh MS
- Abstract
Copper (Cu
2+ ) toxicity can inhibit plant growth and development. It has been shown that silicon (Si) can relieve Cu2+ stress. However, it is unclear how Si-nanoparticles (SiNPs) relieve Cu2+ stress in wheat seedlings. Therefore, the current study was conducted by setting up four treatments: CK, SiNP: (2.5 mM), Cu2+ : (500 µM), and SiNP+Cu2+ : (2.5 mM SiNP+500 µM Cu2+ ) to explore whether SiNPs can alleviate Cu2+ toxicity in wheat seedlings. The results showed that Cu2+ stress hampered root and shoot growth and accumulated high Cu2+ concentrations in roots (45.35 mg/kg) and shoots (25.70 mg/kg) of wheat as compared to control treatment. Moreover, Cu2+ treatment inhibited photosynthetic traits and chlorophyll contents as well as disturbed the antioxidant defense system by accumulating malondialdehyde (MDA) and hydrogen peroxidase (H2 O2 ) contents. However, SiNPs treatment increased root length and shoot height by 15.1% and 22%, respectively, under Cu2+ toxicity. Moreover, SiNPs application decreased MDA and H2 O2 contents by 31.25% and 19.25%, respectively. SiNPs increased non-enzymatic compounds such as ascorbic acid-glutathione (AsA-GSH) and enhanced superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbic peroxidase (APX) activities by 77.5%, 141.7%, 68%, and 80%, respectively. Furthermore, SiNPs decreased Cu2+ concentrations in shoots by 26.2%, as compared to Cu2+ treatment alone. The results concluded that SiNPs could alleviate Cu2+ stress in wheat seedlings. The present investigation may help to increase wheat production in Cu2+ contaminated soils., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2022 Riaz, Zhao, Kamran, Ur Rehman, Mora-Poblete, Maldonado, Hamzah Saleem, Parveen, Ahmed Al-Ghamdi, Al-Hemaid, Ali and Elshikh.)- Published
- 2022
- Full Text
- View/download PDF
14. Variation in Root-Related Traits Is Associated With Water Uptake in Lagenaria siceraria Genotypes Under Water-Deficit Conditions.
- Author
-
Contreras-Soto RI, Zacarias Rafael D, Domingos Moiana L, Maldonado C, and Mora-Poblete F
- Abstract
In many agricultural areas, crop production has decreased due to a lack of water availability, which is having a negative impact on sustainability and putting food security at risk. In plants, the plasticity of the root system architecture (RSA) is considered to be a key trait driving the modification of the growth and structure of roots in response to water deficits. The purpose of this study was to examine the plasticity of the RSA traits (mean root diameter, MRD; root volume, RV; root length, RL; and root surface area, SA) associated with drought tolerance in eight Lagenaria siceraria (Mol. Standl) genotypes, representing three different geographical origins: South Africa (BG-58, BG-78, and GC), Asia (Philippines and South Korea), and Chile (Illapel, Chepica, and Osorno). The RSA changes were evaluated at four substrate depths (from 0 to 40 cm). Bottle gourd genotypes were grown in 20 L capacity pots under two contrasting levels of irrigation (well-watered and water-deficit conditions). The results showed that the water productivity (WP) had a significant effect on plasticity values, with the Chilean accessions having the highest values. Furthermore, Illapel and Chepica genotypes presented the highest WP, MRD, and RV values under water-deficit conditions, in which MRD and RV were significant in the deeper layers (20-30 and 30-40 cm). Biplot analysis showed that the Illapel and Chepica genotypes presented a high WP, MRD, and RV, which confirmed that these may be promising drought-tolerant genotypes. Consequently, increased root diameter and volume in bottle gourd may constitute a response to a water deficit. The RSA traits studied here can be used as selection criteria in bottle gourd breeding programs under water-deficit conditions., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2022 Contreras-Soto, Zacarias Rafael, Domingos Moiana, Maldonado and Mora-Poblete.)
- Published
- 2022
- Full Text
- View/download PDF
15. Corrigendum: The Impact of Bio-Stimulants on Cd-Stressed Wheat ( Triticum aestivum L.): Insights Into Growth, Chlorophyll Fluorescence, Cd Accumulation, and Osmolyte Regulation.
- Author
-
Farhat F, Arfan M, Wang X, Tariq A, Kamran M, Tabassum HN, Tariq I, Mora-Poblete F, Iqbal R, El-Sabrout AM, and Elansary HO
- Abstract
[This corrects the article DOI: 10.3389/fpls.2022.850567.]., (Copyright © 2022 Farhat, Arfan, Wang, Tariq, Kamran, Tabassum, Tariq, Mora-Poblete, Iqbal, El-Sabrout and Elansary.)
- Published
- 2022
- Full Text
- View/download PDF
16. Heritable Variation of Foliar Spectral Reflectance Enhances Genomic Prediction of Hydrogen Cyanide in a Genetically Structured Population of Eucalyptus .
- Author
-
Ballesta P, Ahmar S, Lobos GA, Mieres-Castro D, Jiménez-Aspee F, and Mora-Poblete F
- Abstract
Plants produce a wide diversity of specialized metabolites, which fulfill a wide range of biological functions, helping plants to interact with biotic and abiotic factors. In this study, an integrated approach based on high-throughput plant phenotyping, genome-wide haplotypes, and pedigree information was performed to examine the extent of heritable variation of foliar spectral reflectance and to predict the leaf hydrogen cyanide content in a genetically structured population of a cyanogenic eucalyptus ( Eucalyptus cladocalyx F. Muell). In addition, the heritable variation (based on pedigree and genomic data) of more of 100 common spectral reflectance indices was examined. The first profile of heritable variation along the spectral reflectance curve indicated the highest estimate of genomic heritability ( h g 2 =0.41) within the visible region of the spectrum, suggesting that several physiological and biological responses of trees to environmental stimuli (ex., light) are under moderate genetic control. The spectral reflectance index with the highest genomic-based heritability was leaf rust disease severity index 1 ( h g 2 =0.58), followed by the anthocyanin reflectance index and the Browning reflectance index ( h g 2 =0.54). Among the Bayesian prediction models based on spectral reflectance data, Bayes B had a better goodness of fit than the Bayes-C and Bayesian ridge regression models (in terms of the deviance information criterion). All models that included spectral reflectance data outperformed conventional genomic prediction models in their predictive ability and goodness-of-fit measures. Finally, we confirmed the proposed hypothesis that high-throughput phenotyping indirectly capture endophenotypic variants related to specialized metabolites (defense chemistry), and therefore, generally more accurate predictions can be made integrating phenomics and genomics., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2022 Ballesta, Ahmar, Lobos, Mieres-Castro, Jiménez-Aspee and Mora-Poblete.)
- Published
- 2022
- Full Text
- View/download PDF
17. Chemical role of α-tocopherol in salt stress mitigation by improvement in morpho-physiological attributes of sunflower ( Helianthus annuus L.).
- Author
-
Lalarukh I, Wang X, Amjad SF, Hussain R, Ahmar S, Mora-Poblete F, Abdel-Hafez SH, Fawzy MA, Abbas MHH, Abdelhafez AA, and Datta R
- Abstract
Elevated concentrations of salts in soil and water represent abiotic stresses. It considerably restricts plant productivity. However, the use of alpha-tocopherol (α-toc) as foliar can overcome this problem. It can improve crop productivity grown under salinity stress. Limited literature is documented regarding its optimum foliar application on sunflower. That's why the need for the time is to optimize α-toc foliar application rates for sunflower cultivated in salt-affected soil. A pot experiment was performed to select a better α-toc foliar application for mitigation of salt stress in different sunflower cultivars FH (572 and 621). There were 2 levels of salts, i.e., control (no salt stress) and sodium chloride (120 m M ) and four α-toc foliar application (0, 100, 200, and 300 mg L
-1 ). Results showed that foliar application of 100 mg/L- α-toc triggered the remarkable increase in fresh shoot weight, fresh root weight, shoot, and root lengths under salinity stress in FH-572 and FH-621 over 0 mg/L- α-toc. Foliar application of 200 mg/L- α-toc was most effective for improvement in chlorophyll a , chlorophyll b , total chlorophyll and carotenoids compared to 0 mg/L- α-toc. Furthermore, an increase in A was noted in FH-572 (17%) and FH-621 (22%) with α-toc (300 mg L-1 ) application under saline condition. In conclusion, the 100 and 200 mg/L- α-toc are the best application rates for the improvement in sunflower FH-572 and FH-621 growth, chlorophyll contents and gas exchange attributes. Further investigations are needed to select a better foliar application rate between 100 and 200 mg/L- α-toc at the field level under the different agro-climatic zone and soil types., Competing Interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (© 2021 The Authors.)- Published
- 2022
- Full Text
- View/download PDF
18. The Impact of Bio-Stimulants on Cd-Stressed Wheat ( Triticum aestivum L.): Insights Into Growth, Chlorophyll Fluorescence, Cd Accumulation, and Osmolyte Regulation.
- Author
-
Farhat F, Arfan M, Wang X, Tariq A, Kamran M, Tabassum HN, Tariq I, Mora-Poblete F, Iqbal R, El-Sabrout AM, and Elansary HO
- Abstract
It has been established that wheat ( Triticum aestivum L.) has a higher Cd absorption capacity than other cereal crops causing an excess daily Cd intake and a huge threat for public health. Therefore, the reduction of Cd accumulation in wheat from the soil is a crucial food-security issue. A pot trial was performed on Cd-stressed wheat seedlings to evaluate the morphological and physio-biochemical responses via foliage spray of two different bio-stimulants, i.e., ascorbic acid (AsA) and moringa leaf extract (MLE). Two wheat cultivars (Fsd-08 and Glxy-13) were exposed to cadmium (CdCl
2 .5H2 O) stress (0, 500, and 1,000 μM), along with foliar spray of AsA (0 and 50 mM) and MLE (0 and 3%). The most observable growth reduction was documented in plants that are exposed to a higher Cd concentration (1,000 μM), followed by the lower Cd level (500 μM). The wheat growth attributes, such as number of leaves per plant, number of tillers per plant, biomass yield, shoot/root length, and leaf area, were greatly depressed under the Cd stress, irrespective of the cultivar. Under the increasing Cd stress, a significant diminution was observed in maximum photochemical efficiency (Fv/Fm), photochemical quenching (qP), and electron transport rate (ETR) accompanied with reduced gas exchange attributes. However, Cd-induced phytotoxicity enhanced the non-photochemical quenching (NPQ) and internal carbon dioxide concentration (Ci), which was confirmed by their significant positive correlation with Cd contents in shoot and root tissues of both cultivars. The contents of proline, AsA, glycine betaine (GB), tocopherol, total free amino acid (TFAA), and total soluble sugar (TSS) were greatly decreased with Cd stress (1,000 μM), while MLE and AsA significantly enhanced the osmolytes accumulation under both Cd levels (especially 500 μM level). The Cd accumulation was predominantly found in the root as compared to shoots in both cultivars, which has declined after the application of MLE and AsA. Conclusively, MLE was found to be more effective to mitigate Cd-induced phytotoxicity up to 500 μM Cd concentration, compared with the AsA amendment., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2022 Farhat, Arfan, Wang, Tariq, Kamran, Tabassum, Tariq, Mora-Poblete, Iqbal, El-Sabrout and Elansary.)- Published
- 2022
- Full Text
- View/download PDF
19. Revealing the differential protein profiles behind the nitrogen use efficiency in popcorn (Zea mays var. everta).
- Author
-
Khan S, Pinto VB, do Amaral Júnior AT, Gonçalves GMB, Corrêa CCG, Ferreira FRA, de Souza GAR, Campostrini E, Freitas MSM, Vieira ME, de Oliveira Santos T, de Lima VJ, Kamphorst SH, do Amaral JFT, Mora-Poblete F, de Souza Filho GA, and Silveira V
- Subjects
- Gene Expression Regulation, Plant, Proteome metabolism, Nitrogen metabolism, Zea mays metabolism, Zea mays genetics, Plant Proteins metabolism, Plant Proteins genetics, Proteomics methods
- Abstract
We investigated the proteomic profiles of two popcorn inbred lines, P2 (N-efficient and N-responsive) and L80 (N-inefficient and nonresponsive to N), under low (10% of N supply) and high (100% of N supply) nitrogen environments, associated with agronomic- and physiological-related traits to NUE. The comparative proteomic analysis allowed the identification of 79 differentially accumulated proteins (DAPs) in the comparison of high/low N for P2 and 96 DAPs in the comparison of high/low N for L80. The NUE and N uptake efficiency (NUpE) presented high means in P2 in comparison to L80 at both N levels, but the NUE, NUpE, and N utilization efficiency (NUtE) rates decreased in P2 under a high N supply. DAPs involved in energy and carbohydrate metabolism suggested that N regulates enzymes of alternative pathways to adapt to energy shortages and that fructose-bisphosphate aldolase may act as one of the key primary nitrate responsive proteins in P2. Proteins related to ascorbate biosynthesis and nitrogen metabolism increased their regulation in P2, and the interaction of L-ascorbate peroxidase and Fd-NiR may play an important role in the NUE trait. Taken together, our results provide new insights into the proteomic changes taking place in contrasting inbred lines, providing useful information on the genetic improvement of NUE in popcorn., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
20. Challenges for a Massive Implementation of Phenomics in Plant Breeding Programs.
- Author
-
Lobos GA, Estrada F, Del Pozo A, Romero-Bravo S, Astudillo CA, and Mora-Poblete F
- Subjects
- Genotype, Phenotype, Plants genetics, Phenomics, Plant Breeding
- Abstract
Due to climate change and expected food shortage in the coming decades, not only will it be necessary to develop cultivars with greater tolerance to environmental stress, but it is also imperative to reduce breeding cycle time. In addition to yield evaluation, plant breeders resort to many sensory assessments and some others of intermediate complexity. However, to develop cultivars better adapted to current/future constraints, it is necessary to incorporate a new set of traits, such as morphophysiological and physicochemical attributes, information relevant to the successful selection of genotypes or parents. Unfortunately, because of the large number of genotypes to be screened, measurements with conventional equipment are unfeasible, especially under field conditions. High-throughput plant phenotyping (HTPP) facilitates collecting a significant amount of data quickly; however, it is necessary to transform all this information (e.g., plant reflectance) into helpful descriptors to the breeder. To the extent that a holistic characterization of the plant (phenomics) is performed in challenging environments, it will be possible to select the best genotypes (forward phenomics) objectively but also understand why the said individual differs from the rest (reverse phenomics). Unfortunately, several elements had prevented phenomics from developing as desired. Consequently, a new set of prediction/validation methodologies, seasonal ambient information, and the fusion of data matrices (e.g., genotypic and phenotypic information) need to be incorporated into the modeling. In this sense, for the massive implementation of phenomics in plant breeding, it will be essential to count an interdisciplinary team that responds to the urgent need to release material with greater capacity to tolerate environmental stress. Therefore, breeding programs should (i) be more efficient (e.g., early discarding of unsuitable material), (ii) have shorter breeding cycles (fewer crosses to achieve the desired cultivar), and (iii) be more productive, increasing the probability of success at the end of the breeding process (percentage of cultivars released to the number of initial crosses)., (© 2022. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.)
- Published
- 2022
- Full Text
- View/download PDF
21. Novel plant breeding techniques to advance nitrogen use efficiency in rice: A review.
- Author
-
Fiaz S, Wang X, Khan SA, Ahmar S, Noor MA, Riaz A, Ali K, Abbas F, Mora-Poblete F, Figueroa CR, and Alharthi B
- Subjects
- Crops, Agricultural genetics, Gene Editing methods, Nitrogen, Plant Breeding methods, Oryza genetics
- Abstract
Recently, there has been a remarkable increase in rice production owing to genetic improvement and increase in application of synthetic fertilizers. For sustainable agriculture, there is dire need to maintain a balance between profitability and input cost. To meet the steady growing demands of the farming community, researchers are utilizing all available resources to identify nutrient use efficient germplasm, but with very little success. Therefore, it is essential to understand the underlying genetic mechanism controlling nutrients efficiency, with the nitrogen use efficiency (NUE) being the most important trait. Information regarding genetic factors controlling nitrogen (N) transporters, assimilators, and remobilizers can help to identify candidate germplasms via high-throughput technologies. Large-scale field trials have provided morphological, physiological, and biochemical trait data for the detection of genomic regions controlling NUE. The functional aspects of these attributes are time-consuming, costly, labor-intensive, and less accurate. Therefore, the application of novel plant breeding techniques (NPBTs) with context to genome engineering has opened new avenues of research for crop improvement programs. Most recently, genome editing technologies (GETs) have undergone enormous development with various versions from Cas9, Cpf1, base, and prime editing. These GETs have been vigorously adapted in plant sciences for novel trait development to insure food quantity and quality. Base editing has been successfully applied to improve NUE in rice, demonstrating the potential of GETs to develop germplasms with improved resource use efficiency. NPBTs continue to face regulatory setbacks in some countries due to genome editing being categorized in the same category as genetically modified (GM) crops. Therefore, it is essential to involve all stakeholders in a detailed discussion on NPBTs and to formulate uniform policies tackling biosafety, social, ethical, and environmental concerns. In the current review, we have discussed the genetic mechanism of NUE and NPBTs for crop improvement programs with proof of concepts, transgenic and GET application for the development of NUE germplasms, and regulatory aspects of genome edited crops with future directions considering NUE.
- Published
- 2021
- Full Text
- View/download PDF
22. Comprehensive genomics and expression analysis of eceriferum (CER) genes in sunflower ( Helianthus annuus ).
- Author
-
Muhammad Ahmad H, Wang X, Fiaz S, Mahmood-Ur-Rahman, Azhar Nadeem M, Aslam Khan S, Ahmar S, Azeem F, Shaheen T, and Mora-Poblete F
- Abstract
Sunflower occupies the fourth position among oilseed crops the around the world. Eceriferum (CER) is an important gene family that plays critical role in very-long-chain fatty acids elongation and biosynthesis of epicuticular waxes under both biotic and abiotic stress conditions. The aim of present study was to investigate the effect of sunflower CER genes during drought stress condition. Thus, comparative analysis was undertaken for sunflower CER genes with Arabidopsis genome to determine phylogenetic relationship, chromosomal mapping, gene structures, gene ontology and conserved motifs. Furthermore, we subjected the sunflower cultivars under drought stress and used qRT-PCR analysis to explore the expression pattern of CER genes during drought conditions. We identified thirty-seven unevenly distributed CER genes in the sunflower genome. The phylogenetic analysis revealed that CER genes were grouped into seven clades in Arabidopsis , Helianthus annuus, and Gossypium hirsutum . Expression analysis showed that genes CER10 and CER60 were upregulated in sunflower during drought conditions, indicating that these genes are activated during drought stress. The results obtained will serve to characterize the CER gene family in sunflower and exploit the role of these genes in wax biosynthesis under limited water conditions ., Key Message: Cuticular waxes protect the plants from drought stress, so we observed the expression of wax bio synthesis genes in recently sequences genome of Helianthus annuus . We observed that expression of wax biosynthesis genes CER10 and CER60 was upregulated when the plants were subjected to drought stress., Competing Interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (© 2021 The Authors.)
- Published
- 2021
- Full Text
- View/download PDF
23. Antiviral Activities of Eucalyptus Essential Oils: Their Effectiveness as Therapeutic Targets against Human Viruses.
- Author
-
Mieres-Castro D, Ahmar S, Shabbir R, and Mora-Poblete F
- Abstract
Given the limited therapeutic management of infectious diseases caused by viruses, such as influenza and SARS-CoV-2, the medicinal use of essential oils obtained from Eucalyptus trees has emerged as an antiviral alternative, either as a complement to the treatment of symptoms caused by infection or to exert effects on possible pharmacological targets of viruses. This review gathers and discusses the main findings on the emerging role and effectiveness of Eucalyptus essential oil as an antiviral agent. Studies have shown that Eucalyptus essential oil and its major monoterpenes have enormous potential for preventing and treating infectious diseases caused by viruses. The main molecular mechanisms involved in the antiviral activity are direct inactivation, that is, by the direct binding of monoterpenes with free viruses, particularly with viral proteins involved in the entry and penetration of the host cell, thus avoiding viral infection. Furthermore, this review addresses the coadministration of essential oil and available vaccines to increase protection against different viruses, in addition to the use of essential oil as a complementary treatment of symptoms caused by viruses, where Eucalyptus essential oil exerts anti-inflammatory, mucolytic, and spasmolytic effects in the attenuation of inflammatory responses caused by viruses, in particular respiratory diseases.
- Published
- 2021
- Full Text
- View/download PDF
24. Advances and Challenges for QTL Analysis and GWAS in the Plant-Breeding of High-Yielding: A Focus on Rapeseed.
- Author
-
Khan SU, Saeed S, Khan MHU, Fan C, Ahmar S, Arriagada O, Shahzad R, Branca F, and Mora-Poblete F
- Subjects
- Chromosome Mapping, Humans, Phenotype, Plant Breeding, Quantitative Trait Loci, Brassica napus genetics, Crops, Agricultural genetics, Genome, Plant genetics, Genome-Wide Association Study
- Abstract
Yield is one of the most important agronomic traits for the breeding of rapeseed ( Brassica napus L), but its genetic dissection for the formation of high yield remains enigmatic, given the rapid population growth. In the present review, we review the discovery of major loci underlying important agronomic traits and the recent advancement in the selection of complex traits. Further, we discuss the benchmark summary of high-throughput techniques for the high-resolution genetic breeding of rapeseed. Biparental linkage analysis and association mapping have become powerful strategies to comprehend the genetic architecture of complex agronomic traits in crops. The generation of improved crop varieties, especially rapeseed, is greatly urged to enhance yield productivity. In this sense, the whole-genome sequencing of rapeseed has become achievable to clone and identify quantitative trait loci (QTLs). Moreover, the generation of high-throughput sequencing and genotyping techniques has significantly enhanced the precision of QTL mapping and genome-wide association study (GWAS) methodologies. Furthermore, this study demonstrates the first attempt to identify novel QTLs of yield-related traits, specifically focusing on ovule number per pod (ON). We also highlight the recent breakthrough concerning single-locus-GWAS (SL-GWAS) and multi-locus GWAS (ML-GWAS), which aim to enhance the potential and robust control of GWAS for improved complex traits.
- Published
- 2021
- Full Text
- View/download PDF
25. Comparative genomic analysis of MYB transcription factors for cuticular wax biosynthesis and drought stress tolerance in Helianthus annuus L.
- Author
-
Ahmad HM, Rahman MU, Ahmar S, Fiaz S, Azeem F, Shaheen T, Ijaz M, Anwer Bukhari S, Khan SA, and Mora-Poblete F
- Abstract
Sunflower is an important oil-seed crop in Pakistan, it is mainly cultivated in the spring season. It is severely affected by drought stress resulting in lower yield. Cuticular wax acts as the first defense line to protect plants from drought stress condition. It seals the aerial parts of plants and reduce the water loss from leaf surfaces. Various myeloblastosis (MYB) transcription factors (TFs) are involved in biosynthesis of epicuticular waxes under drought-stress. However, less information is available for MYB, TFs in drought stress and wax biosynthesis in sunflower. We used different computational tools to compare the Arabidopsis MYB, TFs involved in cuticular wax biosynthesis and drought stress tolerance with sunflower genome. We identified three putative MYB genes ( MYB16, MYB94 and MYB96 ) in sunflower along with their seven homologs in Arabidopsis . Phylogenetic association of MYB TFs in Arabidopsis and sunflower indicated strong conservation of TFs in plant species. From gene structure analysis, it was observed that intron and exon organization was family-specific. MYB TFs were unevenly distributed on sunflower chromosomes. Evolutionary analysis indicated the segmental duplication of the MYB gene family in sunflower. Quantitative Real-Time PCR revealed the up-regulation of three MYB genes under drought stress. The gene expression of MYB16 , MYB94 and MYB96 were found many folds higher in experimental plants than control. The present study provided the first insight into MYB TFs family's characterization in sunflower under drought stress conditions and wax biosynthesis TFs., (© 2021 The Author(s).)
- Published
- 2021
- Full Text
- View/download PDF
26. Achievements and Challenges of Genomics-Assisted Breeding in Forest Trees: From Marker-Assisted Selection to Genome Editing.
- Author
-
Ahmar S, Ballesta P, Ali M, and Mora-Poblete F
- Subjects
- CRISPR-Cas Systems, Genome-Wide Association Study methods, Genotype, Forests, Gene Editing methods, Genome, Plant genetics, Genomics methods, Plant Breeding methods, Selection, Genetic, Trees genetics
- Abstract
Forest tree breeding efforts have focused mainly on improving traits of economic importance, selecting trees suited to new environments or generating trees that are more resilient to biotic and abiotic stressors. This review describes various methods of forest tree selection assisted by genomics and the main technological challenges and achievements in research at the genomic level. Due to the long rotation time of a forest plantation and the resulting long generation times necessary to complete a breeding cycle, the use of advanced techniques with traditional breeding have been necessary, allowing the use of more precise methods for determining the genetic architecture of traits of interest, such as genome-wide association studies (GWASs) and genomic selection (GS). In this sense, main factors that determine the accuracy of genomic prediction models are also addressed. In turn, the introduction of genome editing opens the door to new possibilities in forest trees and especially clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9 (CRISPR/Cas9). It is a highly efficient and effective genome editing technique that has been used to effectively implement targetable changes at specific places in the genome of a forest tree. In this sense, forest trees still lack a transformation method and an inefficient number of genotypes for CRISPR/Cas9. This challenge could be addressed with the use of the newly developing technique GRF-GIF with speed breeding.
- Published
- 2021
- Full Text
- View/download PDF
27. Fabrication and Characterization of Sulfonated Graphene Oxide (SGO) Doped PVDF Nanocomposite Membranes with Improved Anti-Biofouling Performance.
- Author
-
Zahid M, Khalid T, Rehan ZA, Javed T, Akram S, Rashid A, Mustafa SK, Shabbir R, Mora-Poblete F, Asad MS, Liaquat R, Hassan MM, Amin MA, and Shakoor HA
- Abstract
Emergence of membrane technology for effective performance is qualified due to its low energy consumption, no use of chemicals, high removal capacity and easy accessibility of membrane material. The hydrophobic nature of polymeric membranes limits their applications due to biofouling (assemblage of microorganisms on surface of membrane). Polymeric nanocomposite membranes emerge to alleviate this issue. The current research work was concerned with the fabrication of sulfonated graphene oxide doped polyvinylidene fluoride (PVDF) membrane and investigation of its anti-biofouling and anti-bacterial behavior. The membrane was fabricated through phase inversion method, and its structure and morphology were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-rays diffraction (XRD) and thermo gravimetric analysis (TGA) techniques. Performance of the membrane was evaluated via pure water flux; anti-biofouling behavior was determined through Bovine Serum albumin (BSA) rejection. Our results revealed that the highest water flux was shown by M7 membrane about 308.7 Lm
-2 h-1 /bar having (0.5%) concentration of SGO with improved BSA rejection. Furthermore, these fabricated membranes showed high antibacterial activity, more hydrophilicity and mechanical strength as compared to pristine PVDF membranes. It was concluded that SGO addition within PVDF polymer matrix enhanced the properties and performance of membranes. Therefore, SGO was found to be a promising material for the fabrication of nanocomposite membranes.- Published
- 2021
- Full Text
- View/download PDF
28. Synthesis of Nickel Spinel Ferrites Nanoparticles Coated with Thermally Reduced Graphene Oxide for EMI Shielding in the Microwave, UV, and NIR Regions.
- Author
-
Mansha A, Zubair K, Rehan ZA, Shakir HMF, Javed T, Shabbir R, Mustafa SK, Mora-Poblete F, Zhou JR, Kumar U, Al-Harbi MS, and Hassan MM
- Abstract
The co-precipitation and in situ modified Hummers' method was used to synthesize Nickel Spinal Ferrites (NiFe) nanoparticles and NiFe coated with Thermally Reduced Graphene Oxide (TRGO) (NiFe-TRGO) nanoparticles, respectively. By using polyvinyl chloride (PVC), tetrahydrofuran (THF), and NiFe-TRGO, the nanocomposite film was synthesized using the solution casting technique with a thickness of 0.12-0.13 mm. Improved electromagnetic interference shielding efficiency was obtained in the 0.1-20 GHz frequency range. The initial assessment was done through XRD for the confirmation of the successful fabrication of nanoparticles and DC conductivity. The microstructure was analyzed with scanning electron microscopy. The EMI shielding was observed by incorporating a filler amount varying from 5 wt.% to 40 wt.% in three different frequency regions: microwave region (0.1 to 20 GHz), near-infrared (NIR) (700-2500 nm), and ultraviolet (UV) (200-400 nm). A maximum attenuation of 65 dB was observed with a 40% concentration of NiFe-TRGO in nanocomposite film.
- Published
- 2021
- Full Text
- View/download PDF
29. Genetic Potential and Inheritance Pattern of Phenological Growth and Drought Tolerance in Cotton ( Gossypium Hirsutum L.).
- Author
-
Mahmood T, Wang X, Ahmar S, Abdullah M, Iqbal MS, Rana RM, Yasir M, Khalid S, Javed T, Mora-Poblete F, Chen JT, Shah MKN, and Du X
- Abstract
Cotton has prime importance in the global economy and governs socio-economic affairs of the world. Water scarcity and high temperature are major constraints that badly affect cotton production, which shows the need for the development of drought-tolerant varieties. Ten cotton genotypes, including three drought-tolerant and seven susceptible, were identified from a panel of diverse cotton genotypes at the seedling stage under two contrasting water regimes. Three lines were crossed with seven testers under line × tester mating design. The 21 F1 cross combinations along with 10 parents were evaluated under 100% non-stress (NS) and 50% drought stress (DS) filed capacity to assess the effects of drought stress and its inheritance in the next generation. All the genotypes were evaluated till the maturity stage for combining ability, heritability, and other genetic factors to understand the drought tolerance mechanisms. The proportional contribution of lines in the total variance evidenced that lines had a significant higher contribution in total variance for days to boll opening (DBO) of 10% and proline contents (PC) of 13% under DS conditions. It indicates that lines contributed more positive alleles for such traits. Under DS condition, DTV-9 × BT-252 and DTV-9 × DTV-10 had maximum negative specific combining ability (SCA) effects for DBO. Simultaneously, DBO also had higher heritability (h2) which indicates its dominant gene action and meanwhile, the importance of these combinations for the early mature and short duration variety development. The results revealed that most of the studied traits, including days taken to maturity, yield traits, and physiological traits, are under significant genetic control, with a strong genetic basis and have a huge potential for improving drought tolerance in cotton. Drought tolerance was found to have a strong association with early maturity and agro-climatic conditions of the cultivated areas. Identified superior parents in this study are suggested to use in the future breeding program to advance the cotton growth and drought tolerance., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2021 Mahmood, Wang, Ahmar, Abdullah, Iqbal, Rana, Yasir, Khalid, Javed, Mora-Poblete, Chen, Shah and Du.)
- Published
- 2021
- Full Text
- View/download PDF
30. Regional Heritability Mapping of Quantitative Trait Loci Controlling Traits Related to Growth and Productivity in Popcorn ( Zea mays L.).
- Author
-
Mafra GS, de Almeida Filho JE, do Amaral Junior AT, Maldonado C, Kamphorst SH, de Lima VJ, Dos Santos Junior DR, Leite JT, Santos PHAD, de Oliveira Santos T, Bispo RB, de Oliveira UA, Pinto VB, Viana AP, Correa CCG, Ahmar S, and Mora-Poblete F
- Abstract
The method of regional heritability mapping (RHM) has become an important tool in the identification of quantitative trait loci (QTLs) controlling traits of interest in plants. Here, RHM was first applied in a breeding population of popcorn, to identify the QTLs and candidate genes involved in grain yield, plant height, kernel popping expansion, and first ear height, as well as determining the heritability of each significant genomic region. The study population consisted of 98 S1 families derived from the 9th recurrent selection cycle (C-9) of the open-pollinated variety UENF-14, which were genetically evaluated in two environments (ENV1 and ENV2). Seventeen and five genomic regions were mapped by the RHM method in ENV1 and ENV2, respectively. Subsequent genome-wide analysis based on the reference genome B73 revealed associations with forty-six candidate genes within these genomic regions, some of them are considered to be biologically important due to the proteins that they encode. The results obtained by the RHM method have the potential to contribute to knowledge on the genetic architecture of the growth and yield traits of popcorn, which might be used for marker-assisted selection in breeding programs.
- Published
- 2021
- Full Text
- View/download PDF
31. An Overview of Abiotic Stress in Cereal Crops: Negative Impacts, Regulation, Biotechnology and Integrated Omics.
- Author
-
Jeyasri R, Muthuramalingam P, Satish L, Pandian SK, Chen JT, Ahmar S, Wang X, Mora-Poblete F, and Ramesh M
- Abstract
Abiotic stresses (AbS), such as drought, salinity, and thermal stresses, could highly affect the growth and development of plants. For decades, researchers have attempted to unravel the mechanisms of AbS for enhancing the corresponding tolerance of plants, especially for crop production in agriculture. In the present communication, we summarized the significant factors (atmosphere, soil and water) of AbS, their regulations, and integrated omics in the most important cereal crops in the world, especially rice, wheat, sorghum, and maize. It has been suggested that using systems biology and advanced sequencing approaches in genomics could help solve the AbS response in cereals. An emphasis was given to holistic approaches such as, bioinformatics and functional omics, gene mining and agronomic traits, genome-wide association studies (GWAS), and transcription factors (TFs) family with respect to AbS. In addition, the development of omics studies has improved to address the identification of AbS responsive genes and it enables the interaction between signaling pathways, molecular insights, novel traits and their significance in cereal crops. This review compares AbS mechanisms to omics and bioinformatics resources to provide a comprehensive view of the mechanisms. Moreover, further studies are needed to obtain the information from the integrated omics databases to understand the AbS mechanisms for the development of large spectrum AbS-tolerant crop production.
- Published
- 2021
- Full Text
- View/download PDF
32. OMICs, Epigenetics, and Genome Editing Techniques for Food and Nutritional Security.
- Author
-
Gogolev YV, Ahmar S, Akpinar BA, Budak H, Kiryushkin AS, Gorshkov VY, Hensel G, Demchenko KN, Kovalchuk I, Mora-Poblete F, Muslu T, Tsers ID, Yadav NS, and Korzun V
- Abstract
The incredible success of crop breeding and agricultural innovation in the last century greatly contributed to the Green Revolution, which significantly increased yields and ensures food security, despite the population explosion. However, new challenges such as rapid climate change, deteriorating soil, and the accumulation of pollutants require much faster responses and more effective solutions that cannot be achieved through traditional breeding. Further prospects for increasing the efficiency of agriculture are undoubtedly associated with the inclusion in the breeding strategy of new knowledge obtained using high-throughput technologies and new tools in the future to ensure the design of new plant genomes and predict the desired phenotype. This article provides an overview of the current state of research in these areas, as well as the study of soil and plant microbiomes, and the prospective use of their potential in a new field of microbiome engineering. In terms of genomic and phenomic predictions, we also propose an integrated approach that combines high-density genotyping and high-throughput phenotyping techniques, which can improve the prediction accuracy of quantitative traits in crop species.
- Published
- 2021
- Full Text
- View/download PDF
33. Genome-wide association study of cyanogenic glycosides, proline, sugars, and pigments in Eucalyptus cladocalyx after 18 consecutive dry summers.
- Author
-
Mora-Poblete F, Ballesta P, Lobos GA, Molina-Montenegro M, Gleadow R, Ahmar S, and Jiménez-Aspee F
- Subjects
- Anthocyanins, Genome-Wide Association Study, Glycosides, Proline, Seasons, Sugars, Eucalyptus genetics
- Abstract
Natural variation of cyanogenic glycosides, soluble sugars, proline, and nondestructive optical sensing of pigments (chlorophyll, flavonols, and anthocyanins) was examined in ex situ natural populations of Eucalyptus cladocalyx F. Muell. grown under dry environmental conditions in the southern Atacama Desert, Chile. After 18 consecutive dry seasons, considerable plant-to-plant phenotypic variation for all the traits was observed in the field. For example, leaf hydrogen cyanide (HCN) concentrations varied from 0 (two acyanogenic individuals) to 1.54 mg cyanide g
-1 DW. Subsequent genome-wide association study revealed associations with several genes with a known function in plants. HCN content was associated robustly with genes encoding Cytochrome P450 proteins, and with genes involved in the detoxification mechanism of HCN in cells (β-cyanoalanine synthase and cyanoalanine nitrilase). Another important finding was that sugars, proline, and pigment content were linked to genes involved in transport, biosynthesis, and/or catabolism. Estimates of genomic heritability (based on haplotypes) ranged between 0.46 and 0.84 (HCN and proline content, respectively). Proline and soluble sugars had the highest predictive ability of genomic prediction models (PA = 0.65 and PA = 0.71, respectively). PA values for HCN content and flavonols were relatively moderate, with estimates ranging from 0.44 to 0.50. These findings provide new understanding on the genetic architecture of cyanogenic capacity, and other key complex traits in cyanogenic E. cladocalyx., (© 2021 Scandinavian Plant Physiology Society.)- Published
- 2021
- Full Text
- View/download PDF
34. Effect of Drought Stress on Capsaicin and Antioxidant Contents in Pepper Genotypes at Reproductive Stage.
- Author
-
Mahmood T, Rana RM, Ahmar S, Saeed S, Gulzar A, Khan MA, Wattoo FM, Wang X, Branca F, Mora-Poblete F, Mafra GS, and Du X
- Abstract
Pepper is one of the most important vegetables and spices in the world. Principal pungency is contributed by secondary metabolites called capsaicinoids, mainly synthesized in the placenta of pepper fruit. Various factors, including drought, limit pepper production. Flowering is one of the most sensitive stages affected by drought stress. The current study was conducted to determine the effect of drought on different pepper genotypes at the flowering and pod formation stages. Hot pepper (Pusajuala and Ghotki) and Bell pepper (Green Wonder and PPE-311) genotypes were subjected to drought (35% field capacity) at two different stages (flowering (DF) and pod formation (DP) stage). In comparison, control plants were maintained at 65% field capacity. The data regarding flowering survival rates, antioxidant protein activity, and proline content, were collected. Results indicated that parameters like flower survival percentage, number of fruits per plant, and fruit weight had significant differences among the genotypes in both treatments. A high proline level was observed in Green Wonder at the pod formation stage compared to other genotypes. Capsaicin contents of hot pepper genotypes were affected at the pod formation stage. Antioxidants like GPX were highly active (190 units) in Ghotki at pod formation. Bell pepper genotypes had a high APX activity, highly observed (100 units) in PPE-311 at pod formation, and significantly differ from hot pepper genotypes. In the catalase case, all the genotypes had the highest values in DP compared to control and DF, but Pusajuala (91 units) and Green Wonder (83 units) performed best compared to other genotypes. Overall, the results indicate that drought stress decreased reproductive growth parameters and pungency of pepper fruit as most of the plant energy was consumed in defense molecules (antioxidants). Therefore, water availability at the flowering and pod formation stage is critical to ensure good yield and pepper quality.
- Published
- 2021
- Full Text
- View/download PDF
35. Phytomelatonin: An overview of the importance and mediating functions of melatonin against environmental stresses.
- Author
-
Altaf MA, Shahid R, Ren MX, Mora-Poblete F, Arnao MB, Naz S, Anwar M, Altaf MM, Shahid S, Shakoor A, Sohail H, Ahmar S, Kamran M, and Chen JT
- Subjects
- Animals, Indoleacetic Acids, Plant Growth Regulators, Plants, Stress, Physiological, Melatonin
- Abstract
Recently, melatonin has gained significant importance in plant research. The presence of melatonin in the plant kingdom has been known since 1995. It is a molecule that is conserved in a wide array of evolutionary distant organisms. Its functions and characteristics have been found to be similar in both plants and animals. The review focuses on the role of melatonin pertaining to physiological functions in higher plants. Melatonin regulates physiological functions regarding auxin activity, root, shoot, and explant growth, activates germination of seeds, promotes rhizogenesis (growth of adventitious and lateral roots), and holds up impelled leaf senescence. Melatonin is a natural bio-stimulant that creates resistance in field crops against various abiotic stress, including heat, chemical pollutants, cold, drought, salinity, and harmful ultra-violet radiation. The full potential of melatonin in regulating physiological functions in higher plants still needs to be explored by further research., (© 2020 Scandinavian Plant Physiology Society.)
- Published
- 2021
- Full Text
- View/download PDF
36. Advantage of Nanotechnology-Based Genome Editing System and Its Application in Crop Improvement.
- Author
-
Ahmar S, Mahmood T, Fiaz S, Mora-Poblete F, Shafique MS, Chattha MS, and Jung KH
- Abstract
Agriculture is an important source of human food. However, current agricultural practices need modernizing and strengthening to fulfill the increasing food requirements of the growing worldwide population. Genome editing (GE) technology has been used to produce plants with improved yields and nutritional value as well as with higher resilience to herbicides, insects, and diseases. Several GE tools have been developed recently, including clustered regularly interspaced short palindromic repeats (CRISPR) with nucleases, a customizable and successful method. The main steps of the GE process involve introducing transgenes or CRISPR into plants via specific gene delivery systems. However, GE tools have certain limitations, including time-consuming and complicated protocols, potential tissue damage, DNA incorporation in the host genome, and low transformation efficiency. To overcome these issues, nanotechnology has emerged as a groundbreaking and modern technique. Nanoparticle-mediated gene delivery is superior to conventional biomolecular approaches because it enhances the transformation efficiency for both temporal (transient) and permanent (stable) genetic modifications in various plant species. However, with the discoveries of various advanced technologies, certain challenges in developing a short-term breeding strategy in plants remain. Thus, in this review, nanobased delivery systems and plant genetic engineering challenges are discussed in detail. Moreover, we have suggested an effective method to hasten crop improvement programs by combining current technologies, such as speed breeding and CRISPR/Cas, with nanotechnology. The overall aim of this review is to provide a detailed overview of nanotechnology-based CRISPR techniques for plant transformation and suggest applications for possible crop enhancement., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2021 Ahmar, Mahmood, Fiaz, Mora-Poblete, Shafique, Chattha and Jung.)
- Published
- 2021
- Full Text
- View/download PDF
37. Evolution and Application of Genome Editing Techniques for Achieving Food and Nutritional Security.
- Author
-
Fiaz S, Ahmar S, Saeed S, Riaz A, Mora-Poblete F, and Jung KH
- Subjects
- Edible Grain genetics, Transcription Activator-Like Effector Nucleases genetics, Transcription Activator-Like Effector Nucleases metabolism, Agriculture methods, CRISPR-Cas Systems, Crops, Agricultural genetics, Gene Editing methods, Genome, Plant, Plant Breeding methods
- Abstract
A world with zero hunger is possible only through a sustainable increase in food production and distribution and the elimination of poverty. Scientific, logistical, and humanitarian approaches must be employed simultaneously to ensure food security, starting with farmers and breeders and extending to policy makers and governments. The current agricultural production system is facing the challenge of sustainably increasing grain quality and yield and enhancing resistance to biotic and abiotic stress under the intensifying pressure of climate change. Under present circumstances, conventional breeding techniques are not sufficient. Innovation in plant breeding is critical in managing agricultural challenges and achieving sustainable crop production. Novel plant breeding techniques, involving a series of developments from genome editing techniques to speed breeding and the integration of omics technology, offer relevant, versatile, cost-effective, and less time-consuming ways of achieving precision in plant breeding. Opportunities to edit agriculturally significant genes now exist as a result of new genome editing techniques. These range from random (physical and chemical mutagens) to non-random meganucleases (MegaN), zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), clustered regularly interspaced short palindromic repeats (CRISPR)/associated protein system 9 (CRISPR/Cas9), the CRISPR system from Prevotella and Francisella 1 (Cpf1), base editing (BE), and prime editing (PE). Genome editing techniques that promote crop improvement through hybrid seed production, induced apomixis, and resistance to biotic and abiotic stress are prioritized when selecting for genetic gain in a restricted timeframe. The novel CRISPR-associated protein system 9 variants, namely BE and PE, can generate transgene-free plants with more frequency and are therefore being used for knocking out of genes of interest. We provide a comprehensive review of the evolution of genome editing technologies, especially the application of the third-generation genome editing technologies to achieve various plant breeding objectives within the regulatory regimes adopted by various countries. Future development and the optimization of forward and reverse genetics to achieve food security are evaluated.
- Published
- 2021
- Full Text
- View/download PDF
38. New Insights Into Structure and Function of TIFY Genes in Zea mays and Solanum lycopersicum : A Genome-Wide Comprehensive Analysis.
- Author
-
Heidari P, Faraji S, Ahmadizadeh M, Ahmar S, and Mora-Poblete F
- Abstract
The TIFY gene family, a key plant-specific transcription factor (TF) family, is involved in diverse biological processes including plant defense and growth regulation. Despite TIFY proteins being reported in some plant species, a genome-wide comparative and comprehensive analysis of TIFY genes in plant species can reveal more details. In the current study, the members of the TIFY gene family were significantly increased by the identification of 18 and six new members using maize and tomato reference genomes, respectively. Thus, a genome-wide comparative analysis of the TIFY gene family between 48 tomato ( Solanum lycopersicum , a dicot plant) genes and 26 maize ( Zea mays , a monocot plant) genes was performed in terms of sequence structure, phylogenetics, expression, regulatory systems, and protein interaction. The identified TIFYs were clustered into four subfamilies, namely, TIFY-S, JAZ, ZML, and PPD. The PPD subfamily was only detected in tomato. Within the context of the biological process, TIFY family genes in both studied plant species are predicted to be involved in various important processes, such as reproduction, metabolic processes, responses to stresses, and cell signaling. The Ka/Ks ratios of the duplicated paralogous gene pairs indicate that all of the duplicated pairs in the TIFY gene family of tomato have been influenced by an intense purifying selection, whereas in the maize genome, there are three duplicated blocks containing Ka/Ks > 1, which are implicated in evolution with positive selection. The amino acid residues present in the active site pocket of TIFY proteins partially differ in each subfamily, although the Mg or Ca ions exist heterogeneously in the centers of the active sites of all the predicted TIFY protein models. Based on the expression profiles of TIFY genes in both plant species, JAZ subfamily proteins are more associated with the response to abiotic and biotic stresses than other subfamilies. In conclusion, globally scrutinizing and comparing the maize and tomato TIFY genes showed that TIFY genes play a critical role in cell reproduction, plant growth, and responses to stress conditions, and the conserved regulatory mechanisms may control their expression., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2021 Heidari, Faraji, Ahmadizadeh, Ahmar and Mora-Poblete.)
- Published
- 2021
- Full Text
- View/download PDF
39. Extracts of Euphorbia nivulia Buch.-Ham. showed both phytotoxic and insecticidal capacities against Lemna minor L. and Oxycarenus hyalinipennis Costa.
- Author
-
Younus M, Hasan MM, Ali S, Saddq B, Sarwar G, Ullah MI, Maqsood A, Ahmar S, Mora-Poblete F, Hassan F, Chen JT, Noureldeen A, and Darwish H
- Subjects
- Alkaloids, Animals, Araceae drug effects, Araceae metabolism, Artemia drug effects, Euphorbia physiology, Hemiptera drug effects, Heteroptera drug effects, Hexanes, Insecticides pharmacology, Pakistan, Phytochemicals pharmacology, Plant Extracts isolation & purification, Plant Extracts metabolism, Euphorbia chemistry, Euphorbia metabolism, Plant Extracts pharmacology
- Abstract
Many phytochemicals can affect the growth and development of plants and insects which can be used as biological control agents. In this study, different concentrations of crude, hexane, chloroform, butanol, and aqueous extracts of Euphorbia nivulia Buch.-Ham., an endemic plant of the Cholistan desert in South Punjab of Pakistan, were analysed for their chemical constituents. Their various concentrations were also tested for their phytotoxic and insecticidal potential against duckweed, Lemna minor L., and the dusky cotton bug, Oxycarenus hyalinipennis Costa. various polyphenols, i.e., quercetin, gallic acid, caffeic acid, syringic acid, coumaric acid, ferulic acid, and cinnamic acid were detected in different concentrations with different solvents during the phytochemical screening of E. nivulia. In the phytotoxicity test, except for 100 μg/mL of the butanol extract gave 4.5% growth regulation, no phytotoxic lethality could be found at 10 and 100 μg/mL of all the extracts. The highest concentration, 1000 μg/mL, of the chloroform, crude, and butanol extracts showed 100, 63.1, and 27.1% of growth inhibition in duckweed, respectively. In the insecticidal bioassay, the highest O. hyalinipennis mortalities (87 and 75%) were recorded at 15% concentration of the chloroform and butanol extracts of E. nivulia. In contrast, the lower concentrations of the E. nivulia extracts caused the lower mortalities. Altogether, these findings revealed that E. nivulia chloroform extracts showed significant phytotoxicity while all the extracts showed insecticidal potential. This potential can be, further, refined to be developed for bio-control agents., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2021
- Full Text
- View/download PDF
40. COVID-19 and Nanoscience in the Developing World: Rapid Detection and Remediation in Wastewater.
- Author
-
Adeel M, Farooq T, Shakoor N, Ahmar S, Fiaz S, White JC, Gardea-Torresdey JL, Mora-Poblete F, and Rui Y
- Abstract
Given the known presence of SARS-Cov-2 in wastewater, stemming disease spread in global regions where untreated effluent in the environment is common will experience additional pressure. Though development and preliminary trials of a vaccine against SARS-CoV-2 have been launched in several countries, rapid and effective alternative tools for the timely detection and remediation of SARS-CoV-2 in wastewater, especially in the developing countries, is of paramount importance. Here, we propose a promising, non-invasive technique for early prediction and targeted detection of SARS-CoV-2 to prevent current and future outbreaks. Thus, a combination of nanotechnology with wastewater-based epidemiology and artificial intelligence could be deployed for community-level wastewater virus detection and remediation.
- Published
- 2021
- Full Text
- View/download PDF
41. Isolation and characterization of microsatellites for the endangered endemic tree Nothofagus alessandrii (Nothofagaceae).
- Author
-
Torres-Díaz C, Valladares MA, Molina-Montenegro MA, and Mora-Poblete F
- Subjects
- Linkage Disequilibrium, Endangered Species, Fagales genetics, Microsatellite Repeats, Polymorphism, Genetic
- Abstract
Nothofagus alessandrii (Nothofagaceae) is one of the most endangered trees from Chile due to high rates of habitat disturbance caused by human activities. Despite its conservation status, few molecular markers are available to study its population genetic, connectivity and to assist reproduction programs. Thus, the species needs urgent actions to restore its original distribution. Novel polymorphic microsatellites from the genome of N. alessandrii were isolated and characterized using high-through sequencing. A total of 30 primer pairs were synthesized and 18 microsatellites were amplified correctly. Polymorphism and genetic diversity was evaluated in 58 individuals from three populations of N. alessandrii. Sixteen of them were polymorphic and the number of alleles in the pooled sample ranged from 2 to 14, the mean number of alleles was 4.81. The mean values of observed heterozigosity (H
O ) and excepted heterozygosity (HE ) are similar in all studied populations. Linkage disequilibrium was found between a few pairs of loci (five out of 263 tests) suggesting that most of the markers can be considered as independent. Significant deviations from Hardy-Weinberg equilibrium (P < 0.05) were found in four loci probably due to low sampling size. Transferability to the congeneric N. pumilio was successful in only four out of the sixteen polymorphic markers. The microsatellite markers developed in this study will be useful to study the genetic diversity and structure and to develop integrated management plans for the conservation of this endangered species.- Published
- 2021
- Full Text
- View/download PDF
42. Jasmonates and Plant Salt Stress: Molecular Players, Physiological Effects, and Improving Tolerance by Using Genome-Associated Tools.
- Author
-
Delgado C, Mora-Poblete F, Ahmar S, Chen JT, and Figueroa CR
- Subjects
- Adaptation, Physiological genetics, Cyclopentanes metabolism, Genomics, Oxylipins metabolism, Plants genetics, Salt Stress genetics, Salt Tolerance genetics
- Abstract
Soil salinity is one of the most limiting stresses for crop productivity and quality worldwide. In this sense, jasmonates (JAs) have emerged as phytohormones that play essential roles in mediating plant response to abiotic stresses, including salt stress. Here, we reviewed the mechanisms underlying the activation and response of the JA-biosynthesis and JA-signaling pathways under saline conditions in Arabidopsis and several crops. In this sense, molecular components of JA-signaling such as MYC2 transcription factor and JASMONATE ZIM-DOMAIN (JAZ) repressors are key players for the JA-associated response. Moreover, we review the antagonist and synergistic effects between JA and other hormones such as abscisic acid (ABA). From an applied point of view, several reports have shown that exogenous JA applications increase the antioxidant response in plants to alleviate salt stress. Finally, we discuss the latest advances in genomic techniques for the improvement of crop tolerance to salt stress with a focus on jasmonates.
- Published
- 2021
- Full Text
- View/download PDF
43. Research advances and applications of biosensing technology for the diagnosis of pathogens in sustainable agriculture.
- Author
-
Ali Q, Ahmar S, Sohail MA, Kamran M, Ali M, Saleem MH, Rizwan M, Ahmed AM, Mora-Poblete F, do Amaral Júnior AT, Mubeen M, and Ali S
- Subjects
- Agriculture, Animals, Fungi, Lab-On-A-Chip Devices, Technology, Biosensing Techniques, Plants
- Abstract
Plant diseases significantly impact the global economy, and plant pathogenic microorganisms such as nematodes, viruses, bacteria, fungi, and viroids may be the etiology for most infectious diseases. In agriculture, the development of disease-free plants is an important strategy for the determination of the survival and productivity of plants in the field. This article reviews biosensor methods of disease detection that have been used effectively in other fields, and these methods could possibly transform the production methods of the agricultural industry. The precise identification of plant pathogens assists in the assessment of effective management steps for minimization of production loss. The new plant pathogen detection methods include evaluation of signs of disease, detection of cultured organisms, or direct examination of contaminated tissues through molecular and serological techniques. Laboratory-based approaches are costly and time-consuming and require specialized skills. The conclusions of this review also indicate that there is an urgent need for the establishment of a reliable, fast, accurate, responsive, and cost-effective testing method for the detection of field plants at early stages of growth. We also summarized new emerging biosensor technologies, including isothermal amplification, detection of nanomaterials, paper-based techniques, robotics, and lab-on-a-chip analytical devices. However, these constitute novelty in the research and development of approaches for the early diagnosis of pathogens in sustainable agriculture.
- Published
- 2021
- Full Text
- View/download PDF
44. Haplotype- and SNP-Based GWAS for Growth and Wood Quality Traits in Eucalyptus cladocalyx Trees under Arid Conditions.
- Author
-
Valenzuela CE, Ballesta P, Ahmar S, Fiaz S, Heidari P, Maldonado C, and Mora-Poblete F
- Abstract
The agricultural and forestry productivity of Mediterranean ecosystems is strongly threatened by the adverse effects of climate change, including an increase in severe droughts and changes in rainfall distribution. In the present study, we performed a genome-wide association study (GWAS) to identify single-nucleotide polymorphisms (SNPs) and haplotype blocks associated with the growth and wood quality of Eucalyptus cladocalyx , a tree species suitable for low-rainfall sites. The study was conducted in a progeny-provenance trial established in an arid site with Mediterranean patterns located in the southern Atacama Desert, Chile. A total of 87 SNPs and 3 haplotype blocks were significantly associated with the 6 traits under study (tree height, diameter at breast height, slenderness coefficient, first bifurcation height, stem straightness, and pilodyn penetration). In addition, 11 loci were identified as pleiotropic through Bayesian multivariate regression and were mainly associated with wood hardness, height, and diameter. In general, the GWAS revealed associations with genes related to primary metabolism and biosynthesis of cell wall components. Additionally, associations coinciding with stress response genes, such as GEM-related 5 and prohibitin-3 , were detected. The findings of this study provide valuable information regarding genetic control of morphological traits related to adaptation to arid environments.
- Published
- 2021
- Full Text
- View/download PDF
45. Plasticity of the Root System Architecture and Leaf Gas Exchange Parameters Are Important for Maintaining Bottle Gourd Responses under Water Deficit.
- Author
-
Zacarias Rafael D, Arriagada O, Toro G, Mashilo J, Mora-Poblete F, and Contreras-Soto RI
- Abstract
The evaluation of root system architecture (RSA) development and the physiological responses of crop plants grown under water-limited conditions are of great importance. The purpose of this study was to examine the short-term variation of the morphological and physiological plasticity of Lagenaria siceraria genotypes under water deficit, evaluating the changes in the relationship between the root system architecture and leaf physiological responses. Bottle gourd genotypes were grown in rhizoboxes under well-watered and water deficit conditions. Significant genotype-water regime interactions were observed for several RSA traits and physiological parameters. Biplot analyses confirmed that the drought-tolerant genotypes (BG-48 and GC) showed a high net CO
2 assimilation rate, stomatal conductance, transpiration rates with a smaller length, and a reduced root length density of second-order lateral roots, whereas the genotypes BG-67 and Osorno were identified as drought-sensitive and showed greater values for average root length and the density of second-order lateral roots. Consequently, a reduced length and density of lateral roots in bottle gourd should constitute a response to water deficit. The root traits studied here can be used to evaluate bottle gourd performance under novel water management strategies and as criteria for breeding selection.- Published
- 2020
- Full Text
- View/download PDF
46. Plant-growth-promoting Bacillus and Paenibacillus species improve the nutritional status of Triticum aestivum L.
- Author
-
Hussain A, Ahmad M, Nafees M, Iqbal Z, Luqman M, Jamil M, Maqsood A, Mora-Poblete F, Ahmar S, Chen JT, Alyemeni MN, and Ahmad P
- Subjects
- Biofortification, Crops, Agricultural growth & development, Crops, Agricultural microbiology, Edible Grain metabolism, Edible Grain microbiology, Humans, Iron metabolism, Micronutrients metabolism, Rhizosphere, Soil Microbiology, Triticum microbiology, Zinc metabolism, Bacillus metabolism, Edible Grain growth & development, Paenibacillus metabolism, Triticum growth & development
- Abstract
Wheat is one of the best-domesticated cereal crops and one of the vital sources of nutrition for humans. An investigation was undertaken to reveal the potential of novel bio-inoculants enriching micronutrients in shoot and grains of wheat crop to eliminate the hazards of malnutrition. Sole as well as consortia inoculation of bio-inoculants significantly enhanced mineral nutrients including zinc (Zn) and iron (Fe) concentrations in shoot and grains of wheat. Various treatments of bio-inoculants increase Zn and Fe content up to 1-15% and 3-13%, respectively. Sole inoculation of Bacillus aryabhattai (S10) impressively improves the nutritious of wheat. However, the maximum increase in minerals contents of wheat was recorded by consortia inoculation of Paenibacillus polymyxa ZM27, Bacillus subtilis ZM63 and Bacillus aryabhattai S10. This treatment also showed a maximum bacterial population (18 × 104 cfu mL-1) in the rhizosphere. The consortium application of these strains showed up to a 17% increase in yield. It is evident from the results that the consortium application was more effective than sole and co-inoculation. A healthy positive correlation was found between growth, yield, and the accessibility of micronutrients to wheat crops at the harvesting stage. The present investigations revealed the significance of novel bacterial strains in improving the nutritional status of wheat crops. These strains could be used as bio-inoculants for the biofortification of wheat to combat hidden hunger in developing countries., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2020
- Full Text
- View/download PDF
47. Genome-Wide Prediction of Complex Traits in Two Outcrossing Plant Species Through Deep Learning and Bayesian Regularized Neural Network.
- Author
-
Maldonado C, Mora-Poblete F, Contreras-Soto RI, Ahmar S, Chen JT, do Amaral Júnior AT, and Scapim CA
- Abstract
Genomic selection models were investigated to predict several complex traits in breeding populations of Zea mays L. and Eucalyptus globulus Labill. For this, the following methods of Machine Learning (ML) were implemented: (i) Deep Learning (DL) and (ii) Bayesian Regularized Neural Network (BRNN) both in combination with different hyperparameters. These ML methods were also compared with Genomic Best Linear Unbiased Prediction (GBLUP) and different Bayesian regression models [Bayes A, Bayes B, Bayes Cπ, Bayesian Ridge Regression, Bayesian LASSO, and Reproducing Kernel Hilbert Space (RKHS)]. DL models, using Rectified Linear Units (as the activation function), had higher predictive ability values, which varied from 0.27 (pilodyn penetration of 6 years old eucalypt trees) to 0.78 (flowering-related traits of maize). Moreover, the larger mini-batch size (100%) had a significantly higher predictive ability for wood-related traits than the smaller mini-batch size (10%). On the other hand, in the BRNN method, the architectures of one and two layers that used only the pureline function showed better results of prediction, with values ranging from 0.21 (pilodyn penetration) to 0.71 (flowering traits). A significant increase in the prediction ability was observed for DL in comparison with other methods of genomic prediction (Bayesian alphabet models, GBLUP, RKHS, and BRNN). Another important finding was the usefulness of DL models (through an iterative algorithm) as an SNP detection strategy for genome-wide association studies. The results of this study confirm the importance of DL for genome-wide analyses and crop/tree improvement strategies, which holds promise for accelerating breeding progress., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2020 Maldonado, Mora-Poblete, Contreras-Soto, Ahmar, Chen, do Amaral Júnior and Scapim.)
- Published
- 2020
- Full Text
- View/download PDF
48. A Deep Learning Approach to Population Structure Inference in Inbred Lines of Maize.
- Author
-
López-Cortés XA, Matamala F, Maldonado C, Mora-Poblete F, and Scapim CA
- Abstract
Analysis of population genetic variation and structure is a common practice for genome-wide studies, including association mapping, ecology, and evolution studies in several crop species. In this study, machine learning (ML) clustering methods, K-means (KM), and hierarchical clustering (HC), in combination with non-linear and linear dimensionality reduction techniques, deep autoencoder (DeepAE) and principal component analysis (PCA), were used to infer population structure and individual assignment of maize inbred lines, i.e., dent field corn ( n = 97) and popcorn ( n = 86). The results revealed that the HC method in combination with DeepAE-based data preprocessing (DeepAE-HC) was the most effective method to assign individuals to clusters (with 96% of correct individual assignments), whereas DeepAE-KM, PCA-HC, and PCA-KM were assigned correctly 92, 89, and 81% of the lines, respectively. These findings were consistent with both Silhouette Coefficient (SC) and Davies-Bouldin validation indexes. Notably, DeepAE-HC also had better accuracy than the Bayesian clustering method implemented in InStruct. The results of this study showed that deep learning (DL)-based dimensional reduction combined with ML clustering methods is a useful tool to determine genetically differentiated groups and to assign individuals into subpopulations in genome-wide studies without having to consider previous genetic assumptions., (Copyright © 2020 López-Cortés, Matamala, Maldonado, Mora-Poblete and Scapim.)
- Published
- 2020
- Full Text
- View/download PDF
49. Incredible Role of Osmotic Adjustment in Grain Yield Sustainability under Water Scarcity Conditions in Wheat ( Triticum aestivum L.).
- Author
-
Mahmood T, Abdullah M, Ahmar S, Yasir M, Iqbal MS, Yasir M, Ur Rehman S, Ahmed S, Rana RM, Ghafoor A, Nawaz Shah MK, Du X, and Mora-Poblete F
- Abstract
Interrogations of local germplasm and landraces can offer a foundation and genetic basis for drought tolerance in wheat. Potential of drought tolerance in a panel of 30 wheat genotypes including varieties, local landraces, and wild crosses were explored under drought stress (DS) and well-watered (WW) conditions. Considerable variation for an osmotic adjustment (OA) and yield components, coupled with genotype and environment interaction was observed, which indicates the differential potential of wheat genotypes under both conditions. Reduction in yield per plant (YP), thousand kernel weight (TKW), and induction of OA was detected. Correlation analysis revealed a strong positive association of YP with directly contributing yield components under both environments, indicating the impotence of these traits as a selection-criteria for the screening of drought-tolerant genotypes for drylands worldwide. Subsequently, the association of OA with TKW which contributes directly to YP, indicates that wheat attains OA to extract more water from the soil under low water-potential. Genotypes including WC-4, WC-8 and LLR-29 showed more TKW under both conditions, among them; LLR-29 also has maximum OA and batter yield comparatively. Result provides insight into the role of OA in plant yield sustainability under DS. In this study, we figure out the concept of OA and its incredible role in sustainable plant yield in wheat.
- Published
- 2020
- Full Text
- View/download PDF
50. Comparison of Selection Traits for Effective Popcorn ( Zea mays L. var. Everta) Breeding Under Water Limiting Conditions.
- Author
-
Kamphorst SH, do Amaral Júnior AT, de Lima VJ, Santos PHAD, Rodrigues WP, Vivas JMS, Gonçalves GMB, Schmitt KFM, Leite JT, Vivas M, Mora-Poblete F, Vergara-Díaz O, Araus Ortega JL, Ramalho JC, and Campostrini E
- Abstract
Climate change is expected to intensify water restriction to crops, impacting on the yield potential of crops such as popcorn. This work aimed to evaluate the performance of 10 field cultivated popcorn inbred lines during two growing seasons, under well-watered (WW) and water stressed (WS) (ψ
soil ≥ -1.5 MPa) conditions. Water stress was applied by withholding irrigation in the phenological phase of male pre-anthesis. Additionally, two contrasting inbred lines, P7 (superior line) and L75 (low performer) were compared for grain yield (GY) and expanded popcorn volume (EPV), selected from previous studies, were tested under greenhouse conditions. In the field, no genotype x water condition x crop season (G×WC×CS) interaction was observed, whereas GY (-51%), EPV (-55%) and leaf greenness (SPAD index) measured 17 days after anthesis (DAA) (> -10%) were highly affected by water limitation. In general, root traits (angles, number, and density) presented G×WC×CS interaction, which did not support their use as selection parameters. In relation to leaf senescence, for both WS and WW conditions, the superior inbred lines maintained a stay-green condition (higher SPAD index) until physiological maturity, but maximum SPAD index values were observed later in WW (48.7 by 14 DAA) than in WS (43.9 by 7 DAA). Under both water conditions, negative associations were observed between SPAD index values 15 and 8 days before anthesis DBA), and GY and EPV (r ≥ -0.69), as well as between SPAD index 7, 17, and 22 DAA, and angles of brace root (AB), number of crown roots (NC) and crown root density (CD), in WS (r ≥ -0.69), and AB and CD, in WW (r ≥ -0.70). Lower NC and CD values may allow further root deepening in WS conditions. Under WS P7 maintained higher net photosynthesis values, stomatal conductance, and transpiration, than L75. Additionally, L75 exhibited a lower (i.e., more negative) carbon isotope composition value than P7 under WS, confirming a lower stomatal aperture in L75. In summary, besides leaf greenness, traits related to leaf photosynthetic status, and stomatal conductance were shown to be good indicators of the agronomic performance of popcorn under water constraint., (Copyright © 2020 Kamphorst, Amaral Júnior, de Lima, Santos, Rodrigues, Vivas, Gonçalves, Schmitt, Leite, Vivas, Mora-Poblete, Vergara-Díaz, Araus Ortega, Ramalho and Campostrini.)- Published
- 2020
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.