A new generation of wireless networks, the 5th Generation (5G), is predicted for beyond 2020. For the 5G, it is foreseen an emerging huge number of services based on Machine-Type Communications (MTCs) in different fields, such as, health care, smart metering and security. Each one of them requiring different throughput rates, latency, processing capacity, energy efficiency, etc. Independently of the service type, the customers still need to get satisfied, which is imposing a shift of paradigm towards incorporating the user as the most important factor in wireless network management. This shift of paradigm drove the creation of the Quality of Experience (QoE) concept, which describes the service quality subjectively perceived by the users. QoE is generally evaluated by a Mean Opinion Score (MOS) ranging from 1 to 5. In this context, QoE concepts can be considered with different objectives, such as, increasing battery life, optimizing handover decision, enhancing access network selection and improving Radio Resource Allocation (RRA). Regarding the RRA, in this master’s thesis we consider QoE requirements when managing the limited available resources of a communication system, such as frequency spectrum and transmit power. More specifically, we study a radio resource assignment and power allocation problem that aims at maximizing the minimum MOS of the users in a system subject to attaining a minimum number of satisfied users. Initially, we formulate a new optimization problem taking into account constraints on the total transmit power and on the fraction of users that must be satisfied, which is an important topic from an operator’s point of view. The referred problem is non-linear and hard to solve. However, we get to transform it into a simpler form, a Mixed Integer Linear Problem (MILP), that can be optimally solved using standard numerical optimization methods. Due to the complexity of obtaining the optimal solution, we propose a heuristic solution to this problem, called Power and Resource Allocation Based on Quality of Experience (PRABE). We evaluate the proposed method by means of simulations and the obtained results show that it outperforms some existing algorithms, as well as it performs close to the optimal solution. Uma nova geração de sistemas de comunicações sem fio, 5a Geração (5G), é prevista para 2020. Para a 5G, é esperado o surgimento de diversos serviços baseados em comunicações máquina à máquina em diferentes áreas, como assistência médica, segurança e redes de medição inteligente. Cada um com diferentes requerimentos de taxa de transmissão, latência, capacidade de processamento, eficiência energética, etc. Independente do serviço, os clientes precisam ficar satisfeitos. Isto está impondo uma mudança de paradigmas em direção à priorização do usuário como fator mais importante no gerenciamento de redes sem fio. Com esta mudança, criou-se o conceito de qualidade de experiência (do inglês, Quality of Experience ( QoE ) ), que descreve de forma subjetiva como o serviço é percebido pelo usuário. A QoE normalmente é avaliada por uma nota entre 1 e 5, chamada nota média de opinião (do inglês, Mean Opinion Score ( MOS ) ). Neste contexto, conceitos de QoE podem ser considerados com diferentes objetivos, como: aumentar a vida útil de baterias, melhorar a seleção para acesso à rede e aprimorar a alocação dos recursos de rádio (do inglês, Radio Resource Allocation ( RRA ) ). Com relação à RRA , nesta dissertação consideram-se requerimentos de QoE na gestão dos recursos disponíveis em um sistema de comunicações sem fio, como espectro de frequência e potência de transmissão. Mais especificamente, estuda-se um problema de assinalamento de recursos de rádio e de alocação de potência que objetiva maximizar a mínima MOS do sistema sujeito a satisfazer um número mínimo de usuários pré-estabelecido. Inicialmente, formula-se um novo problema de otimização considerando restrições quanto à potência de transmissão e quanto à fração de usuários que deve ser satisfeita, o que é um importante tópico do ponto de vista das operadoras. Este é um problema não linear e de difícil solução. Ele é então reformulado como um problema linear inteiro e misto, que pode ser resolvido de forma ótima usando algoritmos conhecidos de otimização. Devido à complexidade da solução ótima obtida, propõe-se uma heurística chamada em inglês de Power and Resource Allocation Based on Quality of Experience ( PRABE ) . O método proposto é avaliado por meio de simulações e os resultados obtidos mostram que sua performance é superior à de outros existentes, sendo próxima à da ótima