471 results on '"Mondal J"'
Search Results
2. Lattice-Based Fuzzy Medical Expert System for Low Back Pain Management
- Author
-
Santra, Debarpita, Basu, S. K., Mondal, J. K., and Goswami, Subrata
- Subjects
Computer Science - Artificial Intelligence - Abstract
Low Back Pain (LBP) is a common medical condition that deprives many individuals worldwide of their normal routine activities. In the absence of external biomarkers, diagnosis of LBP is quite challenging. It requires dealing with several clinical variables, which have no precisely quantified values. Aiming at the development of a fuzzy medical expert system for LBP management, this research proposes an attractive lattice-based knowledge representation scheme for handling imprecision in knowledge, offering a suitable design methodology for a fuzzy knowledge base and a fuzzy inference system. The fuzzy knowledge base is constructed in modular fashion, with each module capturing interrelated medical knowledge about the relevant clinical history, clinical examinations and laboratory investigation results. This approach in design ensures optimality, consistency and preciseness in the knowledge base and scalability. The fuzzy inference system, which uses the Mamdani method, adopts the triangular membership function for fuzzification and the Centroid of Area technique for defuzzification. A prototype of this system has been built using the knowledge extracted from the domain expert physicians. The inference of the system against a few available patient records at the ESI Hospital, Sealdah has been checked. It was found to be acceptable by the verifying medical experts.
- Published
- 2019
3. Measurements of continuous spectra of photons from 4/6 MeV dual energy e-LINAC
- Author
-
Kumar, Ajay, Mishra, G., De, Sukanya, Yadav, V., Chaudhary, N., Yerge, U., Mondal, J., and Thomas, R.G.
- Published
- 2023
- Full Text
- View/download PDF
4. Comparative Study of Different High Voltage Switches Used in Pulsed High Voltage Application
- Author
-
Panda, Sai Kiran, primary, Mitra, Sabyasachi, additional, Mondal, J., additional, and Roy, A., additional
- Published
- 2024
- Full Text
- View/download PDF
5. Design, fabrication and relative bunch length measurement of S-band pre-buncher
- Author
-
Mondal, J., Mishra, L., Sarkar, Shreya, Manjunatha, H.K., Chandan, Shiv, Bakhtsingh, R.I., and Sharma, Archana
- Published
- 2021
- Full Text
- View/download PDF
6. Bubble oscillations at low frequency ultrasound for biological applications
- Author
-
Mondal, J, Wu, Y, Mishra, A, Akbaridoust, F, Marusic, I, Ghosh, P, Ashokkumar, M, Mondal, J, Wu, Y, Mishra, A, Akbaridoust, F, Marusic, I, Ghosh, P, and Ashokkumar, M
- Abstract
Bubbles oscillating in the presence of ultrasound is commonly employed in biomedical applications for drug delivery, ultrasound enhanced thrombolysis, and the transport and manipulation of cells. This is possible because bubbles tend to interact with the ultrasound to undergo periodic shape changes known as shape-mode oscillation, concomitant with the generation of liquid agitation or streaming. This phenomenon is examined both experimentally and theoretically on a single bubble at a frequency of (45 1) kHz. Effects of ultrasonic frequency and power on the flowfield were explored. Experiments revealed different trends in the development of liquid streaming velocities at different acoustic forcing conditions (5.53, 6.80 and 7.02 Vpp), with lowest (0.5 mm/s) and highest (1.1 mm/s) values of time-averaged mean streaming velocity occurring at 6.80 Vpp and 7.02 Vpp, respectively. Simulations captured the simultaneous evolution of bubble-shapes that helped create flow vortices in the liquid surrounding the bubble. These vortices collectively responsible in generating signature patterns in the liquid for a dominant shape-mode of the bubble, and could also generate localised shear stresses for practical application. The velocity and pressure profiles in the liquid around the bubble confirmed the connection of the applied and reflected soundwaves in driving this phenomenon.
- Published
- 2024
7. Ultrasound-enhanced adsorption of amino acids from aqueous solution onto macroporous resins for green separation: Mass transfer mechanism and acoustic cavitation properties
- Author
-
Wu, Y, Mondal, J, Tao, Y, Martin, GJO, Ashokkumar, M, Wu, Y, Mondal, J, Tao, Y, Martin, GJO, and Ashokkumar, M
- Published
- 2024
8. Towards Design and Implementation of Space Efficient and Secured Transmission scheme on EGovernance data
- Author
-
Barik, Nikhilesh, Karforma, Sunil, Mondal, J. K., and Ghosh, Arpita
- Subjects
Computer Science - Cryptography and Security - Abstract
We know that large amount of data and information should be transmitted through internet during transactions in E-Governance. Smart E-Governance system should deliver speedy, space efficient, cost effective and secure services among other governments and its citizens utilizing benefits of Information and Communication Technologies (ICT). This paper proposes to develop a space efficient and secured data transmission scheme using Modified Huffman algorithm for compression, which will also yield better bandwidth utilization and inner encryption technique with one way hash function SHA (Secured Hash Algorithm) to ensure Message integrity., Comment: 6 Page paper in Proceeding of International Conference on Computing and Systems ICCS 2010, ISBN 93-80813-01-5, pp 151-155, University of Burdwan, 19th, 20th November, 2010
- Published
- 2012
9. Ferredoxin: the central hub connecting photosystem I to cellular metabolism
- Author
-
Mondal, J. and Bruce, B. D.
- Published
- 2018
- Full Text
- View/download PDF
10. Design and experiments of RF transverse focusing in S-Band, 1 MeV standing wave linac
- Author
-
Mondal, J., Chandan, Shiv, Parashar, S., Bhattacharjee, D., Tillu, A.R., Tiwari, R., Jayapraksh, D., Yadav, V., Banerjee, S., Choudhury, N., Ghodke, S.R., Dixit, K.P., and Nimje, V.T.
- Published
- 2015
- Full Text
- View/download PDF
11. Analysis of energy stability in 6/4 MeV dual energy RF electron linac
- Author
-
Rajan, Rehim N., primary, Mondal, J., additional, Tillu, A.R., additional, Sharma, V., additional, Bhattacharjee, D., additional, Chandan, Shiv, additional, Yadav, V., additional, and Sharma, Archana, additional
- Published
- 2022
- Full Text
- View/download PDF
12. Design of High Efficient InN Quantum Dot Based Solar Cell
- Author
-
Hossain, M. A., Mondal, J., Ali, M. Feroz, and Humayun, M. A. A.
- Published
- 2014
13. Acoustic cavitation at low gas pressures in PZT-based ultrasonic systems
- Author
-
Mondal, J, Li, W, Rezk, AR, Yeo, LY, Lakkaraju, R, Ghosh, P, Ashokkumar, M, Mondal, J, Li, W, Rezk, AR, Yeo, LY, Lakkaraju, R, Ghosh, P, and Ashokkumar, M
- Abstract
The generation of cavitation-free radicals through evanescent electric field and bulk-streaming was reported when micro-volumes of a liquid were subjected to 10 MHz surface acoustic waves (SAW) on a piezoelectric substrate [Rezk et al., J. Phys. Chem. Lett. 2020, 11, 4655-4661; Rezk et al., Adv. Sci. 2021, 8, 2001983]. In the current study, we have tested a similar hypothesis with PZT-based ultrasonic units (760 kHz and 2 MHz) with varying dissolved gas concentrations, by sonochemiluminescence measurement and iodide dosimetry, to correlate radical generation with dissolved gas concentrations. The dissolved gas concentration was adjusted by controlling the over-head gas pressure. Our study reveals that there is a strong correlation between sonochemical activity and dissolved gas concentration, with negligible sonochemical activity at near-vacuum conditions. We therefore conclude that radical generation is dominated by acoustic cavitation in conventional PZT-based ultrasonic reactors, regardless of the excitation frequency.
- Published
- 2021
14. Thermal conductivity of large-grain niobium and its effect on trapped vortices in the temperature range 1.8–5 K
- Author
-
MONDAL, J, CIOVATI, G, MITTAL, K C, and MYNENI, G R
- Published
- 2012
- Full Text
- View/download PDF
15. Plasma-filled rippled wall rectangular backward wave oscillator driven by sheet electron beam
- Author
-
HADAP, A, MONDAL, J, MITTAL, K C, and MAHESHWARI, K P
- Published
- 2011
- Full Text
- View/download PDF
16. Interlaboratory proficiency testing: Intercomparison in relation to the measurement of alumina, iron(III) oxide and Titania present in homogenised china clay
- Author
-
Basak, S., Mukherjee, S. S., Mandal, S. N., Das, Rama, Mazumder, A. K., Mondal, J. K., Sammaddar, R., Mondal, S., and Kundu, Dipali
- Published
- 2010
- Full Text
- View/download PDF
17. RF properties of 700 MHz, β = 0.42 elliptical cavity for high current proton acceleration
- Author
-
Roy, Amitava, Mondal, J., and Mittal, K. C.
- Published
- 2008
- Full Text
- View/download PDF
18. Analysis of transients in high voltage multipliers
- Author
-
Rajan, R.N., primary, Mitra, A., additional, Sharma, D.K., additional, Dewangan, S., additional, Patel, R., additional, Das, S.H., additional, Mondal, J., additional, Bakhtsingh, R.I., additional, and Sharma, A., additional
- Published
- 2021
- Full Text
- View/download PDF
19. Effect of solid surface in vicinity of multi-bubble array in cryogenic environment
- Author
-
Mondal, J, Mishra, A, Lakkaraju, R, Ashokkumar, M, Ghosh, P, Mondal, J, Mishra, A, Lakkaraju, R, Ashokkumar, M, and Ghosh, P
- Abstract
Multiple bubble interactions in initially quiescent liquid are often accompanied by generation of jets, shockwaves and light. At cryogenic temperature (< 123 K) when certain materials (particularly bcc-type) become brittle, such afore-mentioned physical effects can be effective in disintegrating them to smaller fragments. CFD techniques based on direct numerical simulations can help to understand this phenomenon that may benefit nanotechnology-based industries and oil-gas exploration-firms working with air-gun arrays. In this paper, multiple bubble-pairs are simulated in a co-centric manner around a centrally located solid target (5 mm radius). The ambient fluid is liquid nitrogen (77 K) and the bubbles are gaseous nitrogen (87 K). 2D numerical simulation using the VOF method in compressible domain is carried out neglecting the effect of phase change and gravity. The stand-off distance between the solid target and bubble-pairs are varied systematically and its influence on the fluid-dynamic effects (e.g. pressure shockwave & jets) are compared. Initial calculations suggest that for stand-off distance of 0.93 mm, shockwaves measure above 10 times the ambient pressure and liquid jet speeds around 30 m/s in cryogenic environment, at multiple locations very close to the solid target. These consecutive physical impacts can foster ample liquid-hammer pressures, making it promising for solid wear at 77 K when juxtaposed against room-temperature cases.
- Published
- 2020
20. Quercetin induces cytochrome-c release and ROS accumulation to promote apoptosis and arrest the cell cycle in G2/M, in cervical carcinoma: signal cascade and drug-DNA interaction
- Author
-
Bishayee, K., Ghosh, S., Mukherjee, A., Sadhukhan, R., Mondal, J., and Khuda-Bukhsh, A. R.
- Published
- 2013
- Full Text
- View/download PDF
21. X-band BWO directly driven by a Marx generator
- Author
-
Chandra, R., primary, Mitra, S., additional, Singh, S., additional, Sharma, V., additional, Senthil, K., additional, Mondal, J., additional, Patel, A., additional, Roy, A., additional, Biswas, D., additional, and Sharma, A., additional
- Published
- 2020
- Full Text
- View/download PDF
22. Effect of curved rigid surface on the collapsing cavitating bubble in cryogenic environment
- Author
-
Mishra, A, primary, Mondal, J, additional, Roy, A, additional, Lakkaraju, R, additional, and Ghosh, P, additional
- Published
- 2020
- Full Text
- View/download PDF
23. Reconciling Conformational Heterogeneity and Substrate Recognition in Cytochrome P450
- Author
-
Dandekar, B., primary, Ahalawat, N., additional, and Mondal, J., additional
- Published
- 2020
- Full Text
- View/download PDF
24. Crystal Structure of D464A L465A mutant of FGAM Synthetase
- Author
-
Sharma, N., primary, Ahalawat, N., additional, Sandhu, P., additional, Mondal, J., additional, and Anand, R., additional
- Published
- 2020
- Full Text
- View/download PDF
25. Crystal structure of 450-451_deletion mutant of FGAM Synthetase
- Author
-
Sharma, N., primary, Ahalawat, N., additional, Sandhu, P., additional, Mondal, J., additional, and Anand, R., additional
- Published
- 2020
- Full Text
- View/download PDF
26. Crystal Structure of D464A mutant of FGAM Synthetase
- Author
-
Sharma, N., primary, Ahalawat, N., additional, Sandhu, P., additional, Mondal, J., additional, and Anand, R., additional
- Published
- 2020
- Full Text
- View/download PDF
27. Effect of solid surface in vicinity of multi-bubble array in cryogenic environment
- Author
-
Mondal, J, primary, Mishra, A, additional, Lakkaraju, R, additional, Ashokkumar, M, additional, and Ghosh, P, additional
- Published
- 2020
- Full Text
- View/download PDF
28. 21.trans-Carbonylchlorobis(Dimethyl-Phenylphosphine)Iridium(I)
- Author
-
Smith, L. R., primary, Lin, S. M., additional, Chen, M. G., additional, Mondal, J. U., additional, Blake, D. M., additional, and Lehr, S. D., additional
- Published
- 2007
- Full Text
- View/download PDF
29. Magnetic, thermal and hyperfine behaviours of Tm3+ in TmPO4, YPO4 and LuPO4: A comparative study
- Author
-
Chakrabarti, P. K., Chattopadhyay, K. N., Modak, S., and Mondal, J.
- Published
- 2007
30. Bi-layer functionally gradient thick film semiconducting methane sensors
- Author
-
Banerjee, A., Haldar, A. K., Mondal, J., Sen, A., and Maiti, H. S.
- Published
- 2002
- Full Text
- View/download PDF
31. Effect of annealing temperature on the sensitivity of tin dioxide films prepared via a sulphide route
- Author
-
Banerjee, A., Chattopadhyay, D., Mukherjee, R., Halder, A. K., Mondal, J., Sen, A., and Maiti, H. S.
- Published
- 2001
- Full Text
- View/download PDF
32. Ka-band high efficiency power amplifier MMIC with 0.30 um MESFET for high volume applications
- Author
-
Mondal, J., Geddes, J., Carlson, D., Vickberg, M., Bounnak, S., and Anderson, C.
- Subjects
Power amplifiers -- Research ,Microwave integrated circuits -- Research ,Business ,Computers ,Electronics ,Electronics and electrical industries - Published
- 1992
33. Personal Communications Service
- Author
-
Mondal, J., primary, Ahmed, S., additional, and Moghe, Sanjay B., additional
- Published
- 1995
- Full Text
- View/download PDF
34. Design Procedure of a Turbopump Test Bench
- Author
-
Pauw, J. D., Veggi, L., Wagner, Bernd, Mondal, J., Klotz, M., Haidn, O., Technische Universität Munchen - Université Technique de Munich [Munich, Allemagne] (TUM), German Aerospace Center (DLR), and Indian Institute of Technology Kharagpur (IIT Kharagpur)
- Subjects
test bench design ,liquid oxygen scaling ,[SPI.MECA.STRU]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Structural mechanics [physics.class-ph] ,rocket Motor ,turbopump ,rocket test bench - Abstract
International audience; The high complexity of turbopumps for liquid rocket engines and their demanding requirements necessitate that their design process is accompanied by extensive experimental investigations and validation tests. is paper presents the design procedure for a rocket turbopump test bench, where water is used as a surrogate for the cryogenic fluids usually used in rocket engines. Scaling methods, that allow for a comparison of tests under varying conditions, are reviewed from literature and applied to derive the necessary dimensions of the test bench. The resulting test bench design is shown in detail and its capabilities to support the turbopump design process are assessed. Further, the operational envelope of the derived test bench design is evaluated with respect to later tests of different pumps.
- Published
- 2017
35. Fuzzy Logic Controller Design for Voltage, Frequency, Current and Power Control of Three-phase Distributed Generation Based Islanded Microgrid.
- Author
-
Dola, S. A., Mondal, J., Khandoker, A. A., Shahriar, S., Arifuzzaman, M. D., Badal, F. R., Mondol, N., and Das, S. K.
- Subjects
FUZZY logic ,LOGIC design ,MICROGRIDS ,RENEWABLE energy sources ,ELECTRIC power consumption ,ENERGY storage - Abstract
Today’s clean technologies related to microgrids are approaching towards the smart nanogrid system. It fulfils the demand of the electricity throughout the world by proper using of renewable energy sources and energy storage systems. Still, the microgrid (MG) power plant control has enriched to a level that it will require complicated and smooth control in the grid interaction including distributed islanding operation. The load dynamics and uncertainties are the common issues which hampers the frequency, voltage and power profile of the MG that is responsible to damage the load and power system. The design of robust fuzzy logic controller (FLC) has been proposed in this research article to regulate the performances of three-phase islanded MG. The performance of the proposed FLC has been examined under different loading condition whose robustness has been evaluated under faulty condition. The investigated performances of the MG ensure high tracking and robust performance of the proposed FLC. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
36. A Novel Security Unit with Mitigating Frequency Deviation for Interconnected Power System Considering Cyberattack.
- Author
-
Mondal, J., Badal, F. R., Nayem, Z., Chakraborty, D., Hossain, T., Arifuzzaman, M. D., Mondol, N., and Das, S. K.
- Subjects
INTERCONNECTED power systems ,INFORMATION & communication technologies for development ,CYBERTERRORISM ,ELECTRIC power consumption ,ELECTRIC power - Abstract
Interconnected power system is a promising source of electric power that fulfils the excess demand of electricity throughout the world whose safe and reliable operation is necessary for decreasing loadshedding and increasing resiliency. The development of information and communication technology (ICT) not only blessing for us but also hampers our technology by promoting cyber-crime. Cyber-attack (CA) on power system is now becoming a common problem that produces unauthorized access to the control unit of power system and hampers the whole system partially or completely by changing the sensitive data of power system and control unit. The performance of the power system is regulated by employing a fractional- order-proportional-integral-derivative (FPID) controller and is compared with conventional PID controller in this paper. The reliable performance of the power system completely depends on the efficient design of controller, but the parameters of the controller are largely affected by the CA and damage the whole system. Any change of the control unit or the system parameters may decrease the resiliency and the stability of the power system. An automatic cyber-attack mitigation technique (ACAMU) has been proposed in this article to completely mitigate the CA and its impact on the system and controller to enhance the security and resiliency of power system by maintaining a fixed data for both system and controller. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
37. Effect of alumina addition on methane sensitivity of tin dioxide thick films
- Author
-
Saha, M., Banerjee, A., Halder, A.K., Mondal, J., Sen, A., and Maiti, H.S.
- Published
- 2001
- Full Text
- View/download PDF
38. Mixed application MMIC technologies - Progress in combining RF, digital and photonic circuits
- Author
-
Swirhun, S, Bendett, M, Sokolov, V, Bauhahn, P, Sullivan, C, Mactaggart, R, Mukherjee, S, Hibbs-Brenner, M, and Mondal, J
- Subjects
Electronics And Electrical Engineering - Abstract
Approaches for future 'mixed application' monolithic integrated circuits (ICs) employing optical receive/transmit, RF amplification and modulation and digital control functions are discussed. We focus on compatibility of the photonic component fabrication with conventional RF and digital IC technologies. Recent progress at Honeywell in integrating several parts of the desired RF/digital/photonic circuit integration suite required for construction of a future millimeter-wave optically-controlled phased-array element are illustrated.
- Published
- 1991
39. Effect of Propagation Methods on Yield Attributes and Economics of Ginger Production under Agro-Climatic Condition of Tripura
- Author
-
Shil, S., primary, Nath, D., additional, and Mondal, J., additional
- Published
- 2018
- Full Text
- View/download PDF
40. Magnetic susceptibilities, crystal field Stark energies, and hyperfine behavior of Sm3+ in hexagonal single crystals of Sm(CF3SO3)3·9H2O.
- Author
-
Mondal, J., Acharya, S., Bisui, D., Chattopadhyay, K. N., Ghosh, M., and Chakrabarti, P. K.
- Subjects
- *
MAGNETIC susceptibility , *CRYSTAL field theory , *STARK effect , *MAGNETIC fields , *CRYSTAL whiskers , *ANISOTROPY , *RAMAN effect , *FOURIER transform infrared spectroscopy - Abstract
Single crystals of samarium trifluoromethanesulfonate (SmTFMS) were prepared from the slow evaporation of the aqueous solution of SmTFMS. The crystals are elongated along the symmetry axis c of the hexagonal crystal. At room temperature, the c axis of the crystal sets parallel with the applied magnetic field which indicates that the susceptibility parallel to the c axis (χ∥) is greater than the susceptibility perpendicular to the c axis (χ⊥). χ∥ and χ⊥ were measured from 300 down to 14 K. Magnetic anisotropy (Δχ=χ∥-χ⊥) obtained from the values of χ∥ and χ⊥ was also checked by direct measurements of Δχ and both these results agreed very well. A crossover between χ∥ and χ⊥ has been observed at ∼56 K i.e., below this temperature χ∥<χ⊥. A good theoretical simulation of the observed magnetic data of SmTFMS has been achieved using the one-electron crystal field (CF) theory. Ordering effects in the observed magnetic data were not noticed down to the lowest temperature (∼14 K) attained, indicating the interionic interaction to be of predominantly dipolar type. To substantiate the CF analysis, the Raman and Fourier transform infrared (FTIR) spectra of the single crystal of SmTFMS were recorded in the wave number ranges of 100–1800 and 400–7000 cm-1, respectively. The calculated values of the CF Stark energies of all the excited multiplets are in agreement with those extracted from the Raman and FTIR spectra. Thermal variation of the calculated electronic specific heat shows Schottky anomaly at ∼8 K. The temperature dependences of quadruple splitting and hyperfine heat capacity were also studied. [ABSTRACT FROM AUTHOR]
- Published
- 2009
- Full Text
- View/download PDF
41. Intense gigawatt relativistic electron beam generation in the presence of prepulse. Part II.
- Author
-
Roy, Amitava, Mondal, J., Menon, R., Mitra, S., Kumar, D. D. P., Sharma, Archana, Mittal, K. C., Nagesh, K. V., and Chakravarthy, D. P.
- Subjects
- *
ELECTRON beams , *DIODES , *PARTICLES (Nuclear physics) , *PULSED power systems , *ENERGY storage - Abstract
Intense relativistic electron beam diode has been operated without a prepulse switch. Our previously reported results demonstrated that the large pulse power systems in the presence of prepulse can deliver gigawatt power pulses into a matched load if the anode cathode gap is set larger than that estimated by the Child Langmuir relation. This article reports some more experimental results on the current and voltage characteristics, the shot to shot reproducibility of the diode in the presence of prepulse. Intense electron beam diode behavior was studied for various anode cathode gaps and voltages in presence of prepulse. It has been observed that for small gap, prepulse generated plasma completely fills the anode cathode gap and the diode behaves as plasma filled diode. At a large gap the beam parameters obtained are 420 keV, 22 kA, 100 ns. From the experimentally obtained values of perveance an upper limit was set up for the Marx voltage (or anode cathode voltage) and lower limit for the anode cathode gap in order to avoid the gap closure problem and the diode can be operated with a better shot to shot reproducibility. [ABSTRACT FROM AUTHOR]
- Published
- 2007
- Full Text
- View/download PDF
42. Intense gigawatt relativistic electron beam generation in the presence of prepulse.
- Author
-
Mondal, J., Kumar, D. D. P., Roy, A., Mitra, S., Sharma, A., Singh, S. K., Rao, G. V., Mittal, K. C., Nagesh, K. V., and Chakravarthy, D. P.
- Subjects
- *
ELECTRON beams , *ELECTRONIC pulse techniques , *PLASMA gases , *ELECTRODES , *NUCLEAR research laboratories - Abstract
Large pulse power systems in the presence of prepulse can deliver gigawatt power pulses into a matched load. While employing these pulse power systems for the generation of intense relativistic electron beams (IREBs), the prepulse initiated plasma closes the anode cathode gap, if the gap distance is set by the Child-Langmuir formula. In order to reduce the prepulse effect, the anode cathode gap has been increased for the generation of IREB with output parameters of 400 kV, 20 kA, and 100 ns pulse duration. In this paper the generation of IREB in the presence of prepulse without using any prepulse switch has been discussed. [ABSTRACT FROM AUTHOR]
- Published
- 2007
- Full Text
- View/download PDF
43. Magnetic susceptibilities, crystal field Stark energies, and hyperfine behavior of [Sm.sup.3+] in hexagonal single crystals of Sm[(C[F.sub.3]S[O.sub.3]).sub.3].9[H.sub.2]O
- Author
-
Mondal, J., Acharya, S., Bisui, D., Chattopadhyay, K.N., Ghosh, M., and Chakrabarti, P.K.
- Subjects
Samarium -- Magnetic properties ,Samarium -- Electric properties ,Semiconductor-metal boundaries -- Analysis ,Stark effect -- Analysis ,Sulfones -- Magnetic properties ,Sulfones -- Electric properties ,Physics - Abstract
Single crystals of samarium trifluoromethanesulfonate (SmTFMS) are prepared from the slow evaporation of the aqueous solution of SmTFMS and the magnetic susceptibilities, crystal field Stark energies and hyperfine behavior are studied. Thermal variation of the electronic specific heat has shown Schottky anomaly at 8 K and the temperature dependences of quadruple splitting and hyperfine heat capacity are studied.
- Published
- 2009
44. DYNAMIC STATE ESTIMATOR USING ANN BASED BUS LOAD PREDICTION
- Author
-
Sinha, A. K. and Mondal, J. K.
- Subjects
Algorithms -- Usage ,Electric power systems -- State estimation ,Business ,Electronics ,Electronics and electrical industries - Abstract
This paper presents an algorithm for dynamic state estimation of power systems. The method uses ANN based bus load prediction for the prediction step in the DSE. The proposed DSE uses rectangular coordinate formulation for measurement equations. A second order dynamic state estimator which incorporates the full non-linearities of the measurement function is used for the filtering step. The inclusion of non-linearities makes the proposed state estimator perform better in case of sudden large changes in load/generations. Key words: State estimation, dynamic state estimation, ANN, load prediction, power system state estimation.
- Published
- 1999
45. Influence of Starling's Hypothesis and Joule Heating on Peristaltic Flow of an Electrically Conducting Casson Fluid in a Permeable Microvessel
- Author
-
Sutradhar, A., primary, Mondal, J. K., additional, Murthy, P. V. S. N., additional, and Gorla, Rama Subba Reddy, additional
- Published
- 2016
- Full Text
- View/download PDF
46. MM-Wave fixture deembedding in 26.5–40 GHz band
- Author
-
Mondal, J. P.
- Published
- 1989
- Full Text
- View/download PDF
47. Nanotherapeutic approaches to overcome distinct drug resistance barriers in models of breast cancer
- Author
-
Saha Tanmoy, Mondal Jayanta, Khiste Sachin, Lusic Hrvoje, Hu Zhang-Wei, Jayabalan Ruparoshni, Hodgetts Kevin J., Jang HaeLin, Sengupta Shiladitya, Lee Somin Eunice, Park Younggeun, Lee Luke P., and Goldman Aaron
- Subjects
cancer biology ,chemotherapy ,drug resistance ,nanomedicine ,Physics ,QC1-999 - Abstract
Targeted delivery of drugs to tumor cells, which circumvent resistance mechanisms and induce cell killing, is a lingering challenge that requires innovative solutions. Here, we provide two bioengineered strategies in which nanotechnology is blended with cancer medicine to preferentially target distinct mechanisms of drug resistance. In the first ‘case study’, we demonstrate the use of lipid–drug conjugates that target molecular signaling pathways, which result from taxane-induced drug tolerance via cell surface lipid raft accumulations. Through a small molecule drug screen, we identify a kinase inhibitor that optimally destroys drug tolerant cancer cells and conjugate it to a rationally-chosen lipid scaffold, which enhances anticancer efficacy in vitro and in vivo. In the second ‘case study’, we address resistance mechanisms that can occur through exocytosis of nanomedicines. Using adenocarcinoma HeLa and MCF-7 cells, we describe the use of gold nanorod and nanoporous vehicles integrated with an optical antenna for on-demand, photoactivation at ∼650 nm enabling release of payloads into cells including cytotoxic anthracyclines. Together, these provide two approaches, which exploit engineering strategies capable of circumventing distinct resistance barriers and induce killing by multimodal, including nanophotonic mechanisms.
- Published
- 2021
- Full Text
- View/download PDF
48. Effect of Capillarity on Fourth Order Nonlinear Evolution Equation for Two Stokes Wave Trains in Deep Water in the Presence of Air Flowing Over Water
- Author
-
Dhar, A.K., primary and Mondal, J., additional
- Published
- 2015
- Full Text
- View/download PDF
49. Stability analysis from fourth order evolution equation for counter-propagating gravity wave packets in the presence of wind flowing over water
- Author
-
Dhar, Asoke Kumar, primary and Mondal, J., additional
- Published
- 2015
- Full Text
- View/download PDF
50. Two-pion Bose-Einstein correlations in pp collisions at s = 900 GeV
- Author
-
Aamodt, K., Abel, 1 N., Abeysekara, 2 U., Abrahantes Quintana, 3 A., Abramyan, 4 A., Adamova´, 5 D., Aggarwal, 6 M. M., Aglieri Rinella, 7 G., Agocs, 8 A. G., Aguilar Salazar, 9 S., Ahammed, 10 Z., Ahmad, 11 A., Ahmad, 12 N., Ahn, 12 S. U., Akimoto, b. R., Akindinov, 14 A., Aleksandrov, 15 D., Alessandro, 16 B., Alfaro Molina, 17 R., Alici, 10 A., Avin˜a, 18 E. Almara´z., Alme, 10 J., Alt, 19 T., 2, Altini, c. V., Altinpinar, 20 S., Andrei, 21 C., Andronic, 22 A., Anelli, 21 G., Angelov, 8 V., Anson, c. C., Anticˇic´, 23 T., Antinori, 24 F., 8, Antinori, d. S., Antipin, 18 K., Anton´czyk, 25 D., Antonioli, 25 P., Anzo, 26 A., Aphecetche, 10 L., Appelsha¨user, 27 H., Arcelli, 25 S., Arceo, 18 R., Arend, 10 A., Armesto, 25 N., Arnaldi, 28 R., Aronsson, 17 T., Arsene, 29 I. C., 1, Asryan, e. A., Augustinus, 30 A., Averbeck, 8 R., Awes, 21 T. C., A¨ ysto¨, 31 J., Azmi, 32 M. D., Bablok, 12 S., Bach, 19 M., Badala`, 33 A., Baek, 34 Y. W., Bagnasco, b. S., Bailhache, 17 R., Bala, f. R., Baldisseri, 35 A., Baldit, 36 A., Ba´n, 37 J., Barbera, 38 R., Barnafo¨ldi, 39 G. G., Barnby, 9 L. S., Barret, 40 V., Bartke, 37 J., Barile, 41 F., Basile, 20 M., Basmanov, 18 V., Bastid, 42 N., Bathen, 37 B., Batigne, 43 G., Batyunya, 27 B., Baumann, 44 C., Bearden, f. I. G., Becker, 45 B., Belikov, g. I., Bellwied, 47 R., Belmont Moreno, 48 E., Belogianni, 10 A., Benhabib, 49 L., Beole, 27 S., Berceanu, 35 I., Bercuci, 22 A., Berdermann, h. E., Berdnikov, 21 Y., Betev, 50 L., Bhasin, 8 A., Bhati, 51 A. K., Bianchi, 7 L., Bianchi, 35 N., Bianchin, 52 C., Bielcˇı´k, 53 J., Bielcˇı´kova´, 54 J., Bilandzic, 6 A., Bimbot, 55 L., Biolcati, 56 E., Blanc, 35 A., Blanco, 37 F., Blanco, i. F., Blau, 57 D., Blume, 16 C., Boccioli, 25 M., Bock, 8 N., Bogdanov, 23 A., Bøggild, 58 H., Bogolyubsky, 45 M., Bohm, 59 J., Boldizsa´r, 60 L., Bombara, 9 M., Bombonati, 61 C., Bondila, j. M., Borel, 32 H., Borisov, 36 A., Bortolin, 62 C., Bose, k. S., Bosisio, Luciano, Bossu´, 64 F., Botje, 35 M., Bo¨ttger, 55 S., Bourdaud, 2 G., Boyer, 27 B., Braun, 56 M., Braun Munzinger, 30 P., 65, 21, Bravina, c. L., Bregant, Marco, Breitner, l. T., Bruckner, 2 G., Brun, 8 R., Bruna, 8 E., Bruno, 29 G. E., Budnikov, 20 D., Buesching, 42 H., Buncic, 25 P., Busch, 8 O., Buthelezi, 66 Z., Caffarri, 67 D., Cai, 53 X., Caines, 68 H., Calvo, 29 E., Camacho, 69 E., Camerini, Paolo, Campbell, 64 M., Canoa Roman, 8 V., Capitani, 8 G. P., Cara Romeo, 52 G., Carena, 26 F., Carena, 8. W., Carminati, 8 F., Casanova Dı´az, 8 A., Caselle, 52 M., Castillo Castellanos, 8 J., Castillo Hernandez, 36 J. F., Catanescu, 21 V., Cattaruzza, Enrico, Cavicchioli, 64 C., Cerello, 8 P., Chambert, 17 V., Chang, 56 B., Chapeland, 60 S., Charpy, 8 A., Charvet, 56 J. L., Chattopadhyay, 36 S., Chattopadhyay, 63 S., Cherney, 11 M., Cheshkov, 3 C., Cheynis, 8 B., Chiavassa, 71 E., Chibante Barroso, 35 V., Chinellato, 8 D. D., Chochula, 72 P., Choi, 8 K., Chojnacki, 73 M., Christakoglou, 74 P., Christensen, 74 C. H., Christiansen, 45 P., Chujo, 75 T., Chuman, 76 F., Cicalo, 77 C., Cifarelli, 46 L., Cindolo, 18 F., Cleymans, 26 J., Cobanoglu, 67 O., Coffin, 35 J. P., Coli, 47 S., Colla, 17 A., Conesa Balbastre, 8 G., Conesa del Valle, 52 Z., Conner, m. E. S., Constantin, 78 P., Contin, Giacomo, Contreras, j. J. G., Corrales Morales, 70 Y., Cormier, 35 T. M., Cortese, 48 P., Maldonado, 79 I. Corte´s., Cosentino, 80 M. R., Costa, 72 F., Cotallo, 8 M. E., Crescio, 57 E., Crochet, 70 P., Cuautle, 37 E., Cunqueiro, 81 L., Cussonneau, 52 J., Dainese, 27 A., Dalsgaard, 82 H. H., Danu, 45 A., Das, 83 I., Dash, 63 A., Dash, 84 S., de Barros, 84 G. O. V., De Caro, 85 A., de Cataldo, 86 G., de Cuveland, 87 J., De Falco, c. A., De Gaspari, 88 M., de Groot, 66 J., De Gruttola, 8 D., De Marco, 86 N., De Pasquale, 17 S., De Remigis, 86 R., de Rooij, 17 R., de Vaux, 74 G., Delagrange, 67 H., Delgado, 27 Y., Dellacasa, 69 G., Deloff, 79 A., Demanov, 89 V., De´nes, 42 E., Deppman, 9 A., D’Erasmo, 85 G., Derkach, 20 D., Devaux, 30 A., Di Bari, 37 D., Di Giglio, 20 C., Di Liberto, j. S., Di Mauro, 90 A., Di Nezza, 8 P., Dialinas, 52 M., Dı´az, 27 L., Dı´az, 81 R., Dietel, 32 T., Divia`, 43 R., Djuvsland, 8 Ø., Dobretsov, 19 V., Dobrin, 16 A., Dobrowolski, 75 T., Do¨nigus, 89 B., Domı´nguez, 21 I., Don, 81 D. M. M., Dordic, 91 O., Dubey, 1 A. K., Dubuisson, 11 J., Ducroux, 8 L., Dupieux, 71 P., Dutta Majumdar, 37 A. K., Dutta Majumdar, 63 M. R., Elia, 11 D., Emschermann, 87 D., Enokizono, n. A., Espagnon, 31 B., Estienne, 56 M., Esumi, 27 S., Evans, 76 D., Evrard, 40 S., Eyyubova, 8 G., Fabjan, 1 C. W., Fabris, o. D., Faivre, 82 J., Falchieri, 92 D., Fantoni, 18 A., Fasel, 52 M., Fateev, 21 O., Fearick, 44 R., Fedunov, 67 A., Fehlker, 44 D., Fekete, 19 V., Felea, 93 D., Fenton Olsen, 83 B., Feofilov, p. G., Ferna´ndez Te´llez, 30 A., Ferreiro, 80 E. G., Ferretti, 28 A., Ferretti, 35 R., Figueredo, q. M. A. S., Filchagin, 85 S., Fini, 42 R., Fionda, 87 F. M., Fiore, 20 E. M., Floris, 20 M., Fodor, j. Z., Foertsch, 9 S., Foka, 67 P., Fokin, 21 S., Formenti, 16 F., Fragiacomo, 8 E., Fragkiadakis, 94 M., Frankenfeld, 49 U., Frolov, 21 A., Fuchs, 95 U., Furano, 8 F., Furget, 8 C., Fusco Girard, 92 M., Gaardhøje, 86 J. J., Gadrat, 45 S., Gagliardi, 92 M., Gago, 35 A., Gallio, 69 M., Ganoti, 35 P., Ganti, 49 M. S., Garabatos, 11 C., Trapaga, 21 C. Garcı´a., Gebelein, 35 J., Gemme, 2 R., Germain, 79 M., Gheata, 27 A., Gheata, 8 M., Ghidini, 8 B., Ghosh, 20 P., Giraudo, 11 G., Giubellino, 17 P., Gladysz Dziadus, 17 E., Glasow, 41 R., Gla¨ssel, a. P., Glenn, 66 A., Go´mez Jime´nez, 96 R., Gonza´lez Santos, 97 H., Gonza´lez Trueba, 80 L. H., Gonza´lez Zamora, 10 P., Gorbunov, 57 S., Gorbunov, c. Y., Gotovac, 3 S., Gottschlag, 98 H., Grabski, 43 V., Grajcarek, 10 R., Grelli, 66 A., Grigoras, 74 A., Grigoras, 8 C., Grigoriev, 8 V., Grigoryan, 58 A., Grigoryan, 5 S., Grinyov, 44 B., Grion, 62 N., Gros, 94 P., Grosse Oetringhaus, 75 J. F., Grossiord, 8 J. Y., Grosso, Raffaele, Guber, 82 F., Guernane, 99 R., Guerra, 92 C., Guerzoni, 69 B., Gulbrandsen, 18 K., Gulkanyan, 45 H., Gunji, 5 T., Gupta, 14 A., Gupta, 51 R., Gustafsson, 51 H. A., Gutbrod, a. H., Haaland, 21 Ø., Hadjidakis, 19 C., Haiduc, 56 M., Hamagaki, 83 H., Hamar, 14 G., Hamblen, 9 J., Han, 100 B. H., Harris, 101 J. W., Hartig, 29 M., Harutyunyan, 25 A., Hasch, 5 D., Hasegan, 52 D., Hatzifotiadou, 83 D., Hayrapetyan, 26 A., Heide, 5 M., Heinz, 43 M., Helstrup, 29 H., Herghelegiu, 102 A., Herna´ndez, 22 C., Herrera Corral, 21 G., Herrmann, 70 N., Hetland, 66 K. F., Hicks, 102 B., Hiei, 29 A., Hille, 77 P. T., Hippolyte, r. B., Horaguchi, 47 T., Hori, s. Y., Hristov, 14 P., Hrˇivna´cˇova´, 8 I., 56 S., Hu, Huang, 103 M., Huber, 19 S., Humanic, 21 T. J., Hutter, 23 D., Hwang, 33 D. S., Ichou, 101 R., Ilkaev, 27 R., Ilkiv, 42 I., Inaba, 89 M., Innocenti, 76 P. G., Ippolitov, 8 M., Irfan, 16 M., Ivan, 12 C., Ivanov, 74 A., Ivanov, 30 M., Ivanov, 21 V., Iwasaki, 50 T., Jachołkowski, 77 A., Jacobs, 8 P., Jancˇurova´, 104 L., Jangal, 44 S., Janik, 47 R., Jena, 93 C., Jena, 84 S., Jirden, 105 L., Jones, 8 G. T., Jones, 40 P. G., Jovanovic´, 40 P., Jung, 40 H., Jung, 13 W., Jusko, 13 A., Kaidalov, 40 A. B., Kalcher, 15 S., Kalinˇa´k, c. P., Kalisky, 38 M., Kalliokoski, 43 T., Kalweit, 32 A., Kamal, 65 A., Kamermans, 12 R., Kanaki, 74 K., Kang, 19 E., Kang, 13 J. H., Kapitan, 60 J., Kaplin, 6 V., Kapusta, 58 S., Karavichev, 8 O., Karavicheva, 99 T., Karpechev, 99 E., Kazantsev, 99 A., Kebschull, 16 U., Keidel, 2 R., Khan, 78 M. M., Khan, 12 S. A., Khanzadeev, 11 A., Kharlov, 50 Y., Kikola, 59 D., Kileng, 106 B., Kim, 102 D. J., Kim, 32 D. S., Kim, 13 D. W., Kim, 13 H. N., Kim, 13 J., Kim, 59 J. H., Kim, 101 J. S., Kim, 13 M., Kim, 60 S. H., Kim, 13 S., Kim, 101 Y., Kirsch, 60 S., Kisel, 8 I., Kiselev, e. S., Kisiel, 15 A., Klay, j. J. L., Klein, 107 J., Klein Bo¨sing, 66 C., Kliemant, n. M., Klovning, 25 A., Kluge, 19 A., Knichel, 8 M. L., Kniege, 21 S., Koch, 25 K., Kolevatov, 66 R., Kolojvari, 1 A., Kondratiev, 30 V., Kondratyeva, 30 N., Konevskih, 58 A., Kornas´, 99 E., Kour, 41 R., Kowalski, 40 M., Kox, 41 S., Kozlov, 92 K., Kral, 16 J., Kra´lik, l. I., Kramer, 38 F., Kraus, 25 I., Kravcˇa´kova´, e. A., Krawutschke, 61 T., Krivda, 108 M., Krumbhorn, 40 D., Krus, 66 M., Kryshen, 54 E., Krzewicki, 50 M., Kucheriaev, 55 Y., Kuhn, 16 C., Kuijer, 47 P. G., Kumar, 55 L., Kumar, 7 N., Kupczak, 7 R., Kurashvili, 106 P., Kurepin, 89 A., Kurepin, 99 A. N., Kuryakin, 99 A., Kushpil, 42 S., Kushpil, 6 V., Kutouski, 6 M., Kvaerno, 44 H., Kweon, 1 M. J., Kwon, 66 Y., La Rocca, 60 P., Lackner, t. F., de Guevara, 8 P. Ladro´n., Lafage, 57 V., Lal, 56 C., Lara, 51 C., Larsen, 2 D. T., Laurenti, 19 G., Lazzeroni, 26 C., Le Bornec, 40 Y., Le Bris, 56 N., Lee, 27 H., Lee, 73 K. S., Lee, 13 S. C., Lefe`vre, 13 F., Lenhardt, 27 M., Leistam, 27 L., Lehnert, 8 J., Lenti, 25 V., Leo´n, 87 H., Monzo´n, 10 I. Leo´n., Vargas, 97 H. Leo´n., Le´vai, 25 P., 9 X., Li, 103 Y., Li, Lietava, 103 R., Lindal, 40 S., Lindenstruth, 1 V., Lippmann, c. C., Lisa, 8 M. A., Liu, 23 L., Loginov, 19 V., Lohn, 58 S., Lopez, 8 X., Lo´pez Noriega, 37 M., Lo´pez Ramı´rez, 56 R., Lo´pez Torres, 80 E., Løvhøiden, 4 G., Lozea Feijo Soares, 1 A., 85 S., Lu, Lunardon, 103 M., Luparello, 53 G., Luquin, 35 L., Lutz, 27 J. R., 47 K., Ma, 68 R., Ma, Madagodahettige Don, 29 D. M., Maevskaya, 91 A., Mager, 99 M., Mahapatra, j. D. P., Maire, 84 A., Makhlyueva, 47 I., Mal’Kevich, 8 D., Malaev, 15 M., Malagalage, 50 K. J., Maldonado Cervantes, 3 I., Malek, 81 M., Malinina, 56 L., Malkiewicz, u. T., Malzacher, 32 P., Mamonov, 21 A., Manceau, 42 L., Mangotra, 37 L., Manko, 51 V., Manso, 16 F., Manzari, 37 V., Mao, 87 Y., Maresˇ, v. J., Margagliotti, Giacomo, Margotti, 64 A., Marı´n, 26 A., Martashvili, 21 I., Martinengo, 100 P., Martı´nez Herna´ndez, 8 M. I., Martı´nez Davalos, 80 A., Martı´nez Garcı´a, 10 G., Maruyama, 27 Y., Marzari Chiesa, 77 A., Masciocchi, 35 S., Masera, 21 M., Masetti, 35 M., Masoni, 18 A., Massacrier, 46 L., Mastromarco, 71 M., Mastroserio, 87 A., Matthews, j. Z. L., Matyja, 40 A., Mayani, w. D., Mazza, 81 G., Mazzoni, 17 M. A., Meddi, 90 F., Menchaca Rocha, 110 A., Mendez Lorenzo, 10 P., Meoni, 8 M., Mercado Pe´rez, 8 J., Mereu, 66 P., Miake, 17 Y., Michalon, 76 A., Miftakhov, 47 N., Milano, 50 L., Milosevic, 35 J., Minafra, 1 F., Mischke, 20 A., Mis´kowiec, 74 D., Mitu, 21 C., Mizoguchi, 83 K., Mlynarz, 77 J., Mohanty, 48 B., Molnar, 11 L., 9, Mondal, j. M. M., Zetina, 11 L. Montan˜o., Monteno, x. M., Montes, 17 E., Morando, 57 M., Moretto, 53 S., Morsch, 53 A., Moukhanova, 8 T., Muccifora, 16 V., Mudnic, 52 E., Muhuri, 98 S., Mu¨ ller, 11 H., Munhoz, 8 M. G., Munoz, 85 J., Musa, 80 L., Musso, 8 A., Nandi, 17 B. K., Nania, 105 R., Nappi, 26 E., Navach, 87 F., Navin, 20 S., Nayak, 40 T. K., Nazarenko, 11 S., Nazarov, 42 G., Nedosekin, 42 A., Nendaz, 15 F., Newby, 71 J., Nianine, 96 A., Nicassio, 16 M., Nielsen, j. B. S., Nikolaev, 45 S., Nikolic, 16 V., Nikulin, 24 S., Nikulin, 16 V., Nilsen, 50 B. S., Nilsson, 3 M. S., Noferini, 1 F., Nomokonov, 26 P., Nooren, 44 G., Novitzky, 74 N., Nyatha, 32 A., Nygaard, 105 C., Nyiri, 45 A., Nystrand, 1 J., Ochirov, 19 A., Odyniec, 30 G., Oeschler, 104 H., Oinonen, 65 M., Okada, 32 K., Okada, 14 Y., Oldenburg, 77 M., Oleniacz, 8 J., Oppedisano, 106 C., Orsini, 17 F., Ortiz Velasquez, 36 A., Ortona, 81 G., Oskarsson, 35 A., Osmic, 75 F., O¨ sterman, 8 L., Ostrowski, 75 P., Otterlund, 106 I., Otwinowski, 75 J., Øvrebekk, 21 G., Oyama, 19 K., Ozawa, 66 K., Pachmayer, 14 Y., Pachr, 66 M., Padilla, 54 F., Pagano, 35 P., Paic´, 86 G., Painke, 81 F., Pajares, 2 C., Pal, 28 S., Pal, y. S. K., Palaha, 11 A., Palmeri, 40 A., Panse, 34 R., Papikyan, 2 V., Pappalardo, 5 G. S., Park, 34 W. J., Pastircˇa´k, 21 B., Pastore, 38 C., Paticchio, 87 V., Pavlinov, 87 A., Pawlak, 48 T., Peitzmann, 106 T., Pepato, 74 A., Pereira, 82 H., Peressounko, 36 D., Pe´rez, 16 C., Perini, 69 D., Perrino, 8 D., Peryt, j. W., Peschek, 106 J., Pesci, c. A., Peskov, 26 V., Pestov, j. Y., Peters, 95 A. J., Petra´cˇek, 8 V., Petridis, 54 A., Petris, a. M., Petrov, 22 P., Petrovici, 40 M., Petta, 22 C., Peyre´, 39 J., Piano, Stefano, Piccotti, 94 A., Pikna, 17 M., Pillot, 93 P., Pinazza, 27 O., Pinsky, j. L., Pitz, 91 N., Piuz, 25 F., Platt, 8 R., Płoskon´, 40 M., Pluta, 104 J., Pocheptsov, 106 T., Pochybova, z. S., Podesta Lerma, 9 P. L. M., Poggio, 97 F., Poghosyan, 35 M. G., Pola´k, 35 K., Polichtchouk, 109 B., Polozov, 59 P., Polyakov, 15 V., Pommeresch, 50 B., Pop, 19 A., Posa, 22 F., Pospı´sˇil, 20 V., Potukuchi, 54 B., Pouthas, 51 J., Prasad, 56 S. K., Preghenella, 11 R., Prino, t. F., Pruneau, 17 C. A., Pshenichnov, 48 I., Puddu, 99 G., Pujahari, 88 P., Pulvirenti, 105 A., Punin, 39 A., Punin, 42 V., Putisˇ, 42 M., Putschke, 61 J., Quercigh, 29 E., Rachevski, 8 A., Rademakers, 94 A., Radomski, 8 S., Ra¨iha¨, 66 T. S., Rak, 32 J., Rakotozafindrabe, 32 A., Ramello, 36 L., Ramı´rez Reyes, 79 A., Rammler, 70 M., Raniwala, 43 R., Raniwala, 111 S., Ra¨sa¨nen, 111 S. S., Rashevskaya, 32 I., Rath, 94 S., Read, 84 K. F., Real, 100 J. S., Redlich, 92 K., Renfordt, aa R., Reolon, 25 A. R., Reshetin, 52 A., Rettig, 99 F., Revol, c. J. P., Reygers, 8 K., Ricaud, bb H., Riccati, 65 L., Ricci, 17 R. A., Richter, 112 M., Riedler, 19 P., Riegler, 8. W., Riggi, 8 F., Rivetti, 39 A., Rodriguez Cahuantzi, 17 M., Røed, 80 K., Ro¨hrich, 102 D., Roma´n Lo´pez, cc S., Romita, 80 R., Ronchetti, e. F., Rosinsky´, 52 P., Rosnet, 8 P., Rossegger, 37 S., Rossi, 8 A., Roukoutakis, dd F., Rousseau, ee S., Roy, 56 C., Roy, m. P., Rubio Montero, 63 A. J., Rui, Rinaldo, Rusanov, 64 I., Russo, 66 G., Ryabinkin, 86 E., Rybicki, 16 A., Sadovsky, 41 S., Afarˇı´k, 59 K. S. ˇ., Sahoo, 8 R., Saini, 53 J., Saiz, 11 P., Sakata, 8 D., Salgado, 76 C. A., Salgueiro Domingues da Silva, 28 R., Salur, 8 S., Samanta, 104 T., Sambyal, 11 S., Samsonov, 51 V., A´ndor, 50 L. S. ˇ., Sandoval, 38 A., Sano, 10 M., Sano, 76 S., Santo, 14 R., Santoro, 43 R., Sarkamo, 20 J., Saturnini, 32 P., Scapparone, 37 E., Scarlassara, 26 F., Scharenberg, 53 R. P., Schiaua, 113 C., Schicker, 22 R., Schindler, 66 H., Schmidt, 8 C., Schmidt, 21 H. R., Schossmaier, 21 K., Schreiner, 8 S., Schuchmann, 8 S., Schukraft, 25 J., Schutz, 8 Y., Schwarz, 27 K., Schweda, 21 K., Scioli, 66 G., Scomparin, 18 E., Scott, 17 P. A., Segato, 40 G., Semenov, 53 D., Senyukov, 30 S., Seo, 79 J., Serci, 13 S., Serkin, 88 L., Serradilla, 81 E., Sevcenco, 57 A., Sgura, 83 I., Shabratova, 20 G., Shahoyan, 44 R., Sharkov, 8 G., Sharma, 15 N., Sharma, 7 S., Shigaki, 51 K., Shimomura, 77 M., Shtejer, 76 K., Sibiriak, 4 Y., Siciliano, 16 M., Sicking, 35 E., Siddi, ff E., Siemiarczuk, 46 T., Silenzi, 89 A., Silvermyr, 18 D., Simili, 31 E., Simonetti, 74 G., Singaraju, j. R., Singh, 11 R., Singhal, 51 V., Sinha, 11 B. C., Sinha, 11 T., Sitar, 63 B., Sitta, 93 M., Skaali, 79 T. B., Skjerdal, 1 K., Smakal, 19 R., Smirnov, 54 N., Snellings, 29 R., Snow, 55 H., Søgaard, 40 C., Soloviev, 45 A., Soltveit, 59 H. K., Soltz, 66 R., Sommer, 96 W., Son, 25 C. W., Son, 73 H., Song, 101 M., Soos, 60 C., Soramel, 8 F., Soyk, 53 D., Spyropoulou Stassinaki, 21 M., Srivastava, 49 B. K., Stachel, 113 J., Staley, 66 F., Stan, 36 E., Stefanek, 83 G., Stefanini, 89 G., Steinbeck, 8 T., Stenlund, c. E., Steyn, 75 G., Stocco, 67 D., Stock, w. R., Stolpovsky, 25 P., Strmen, 59 P., Suaide, 93 A. A. P., Subieta Va´squez, 85 M. A., Sugitate, 35 T., Suire, 77 C., Umbera, 56 M. S. ˇ., Susa, 6 T., Swoboda, 24 D., Symons, 8 J., Szanto de Toledo, 104 A., Szarka, 85 I., Szostak, 93 A., Szuba, 46 M., Tadel, 106 M., Tagridis, 8 C., Takahara, 49 A., Takahashi, 14 J., Tanabe, 72 R., Tapia Takaki, 76 J. D., Taureg, 56 H., Tauro, 8 A., Tavlet, 8 M., Tejeda Mun˜oz, 8 G., Telesca, 80 A., Terrevoli, 8 C., Tha¨der, 20 J., Tieulent, c. R., Tlusty, 71 D., Toia, 54 A., Tolyhy, 8 T., Torcato de Matos, 9 C., Torii, 8 H., Torralba, 77 G., Toscano, 2 L., Tosello, 17 F., Tournaire, 17 A., Traczyk, gg T., Tribedy, 106 P., Tro¨ger, 11 G., Truesdale, 2 D., Trzaska, 23 W. H., Tsiledakis, 32 G., Tsilis, 66 E., Tsuji, 49 T., Tumkin, 14 A., Turrisi, 42 R., Turvey, 82 A., Tveter, 3 T. S., Tydesjo¨, 1 H., Tywoniuk, 8 K., Ulery, 1 J., Ullaland, 25 K., Uras, 19 A., Urba´n, 88 J., Urciuoli, 61 G. M., Usai, 90 G. L., Vacchi, 88 A., Vala, 94 M., Valencia Palomo, hh L., Vallero, 10 S., van der Kolk, 66 N., Vande Vyvre, 55 P., van Leeuwen, 8 M., Vannucci, 74 L., Vargas, 112 A., Varma, 80 R., Vasiliev, 105 A., Vassiliev, 16 I., Vasileiou, ee M., Vechernin, 49 V., Venaruzzo, Massimo, Vercellin, 64 E., Vergara, 35 S., Vernet, 80 R., Verweij, ii M., Vetlitskiy, 74 I., Vickovic, 15 L., Viesti, 98 G., Vikhlyantsev, 53 O., Vilakazi, 42 Z., Villalobos Baillie, 67 O., Vinogradov, 40 A., Vinogradov, 16 L., Vinogradov, 30 Y., Virgili, 42 T., Viyogi, 86 Y. P., Vodopianov, 11 A., Voloshin, 44 K., Voloshin, 15 S., Volpe, 48 G., von Haller, 20 B., Vranic, 8 D., Vrla´kova´, 21 J., Vulpescu, 61 B., Wagner, 37 B., Wagner, 19 V., Wallet, 54 L., Wan, 8 R., Wang, m. D., Wang, 68 Y., Wang, 66 Y., Watanabe, 68 K., Wen, 76 Q., Wessels, 103 J., Westerhoff, 43 U., Wiechula, 43 J., Wikne, 66 J., Wilk, 1 A., Wilk, 43 G., Williams, 89 M. C. S., Willis, 26 N., Windelband, 56 B., 66 C., Xu, Yang, 68 C., Yang, 68 H., Yasnopolskiy, 66 S., Yermia, 16 F., 27 J., Yi, Yin, 73 Z., Yokoyama, 68 H., Yoo, 76 I. K., Yuan, 73 X., Yurevich, jj V., Yushmanov, 44 I., Zabrodin, 16 E., Zagreev, 1 B., Zalite, 15 A., Zampolli, 50 C., Zanevsky, kk Y. u., Zaporozhets, 44 S., Zarochentsev, 44 A., Za´vada, 30 P., Zbroszczyk, 109 H., Zelnicek, 106 P., Zenin, 2 A., Zepeda, 59 A., Zgura, 70 I., Zhalov, 83 M., Zhang, 50 X., Zhou, b. D., Zhou, 68 S., Zhu, 103 J., Zichichi, 68 A., Zinchenko, t. A., Zinovjev, 44 G., Zoccarato, 62 Y., Zycha´cˇek, 71 V., Zynovyev62, M., K., Aamodt, 1 N., Abel, 2 U., Abeysekara, 3 A., Abrahantes Quintana, 4 A., Abramyan, 5 D., Adamova´, 6 M. M., Aggarwal, 7 G., Aglieri Rinella, 8 A. G., Agoc, 9 S., Aguilar Salazar, 10 Z., Ahammed, 11 A., Ahmad, 12 N., Ahmad, 12 S. U., Ahn, b. R., Akimoto, 14 A., Akindinov, 15 D., Aleksandrov, 16 B., Alessandro, 17 R., Alfaro Molina, 10 A., Alici, 18 E., Almara´z Avin˜a, 10 J., Alme, 19 T., Alt, c. V., Altini, 20 S., Altinpinar, 21 C., Andrei, 22 A., Andronic, 21 G., Anelli, 8 V., Angelov, c. C., Anson, 23 T., Anticˇic´, 24 F., Antinori, d. S., Antinori, 18 K., Antipin, 25 D., Anton´czyk, 25 P., Antonioli, 26 A., Anzo, 10 L., Aphecetche, 27 H., Appelsha¨user, 25 S., Arcelli, 18 R., Arceo, 10 A., Arend, 25 N., Armesto, 28 R., Arnaldi, 17 T., Aronsson, 29 I. C., Arsene, e. A., Asryan, 30 A., Augustinu, 8 R., Averbeck, 21 T. C., Awe, 31 J., A¨ ysto¨, 32 M. D., Azmi, 12 S., Bablok, 19 M., Bach, 33 A., Badala`, 34 Y. W., Baek, b. S., Bagnasco, 17 R., Bailhache, f. R., Bala, 35 A., Baldisseri, 36 A., Baldit, 37 J., Ba´n, 38 R., Barbera, 39 G. G., Barnafo¨ldi, 9 L. S., Barnby, 40 V., Barret, 37 J., Bartke, 41 F., Barile, 20 M., Basile, 18 V., Basmanov, 42 N., Bastid, 37 B., Bathen, 43 G., Batigne, 27 B., Batyunya, 44 C., Baumann, f. I. G., Bearden, 45 B., Becker, g. I., Belikov, 47 R., Bellwied, 48 E., Belmont Moreno, 10 A., Belogianni, 49 L., Benhabib, 27 S., Beole, 35 I., Berceanu, 22 A., Bercuci, h. E., Berdermann, 21 Y., Berdnikov, 50 L., Betev, 8 A., Bhasin, 51 A. K., Bhati, 7 L., Bianchi, 35 N., Bianchi, 52 C., Bianchin, 53 J., Bielcˇı´k, 54 J., Bielcˇı´kova´, 6 A., Bilandzic, 55 L., Bimbot, 56 E., Biolcati, 35 A., Blanc, 37 F., Blanco, i. F., Blanco, 57 D., Blau, 16 C., Blume, 25 M., Boccioli, 8 N., Bock, 23 A., Bogdanov, 58 H., Bøggild, 45 M., Bogolyubsky, 59 J., Bohm, 60 L., Boldizsa´r, 9 M., Bombara, 61 C., Bombonati, j. M., Bondila, 32 H., Borel, 36 A., Borisov, 62 C., Bortolin, k. S., Bose, Bosisio, Luciano, 64 F., Bossu´, 35 M., Botje, 55 S., Bo¨ttger, 2 G., Bourdaud, 27 B., Boyer, 56 M., Braun, 30 P., Braun Munzinger, 21, 65, c. L., Bravina, Bregant, Marco, l. T., Breitner, 2 G., Bruckner, 8 R., Brun, 8 E., Bruna, 29 G. E., Bruno, 20 D., Budnikov, 42 H., Buesching, 25 P., Buncic, 8 O., Busch, 66 Z., Buthelezi, 67 D., Caffarri, 53 X., Cai, 68 H., Caine, 29 E., Calvo, 69 E., Camacho, Camerini, Paolo, 64 M., Campbell, 8 V., Canoa Roman, 8 G. P., Capitani, 52 G., Cara Romeo, 26 F., Carena, Carena, 8. W., 8 F., Carminati, 8 A., Casanova Dı´az, 52 M., Caselle, 8 J., Castillo Castellano, 36 J. F., Castillo Hernandez, 21 V., Catanescu, Cattaruzza, Enrico, 64 C., Cavicchioli, 8 P., Cerello, 17 V., Chambert, 56 B., Chang, 60 S., Chapeland, 8 A., Charpy, 56 J. L., Charvet, 36 S., Chattopadhyay, 63 S., Chattopadhyay, 11 M., Cherney, 3 C., Cheshkov, 8 B., Cheyni, 71 E., Chiavassa, 35 V., Chibante Barroso, 8 D. D., Chinellato, 72 P., Chochula, 8 K., Choi, 73 M., Chojnacki, 74 P., Christakoglou, 74 C. H., Christensen, 45 P., Christiansen, 75 T., Chujo, 76 F., Chuman, 77 C., Cicalo, 46 L., Cifarelli, 18 F., Cindolo, 26 J., Cleyman, 67 O., Cobanoglu, 35 J. P., Coffin, 47 S., Coli, 17 A., Colla, 8 G., Conesa Balbastre, 52 Z., Conesa del Valle, m. E. S., Conner, 78 P., Constantin, Contin, Giacomo, j. J. G., Contrera, 70 Y., Corrales Morale, 35 T. M., Cormier, 48 P., Cortese, 79 I., Corte´s Maldonado, 80 M. R., Cosentino, 72 F., Costa, 8 M. E., Cotallo, 57 E., Crescio, 70 P., Crochet, 37 E., Cuautle, 81 L., Cunqueiro, 52 J., Cussonneau, 27 A., Dainese, 82 H. H., Dalsgaard, 45 A., Danu, 83 I., Da, 63 A., Dash, 84 S., Dash, 84 G. O. V., de Barro, 85 A., De Caro, 86 G., de Cataldo, 87 J., de Cuveland, c. A., De Falco, 88 M., De Gaspari, 66 J., de Groot, 8 D., De Gruttola, 86 N., De Marco, 17 S., De Pasquale, 86 R., De Remigi, 17 R., de Rooij, 74 G., de Vaux, 67 H., Delagrange, 27 Y., Delgado, 69 G., Dellacasa, 79 A., Deloff, 89 V., Demanov, 42 E., De´ne, 9 A., Deppman, 85 G., D’Erasmo, 20 D., Derkach, 30 A., Devaux, 37 D., Di Bari, 20 C., Di Giglio, j. S., Di Liberto, 90 A., Di Mauro, 8 P., Di Nezza, 52 M., Dialina, 27 L., Dı´az, 81 R., Dı´az, 32 T., Dietel, 43 R., Divia`, 8 Ø., Djuvsland, 19 V., Dobretsov, 16 A., Dobrin, 75 T., Dobrowolski, 89 B., Do¨nigu, 21 I., Domı´nguez, 81 D. M. M., Don, 91 O., Dordic, 1 A. K., Dubey, 11 J., Dubuisson, 8 L., Ducroux, 71 P., Dupieux, 37 A. K., Dutta Majumdar, 63 M. R., Dutta Majumdar, 11 D., Elia, 87 D., Emschermann, n. A., Enokizono, 31 B., Espagnon, 56 M., Estienne, 27 S., Esumi, 76 D., Evan, 40 S., Evrard, 8 G., Eyyubova, 1 C. W., Fabjan, o. D., Fabri, 82 J., Faivre, 92 D., Falchieri, 18 A., Fantoni, 52 M., Fasel, 21 O., Fateev, 44 R., Fearick, 67 A., Fedunov, 44 D., Fehlker, 19 V., Fekete, 93 D., Felea, 83 B., Fenton Olsen, p. G., Feofilov, 30 A., Ferna´ndez Te´llez, 80 E. G., Ferreiro, 28 A., Ferretti, 35 R., Ferretti, q. M. A. S., Figueredo, 85 S., Filchagin, 42 R., Fini, 87 F. M., Fionda, 20 E. M., Fiore, 20 M., Flori, j. Z., Fodor, 9 S., Foertsch, 67 P., Foka, 21 S., Fokin, 16 F., Formenti, 8 E., Fragiacomo, 94 M., Fragkiadaki, 49 U., Frankenfeld, 21 A., Frolov, 95 U., Fuch, 8 F., Furano, 8 C., Furget, 92 M., Fusco Girard, 86 J. J., Gaardhøje, 45 S., Gadrat, 92 M., Gagliardi, 35 A., Gago, 69 M., Gallio, 35 P., Ganoti, 49 M. S., Ganti, 11 C., Garabato, 21 C., Garcı´a Trapaga, 35 J., Gebelein, 2 R., Gemme, 79 M., Germain, 27 A., Gheata, 8 M., Gheata, 8 B., Ghidini, 20 P., Ghosh, 11 G., Giraudo, 17 P., Giubellino, 17 E., Gladysz Dziadu, 41 R., Glasow, a. P., Gla¨ssel, 66 A., Glenn, 96 R., Go´mez Jime´nez, 97 H., Gonza´lez Santo, 80 L. H., Gonza´lez Trueba, 10 P., Gonza´lez Zamora, 57 S., Gorbunov, c. Y., Gorbunov, 3 S., Gotovac, 98 H., Gottschlag, 43 V., Grabski, 10 R., Grajcarek, 66 A., Grelli, 74 A., Grigora, 8 C., Grigora, 8 V., Grigoriev, 58 A., Grigoryan, 5 S., Grigoryan, 44 B., Grinyov, 62 N., Grion, 94 P., Gro, 75 J. F., Grosse Oetringhau, 8 J. Y., Grossiord, Grosso, Raffaele, 82 F., Guber, 99 R., Guernane, 92 C., Guerra, 69 B., Guerzoni, 18 K., Gulbrandsen, 45 H., Gulkanyan, 5 T., Gunji, 14 A., Gupta, 51 R., Gupta, 51 H. A., Gustafsson, a. H., Gutbrod, 21 Ø., Haaland, 19 C., Hadjidaki, 56 M., Haiduc, 83 H., Hamagaki, 14 G., Hamar, 9 J., Hamblen, 100 B. H., Han, 101 J. W., Harri, 29 M., Hartig, 25 A., Harutyunyan, 5 D., Hasch, 52 D., Hasegan, 83 D., Hatzifotiadou, 26 A., Hayrapetyan, 5 M., Heide, 43 M., Heinz, 29 H., Helstrup, 102 A., Herghelegiu, 22 C., Herna´ndez, 21 G., Herrera Corral, 70 N., Herrmann, 66 K. F., Hetland, 102 B., Hick, 29 A., Hiei, 77 P. T., Hille, r. B., Hippolyte, 47 T., Horaguchi, s. Y., Hori, 14 P., Hristov, 8 I., Hrˇivna´cˇova´, 56 S., Hu, 103 M., Huang, 19 S., Huber, 21 T. J., Humanic, 23 D., Hutter, 33 D. S., Hwang, 101 R., Ichou, 27 R., Ilkaev, 42 I., Ilkiv, 89 M., Inaba, 76 P. G., Innocenti, 8 M., Ippolitov, 16 M., Irfan, 12 C., Ivan, 74 A., Ivanov, 30 M., Ivanov, 21 V., Ivanov, 50 T., Iwasaki, 77 A., Jachołkowski, 8 P., Jacob, 104 L., Jancˇurova´, 44 S., Jangal, 47 R., Janik, 93 C., Jena, 84 S., Jena, 105 L., Jirden, 8 G. T., Jone, 40 P. G., Jone, 40 P., Jovanovic´, 40 H., Jung, 13 W., Jung, 13 A., Jusko, 40 A. B., Kaidalov, 15 S., Kalcher, c. P., Kalinˇa´k, 38 M., Kalisky, 43 T., Kalliokoski, 32 A., Kalweit, 65 A., Kamal, 12 R., Kamerman, 74 K., Kanaki, 19 E., Kang, 13 J. H., Kang, 60 J., Kapitan, 6 V., Kaplin, 58 S., Kapusta, 8 O., Karavichev, 99 T., Karavicheva, 99 E., Karpechev, 99 A., Kazantsev, 16 U., Kebschull, 2 R., Keidel, 78 M. M., Khan, 12 S. A., Khan, 11 A., Khanzadeev, 50 Y., Kharlov, 59 D., Kikola, 106 B., Kileng, 102 D. J., Kim, 32 D. S., Kim, 13 D. W., Kim, 13 H. N., Kim, 13 J., Kim, 59 J. H., Kim, 101 J. S., Kim, 13 M., Kim, 60 S. H., Kim, 13 S., Kim, 101 Y., Kim, 60 S., Kirsch, 8 I., Kisel, e. S., Kiselev, 15 A., Kisiel, j. J. L., Klay, 107 J., Klein, 66 C., Klein Bo¨sing, n. M., Kliemant, 25 A., Klovning, 19 A., Kluge, 8 M. L., Knichel, 21 S., Kniege, 25 K., Koch, 66 R., Kolevatov, 1 A., Kolojvari, 30 V., Kondratiev, 30 N., Kondratyeva, 58 A., Konevskih, 99 E., Kornas´, 41 R., Kour, 40 M., Kowalski, 41 S., Kox, 92 K., Kozlov, 16 J., Kral, l. I., Kra´lik, 38 F., Kramer, 25 I., Krau, e. A., Kravcˇa´kova´, 61 T., Krawutschke, 108 M., Krivda, 40 D., Krumbhorn, 66 M., Kru, 54 E., Kryshen, 50 M., Krzewicki, 55 Y., Kucheriaev, 16 C., Kuhn, 47 P. G., Kuijer, 55 L., Kumar, 7 N., Kumar, 7 R., Kupczak, 106 P., Kurashvili, 89 A., Kurepin, 99 A. N., Kurepin, 99 A., Kuryakin, 42 S., Kushpil, 6 V., Kushpil, 6 M., Kutouski, 44 H., Kvaerno, 1 M. J., Kweon, 66 Y., Kwon, 60 P., La Rocca, t. F., Lackner, 8 P., Ladro´n de Guevara, 57 V., Lafage, 56 C., Lal, 51 C., Lara, 2 D. T., Larsen, 19 G., Laurenti, 26 C., Lazzeroni, 40 Y., Le Bornec, 56 N., Le Bri, 27 H., Lee, 73 K. S., Lee, 13 S. C., Lee, 13 F., Lefe`vre, 27 M., Lenhardt, 27 L., Leistam, 8 J., Lehnert, 25 V., Lenti, 87 H., Leo´n, 10 I., Leo´n Monzo´n, 97 H., Leo´n Varga, 25 P., Le´vai, 9 X., Li, 103 Y., Li, 103 R., Lietava, 40 S., Lindal, 1 V., Lindenstruth, c. C., Lippmann, 8 M. A., Lisa, 23 L., Liu, 19 V., Loginov, 58 S., Lohn, 8 X., Lopez, 37 M., Lo´pez Noriega, 56 R., Lo´pez Ramı´rez, 80 E., Lo´pez Torre, 4 G., Løvhøiden, 1 A., Lozea Feijo Soare, 85 S., Lu, 103 M., Lunardon, 53 G., Luparello, 35 L., Luquin, 27 J. R., Lutz, 47 K., Ma, 68 R., Ma, 29 D. M., Madagodahettige Don, 91 A., Maevskaya, 99 M., Mager, j. D. P., Mahapatra, 84 A., Maire, 47 I., Makhlyueva, 8 D., Mal’Kevich, 15 M., Malaev, 50 K. J., Malagalage, 3 I., Maldonado Cervante, 81 M., Malek, 56 L., Malinina, u. T., Malkiewicz, 32 P., Malzacher, 21 A., Mamonov, 42 L., Manceau, 37 L., Mangotra, 51 V., Manko, 16 F., Manso, 37 V., Manzari, 87 Y., Mao, v. J., Maresˇ, Margagliotti, Giacomo, 64 A., Margotti, 26 A., Marı´n, 21 I., Martashvili, 100 P., Martinengo, 8 M. I., Martı´nez Herna´ndez, 80 A., Martı´nez Davalo, 10 G., Martı´nez Garcı´a, 27 Y., Maruyama, 77 A., Marzari Chiesa, 35 S., Masciocchi, 21 M., Masera, 35 M., Masetti, 18 A., Masoni, 46 L., Massacrier, 71 M., Mastromarco, 87 A., Mastroserio, j. Z. L., Matthew, 40 A., Matyja, w. D., Mayani, 81 G., Mazza, 17 M. A., Mazzoni, 90 F., Meddi, 110 A., Menchaca Rocha, 10 P., Mendez Lorenzo, 8 M., Meoni, 8 J., Mercado Pe´rez, 66 P., Mereu, 17 Y., Miake, 76 A., Michalon, 47 N., Miftakhov, 50 L., Milano, 35 J., Milosevic, 1 F., Minafra, 20 A., Mischke, 74 D., Mis´kowiec, 21 C., Mitu, 83 K., Mizoguchi, 77 J., Mlynarz, 48 B., Mohanty, 11 L., Molnar, j. M. M., Mondal, 11 L., Montan˜o Zetina, x. M., Monteno, 17 E., Monte, 57 M., Morando, 53 S., Moretto, 53 A., Morsch, 8 T., Moukhanova, 16 V., Muccifora, 52 E., Mudnic, 98 S., Muhuri, 11 H., Mu¨ ller, 8 M. G., Munhoz, 85 J., Munoz, 80 L., Musa, 8 A., Musso, 17 B. K., Nandi, 105 R., Nania, 26 E., Nappi, 87 F., Navach, 20 S., Navin, 40 T. K., Nayak, 11 S., Nazarenko, 42 G., Nazarov, 42 A., Nedosekin, 15 F., Nendaz, 71 J., Newby, 96 A., Nianine, 16 M., Nicassio, j. B. S., Nielsen, 45 S., Nikolaev, 16 V., Nikolic, 24 S., Nikulin, 16 V., Nikulin, 50 B. S., Nilsen, 3 M. S., Nilsson, 1 F., Noferini, 26 P., Nomokonov, 44 G., Nooren, 74 N., Novitzky, 32 A., Nyatha, 105 C., Nygaard, 45 A., Nyiri, 1 J., Nystrand, 19 A., Ochirov, 30 G., Odyniec, 104 H., Oeschler, 65 M., Oinonen, 32 K., Okada, 14 Y., Okada, 77 M., Oldenburg, 8 J., Oleniacz, 106 C., Oppedisano, 17 F., Orsini, 36 A., Ortiz Velasquez, 81 G., Ortona, 35 A., Oskarsson, 75 F., Osmic, 8 L., O¨ sterman, 75 P., Ostrowski, 106 I., Otterlund, 75 J., Otwinowski, 21 G., Øvrebekk, 19 K., Oyama, 66 K., Ozawa, 14 Y., Pachmayer, 66 M., Pachr, 54 F., Padilla, 35 P., Pagano, 86 G., Paic´, 81 F., Painke, 2 C., Pajare, 28 S., Pal, y. S. K., Pal, 11 A., Palaha, 40 A., Palmeri, 34 R., Panse, 2 V., Papikyan, 5 G. S., Pappalardo, 34 W. J., Park, 21 B., Pastircˇa´k, 38 C., Pastore, 87 V., Paticchio, 87 A., Pavlinov, 48 T., Pawlak, 106 T., Peitzmann, 74 A., Pepato, 82 H., Pereira, 36 D., Peressounko, 16 C., Pe´rez, 69 D., Perini, 8 D., Perrino, j. W., Peryt, 106 J., Peschek, c. A., Pesci, 26 V., Peskov, j. Y., Pestov, 95 A. J., Peter, 8 V., Petra´cˇek, 54 A., Petridi, a. M., Petri, 22 P., Petrov, 40 M., Petrovici, 22 C., Petta, 39 J., Peyre´, Piano, Stefano, 94 A., Piccotti, 17 M., Pikna, 93 P., Pillot, 27 O., Pinazza, j. L., Pinsky, 91 N., Pitz, 25 F., Piuz, 8 R., Platt, 40 M., Płoskon´, 104 J., Pluta, 106 T., Pocheptsov, z. S., Pochybova, 9 P. L. M., Podesta Lerma, 97 F., Poggio, 35 M. G., Poghosyan, 35 K., Pola´k, 109 B., Polichtchouk, 59 P., Polozov, 15 V., Polyakov, 50 B., Pommeresch, 19 A., Pop, 22 F., Posa, 20 V., Pospı´sˇil, 54 B., Potukuchi, 51 J., Poutha, 56 S. K., Prasad, 11 R., Preghenella, t. F., Prino, 17 C. A., Pruneau, 48 I., Pshenichnov, 99 G., Puddu, 88 P., Pujahari, 105 A., Pulvirenti, 39 A., Punin, 42 V., Punin, 42 M., Putisˇ, 61 J., Putschke, 29 E., Quercigh, 8 A., Rachevski, 94 A., Rademaker, 8 S., Radomski, 66 T. S., Ra¨iha¨, 32 J., Rak, 32 A., Rakotozafindrabe, 36 L., Ramello, 79 A., Ramı´rez Reye, 70 M., Rammler, 43 R., Raniwala, 111 S., Raniwala, 111 S. S., Ra¨sa¨nen, 32 I., Rashevskaya, 94 S., Rath, 84 K. F., Read, 100 J. S., Real, 92 K., Redlich, aa R., Renfordt, 25 A. R., Reolon, 52 A., Reshetin, 99 F., Rettig, c. J. P., Revol, 8 K., Reyger, bb H., Ricaud, 65 L., Riccati, 17 R. A., Ricci, 112 M., Richter, 19 P., Riedler, Riegler, 8. W., 8 F., Riggi, 39 A., Rivetti, 17 M., Rodriguez Cahuantzi, 80 K., Røed, 102 D., Ro¨hrich, cc S., Roma´n Lo´pez, 80 R., Romita, e. F., Ronchetti, 52 P., Rosinsky´, 8 P., Rosnet, 37 S., Rossegger, 8 A., Rossi, dd F., Roukoutaki, ee S., Rousseau, 56 C., Roy, m. P., Roy, 63 A. J., Rubio Montero, Rui, Rinaldo, 64 I., Rusanov, 66 G., Russo, 86 E., Ryabinkin, 16 A., Rybicki, 41 S., Sadovsky, 59 K. S. ˇ., Afarˇı´k, 8 R., Sahoo, 53 J., Saini, 11 P., Saiz, 8 D., Sakata, 76 C. A., Salgado, 28 R., Salgueiro Domingues da Silva, 8 S., Salur, 104 T., Samanta, 11 S., Sambyal, 51 V., Samsonov, 50 L. S. ˇ., A´ndor, 38 A., Sandoval, 10 M., Sano, 76 S., Sano, 14 R., Santo, 43 R., Santoro, 20 J., Sarkamo, 32 P., Saturnini, 37 E., Scapparone, 26 F., Scarlassara, 53 R. P., Scharenberg, 113 C., Schiaua, 22 R., Schicker, 66 H., Schindler, 8 C., Schmidt, 21 H. R., Schmidt, 21 K., Schossmaier, 8 S., Schreiner, 8 S., Schuchmann, 25 J., Schukraft, 8 Y., Schutz, 27 K., Schwarz, 21 K., Schweda, 66 G., Scioli, 18 E., Scomparin, 17 P. A., Scott, 40 G., Segato, 53 D., Semenov, 30 S., Senyukov, 79 J., Seo, 13 S., Serci, 88 L., Serkin, 81 E., Serradilla, 57 A., Sevcenco, 83 I., Sgura, 20 G., Shabratova, 44 R., Shahoyan, 8 G., Sharkov, 15 N., Sharma, 7 S., Sharma, 51 K., Shigaki, 77 M., Shimomura, 76 K., Shtejer, 4 Y., Sibiriak, 16 M., Siciliano, 35 E., Sicking, ff E., Siddi, 46 T., Siemiarczuk, 89 A., Silenzi, 18 D., Silvermyr, 31 E., Simili, 74 G., Simonetti, j. R., Singaraju, 11 R., Singh, 51 V., Singhal, 11 B. C., Sinha, 11 T., Sinha, 63 B., Sitar, 93 M., Sitta, 79 T. B., Skaali, 1 K., Skjerdal, 19 R., Smakal, 54 N., Smirnov, 29 R., Snelling, 55 H., Snow, 40 C., Søgaard, 45 A., Soloviev, 59 H. K., Soltveit, 66 R., Soltz, 96 W., Sommer, 25 C. W., Son, 73 H., Son, 101 M., Song, 60 C., Soo, 8 F., Soramel, 53 D., Soyk, 21 M., Spyropoulou Stassinaki, 49 B. K., Srivastava, 113 J., Stachel, 66 F., Staley, 36 E., Stan, 83 G., Stefanek, 89 G., Stefanini, 8 T., Steinbeck, c. E., Stenlund, 75 G., Steyn, 67 D., Stocco, w. R., Stock, 25 P., Stolpovsky, 59 P., Strmen, 93 A. A. P., Suaide, 85 M. A., Subieta Va´squez, 35 T., Sugitate, 77 C., Suire, 56 M. S. ˇ., Umbera, 6 T., Susa, 24 D., Swoboda, 8 J., Symon, 104 A., Szanto de Toledo, 85 I., Szarka, 93 A., Szostak, 46 M., Szuba, 106 M., Tadel, 8 C., Tagridi, 49 A., Takahara, 14 J., Takahashi, 72 R., Tanabe, 76 J. D., Tapia Takaki, 56 H., Taureg, 8 A., Tauro, 8 M., Tavlet, 8 G., Tejeda Mun˜oz, 80 A., Telesca, 8 C., Terrevoli, 20 J., Tha¨der, c. R., Tieulent, 71 D., Tlusty, 54 A., Toia, 8 T., Tolyhy, 9 C., Torcato de Mato, 8 H., Torii, 77 G., Torralba, 2 L., Toscano, 17 F., Tosello, 17 A., Tournaire, gg T., Traczyk, 106 P., Tribedy, 11 G., Tro¨ger, 2 D., Truesdale, 23 W. H., Trzaska, 32 G., Tsiledaki, 66 E., Tsili, 49 T., Tsuji, 14 A., Tumkin, 42 R., Turrisi, 82 A., Turvey, 3 T. S., Tveter, 1 H., Tydesjo¨, 8 K., Tywoniuk, 1 J., Ulery, 25 K., Ullaland, 19 A., Ura, 88 J., Urba´n, 61 G. M., Urciuoli, 90 G. L., Usai, 88 A., Vacchi, 94 M., Vala, hh L., Valencia Palomo, 10 S., Vallero, 66 N., van der Kolk, 55 P., Vande Vyvre, 8 M., van Leeuwen, 74 L., Vannucci, 112 A., Varga, 80 R., Varma, 105 A., Vasiliev, 16 I., Vassiliev, ee M., Vasileiou, 49 V., Vechernin, Venaruzzo, Massimo, 64 E., Vercellin, 35 S., Vergara, 80 R., Vernet, ii M., Verweij, 74 I., Vetlitskiy, 15 L., Vickovic, 98 G., Viesti, 53 O., Vikhlyantsev, 42 Z., Vilakazi, 67 O., Villalobos Baillie, 40 A., Vinogradov, 16 L., Vinogradov, 30 Y., Vinogradov, 42 T., Virgili, 86 Y. P., Viyogi, 11 A., Vodopianov, 44 K., Voloshin, 15 S., Voloshin, 48 G., Volpe, 20 B., von Haller, 8 D., Vranic, 21 J., Vrla´kova´, 61 B., Vulpescu, 37 B., Wagner, 19 V., Wagner, 54 L., Wallet, 8 R., Wan, m. D., Wang, 68 Y., Wang, 66 Y., Wang, 68 K., Watanabe, 76 Q., Wen, 103 J., Wessel, 43 U., Westerhoff, 43 J., Wiechula, 66 J., Wikne, 1 A., Wilk, 43 G., Wilk, 89 M. C. S., William, 26 N., Willi, 56 B., Windelband, 66 C., Xu, 68 C., Yang, 68 H., Yang, 66 S., Yasnopolskiy, 16 F., Yermia, 27 J., Yi, 73 Z., Yin, 68 H., Yokoyama, 76 I. K., Yoo, 73 X., Yuan, jj V., Yurevich, 44 I., Yushmanov, 16 E., Zabrodin, 1 B., Zagreev, 15 A., Zalite, 50 C., Zampolli, Zanevsky, kk Y. u., 44 S., Zaporozhet, 44 A., Zarochentsev, 30 P., Za´vada, 109 H., Zbroszczyk, 106 P., Zelnicek, 2 A., Zenin, 59 A., Zepeda, 70 I., Zgura, 83 M., Zhalov, 50 X., Zhang, b. D., Zhou, 68 S., Zhou, 103 J., Zhu, 68 A., Zichichi, t. A., Zinchenko, 44 G., Zinovjev, 62 Y., Zoccarato, 71 V., Zycha´cˇek, and M., Zynovyev62
- Subjects
ALICE ,LHC ,Bose-Einstein - Abstract
We report on the measurement of two-pion correlation functions from pp collisions at s= 900 GeV performed by the ALICE experiment at the Large Hadron Collider. Our analysis shows an increase of the Hanbury Brown–Twiss radius with increasing event multiplicity, in line with other measurements done in particle- and nuclear collisions. Conversely, the strong decrease of the radius with increasing transverse momentum, as observed at the Relativistic Heavy Ion Collider and at Tevatron, is not manifest in our data.
- Published
- 2010
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.