11 results on '"Mokashi, Prachet"'
Search Results
2. Mapping of the cometary plasma density around comet CG/67P at perihelion
- Author
-
Henri, Pierre, Eriksson, Anders, Edberg, Niklas, Béghin, Christian, Décréau, Pierrette, Grard, Réjean, Hamelin, Michel, Johansson, Erik, Lebreton, Jean-Pierre, Mazelle, Christian, Odelstad, Elias, Randriamboarison, Orélien, Schmidt, Walter, Wattieaux, Gaëtan, Winterhalter, Daniel, Vallières, Xavier, Vigren, Erik, Glassmeier, Karl-Heinz, Goetz, Charlotte, Koenders, Christoph, Richter, Ingo, Volwerk, Martin, Burch, James, Broiles, Thomas, Golstein, Ray, Mandt, Kathleen, Mokashi, Prachet, Nilsson, Hans, Sternberg Wieser, Gabriella, Carr, Chris, Cupido, Emanuele, Galand, Marina, Matteini, Lorenzo, Nemeth, Zoltan, Szego, Karoly, Vallat, C., Schwartz, Steven, Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Observatoire des Sciences de l'Univers en région Centre (OSUC), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Swedish Institute of Space Physics [Uppsala] (IRF), Research and Scientific Support Department, ESTEC (RSSD), European Space Research and Technology Centre (ESTEC), European Space Agency (ESA)-European Space Agency (ESA), PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Centre d'étude spatiale des rayonnements (CESR), Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées, Finnish Meteorological Institute (FMI), Plasmas Réactifs Hors Equilibre (LAPLACE-PRHE), LAboratoire PLasma et Conversion d'Energie (LAPLACE), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse III - Paul Sabatier (UT3), Jet Propulsion Laboratory (JPL), California Institute of Technology (CALTECH)-NASA, Technische Universität Braunschweig = Technical University of Braunschweig [Braunschweig], Austrian Academy of Sciences (OeAW), Southwest Research Institute [San Antonio] (SwRI), Blackett Laboratory, Imperial College London, Wigner Research Centre for Physics [Budapest], Hungarian Academy of Sciences (MTA), European Space Astronomy Centre (ESAC), European Space Agency (ESA), Agence Spatiale Européenne = European Space Agency (ESA)-Agence Spatiale Européenne = European Space Agency (ESA), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT), NASA-California Institute of Technology (CALTECH), and Agence Spatiale Européenne = European Space Agency (ESA)
- Subjects
[SDU.ASTR.SR]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR] ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] - Abstract
International audience; In August 2015, comet 67P/Churyumov-Gerasimenko, target of the ESA’s Rosetta mission, reached its perihelion at 1.3 AU from the Sun. The Rosetta Plasma Consortium (RPC) onboard the Rosetta spacecraft offers a unique opportunity to analyze the plasma environment during this period. Combining observations from the Mutual Impedance probe (RPC-MIP) and the Langmuir probes (RPC-LAP), we estimate the cometary plasma density. We will present its spatial distribution around the comet when close to perihelion. Combined Mutual impedance and Langmuir probes density measurements are also compared to the density derived from particle measurements (RPC-ICA and RPC-IES). In addition, we will focus on localised, strong variations of the cometary plasma density over short timescales (~ minutes to seconds) observed during this period. These strong plasma density enhancements are interpreted taken into account the electron energy spectrum measured by the Ion and Electron Spectrometer (RPC-IES). Possible correlations of these plasma enhancements with variations in the magnetic field direction measured from the Magnetometer (RPC-MAG) will be discussed.
- Published
- 2015
3. Birth of a comet magnetosphere : A spring of water ions
- Author
-
Nilsson, Hans, Wieser, Gabriella Stenberg, Behar, Etienne, Wedlund, Cyril Simon, Gunell, Herbert, Yamauchi, Masatoshi, Lundin, Rickard, Barabash, Stas, Wieser, Martin, Carr, Chris, Cupido, Emanuele, Burch, James L., Fedorov, Andrei, Sauvaud, Jean-Andre, Koskinen, Hannu, Kallio, Esa, Lebreton, Jean-Pierre, Eriksson, Anders, Edberg, Niklas, Goldstein, Raymond, Henri, Pierre, Koenders, Christoph, Mokashi, Prachet, Nemeth, Zoltan, Richter, Ingo, Szego, Karoly, Volwerk, Martin, Vallat, Claire, Rubin, Martin, Nilsson, Hans, Wieser, Gabriella Stenberg, Behar, Etienne, Wedlund, Cyril Simon, Gunell, Herbert, Yamauchi, Masatoshi, Lundin, Rickard, Barabash, Stas, Wieser, Martin, Carr, Chris, Cupido, Emanuele, Burch, James L., Fedorov, Andrei, Sauvaud, Jean-Andre, Koskinen, Hannu, Kallio, Esa, Lebreton, Jean-Pierre, Eriksson, Anders, Edberg, Niklas, Goldstein, Raymond, Henri, Pierre, Koenders, Christoph, Mokashi, Prachet, Nemeth, Zoltan, Richter, Ingo, Szego, Karoly, Volwerk, Martin, Vallat, Claire, and Rubin, Martin
- Abstract
The Rosetta mission shall accompany comet 67P/Churyumov-Gerasimenko from a heliocentric distance of >3.6 astronomical units through perihelion passage at 1.25 astronomical units, spanning low and maximum activity levels. Initially, the solar wind permeates the thin comet atmosphere formed from sublimation, until the size and plasma pressure of the ionized atmosphere define its boundaries: A magnetosphere is born. Using the Rosetta Plasma Consortium ion composition analyzer, we trace the evolution from the first detection of water ions to when the atmosphere begins repelling the solar wind (similar to 3.3 astronomical units), and we report the spatial structure of this early interaction. The near-comet water population comprises accelerated ions (<800 electron volts), produced upstream of Rosetta, and lower energy locally produced ions; we estimate the fluxes of both ion species and energetic neutral atoms.
- Published
- 2015
- Full Text
- View/download PDF
4. Birth of a comet magnetosphere: A spring of water ions
- Author
-
Nilsson, Hans, primary, Stenberg Wieser, Gabriella, additional, Behar, Etienne, additional, Wedlund, Cyril Simon, additional, Gunell, Herbert, additional, Yamauchi, Masatoshi, additional, Lundin, Rickard, additional, Barabash, Stas, additional, Wieser, Martin, additional, Carr, Chris, additional, Cupido, Emanuele, additional, Burch, James L., additional, Fedorov, Andrei, additional, Sauvaud, Jean-André, additional, Koskinen, Hannu, additional, Kallio, Esa, additional, Lebreton, Jean-Pierre, additional, Eriksson, Anders, additional, Edberg, Niklas, additional, Goldstein, Raymond, additional, Henri, Pierre, additional, Koenders, Christoph, additional, Mokashi, Prachet, additional, Nemeth, Zoltan, additional, Richter, Ingo, additional, Szego, Karoly, additional, Volwerk, Martin, additional, Vallat, Claire, additional, and Rubin, Martin, additional
- Published
- 2015
- Full Text
- View/download PDF
5. Cassini CAPS automation within operations and data processing
- Author
-
Furman, Judith D., primary, Mokashi, Prachet, additional, Young, David T., additional, and Crary, Frank J., additional
- Published
- 2011
- Full Text
- View/download PDF
6. Cassini CAPS: Distributed operations from an instrument perspective
- Author
-
Furman, Judith D., primary, Mokashi, Prachet, additional, Crary, Frank J., additional, and Young, David T., additional
- Published
- 2010
- Full Text
- View/download PDF
7. Cassini CAPS ground system evolution and lessons learned
- Author
-
Furman, Judith D., primary, Farris, Gregory D., additional, Zinsmeyer, Charles, additional, Mokashi, Prachet, additional, and Young, David T., additional
- Published
- 2010
- Full Text
- View/download PDF
8. Overcoming adversity in instrument operations anomalies.
- Author
-
Furman, Judith, Zinsmeyer, Charles, Crary, Frank, and Mokashi, Prachet
- Abstract
The Cassini-Huygens mission to Saturn launched in October 1997. The Cassini Plasma Spectrometer (CAPS) is an in-situ instrument and is one of 12 instruments on the orbiter. Cruise science (beyond instrument checkout periods and periodic maintenance) was approved, and over 870 days of data were collected prior to the start of the prime mission. Prime mission operations started in January 2004 and continued through end of June 2008. Given the success of the Cassini mission at Saturn, an extended mission, the Equinox Mission, was approved for an additional two years, ending September 2010. The continuing success of the Equinox mission led to approval of a second extended mission called the Solstice Mission. The Solstice mission has approval through September 2012 with pending approval through July 2017. The Cassini Plasma Spectrometer (CAPS) has generated a wealth of science data and we have over 240 publications. In addition, the CAPS scientists participate in conferences, inter-team collaborations, and community outreach. Collection of data has not been without instrument related challenges. This paper will discuss a few of the in-flight instrument related anomalies experienced by CAPS including timing difference between the engineering model and the flight model, actuator related anomalies, and a latched bit. The analysis will cover how the anomalies were discovered, the techniques used to diagnose the problems in-flight, fixes that were implemented, how the anomalies affected operation of the instrument and collection of science, and lessons learned from the process. [ABSTRACT FROM PUBLISHER]
- Published
- 2012
- Full Text
- View/download PDF
9. In-situ charged nanograins and energetic particles from comet 67P/Churyumov-Gerasimenko as seen by Rosetta IES on 07 June 2016.
- Author
-
LLera, Kristie, Goldstein, Raymond, Burch, James, and Mokashi, Prachet
- Published
- 2018
10. Study of Electron Acceleration by Lower HybridWaves at Comet 67P.
- Author
-
Goldstein, Raymond, Burch, James, LLera, Kristie, and Mokashi, Prachet
- Published
- 2018
11. Cometary science. Birth of a comet magnetosphere: a spring of water ions.
- Author
-
Nilsson H, Stenberg Wieser G, Behar E, Wedlund CS, Gunell H, Yamauchi M, Lundin R, Barabash S, Wieser M, Carr C, Cupido E, Burch JL, Fedorov A, Sauvaud JA, Koskinen H, Kallio E, Lebreton JP, Eriksson A, Edberg N, Goldstein R, Henri P, Koenders C, Mokashi P, Nemeth Z, Richter I, Szego K, Volwerk M, Vallat C, and Rubin M
- Abstract
The Rosetta mission shall accompany comet 67P/Churyumov-Gerasimenko from a heliocentric distance of >3.6 astronomical units through perihelion passage at 1.25 astronomical units, spanning low and maximum activity levels. Initially, the solar wind permeates the thin comet atmosphere formed from sublimation, until the size and plasma pressure of the ionized atmosphere define its boundaries: A magnetosphere is born. Using the Rosetta Plasma Consortium ion composition analyzer, we trace the evolution from the first detection of water ions to when the atmosphere begins repelling the solar wind (~3.3 astronomical units), and we report the spatial structure of this early interaction. The near-comet water population comprises accelerated ions (<800 electron volts), produced upstream of Rosetta, and lower energy locally produced ions; we estimate the fluxes of both ion species and energetic neutral atoms., (Copyright © 2015, American Association for the Advancement of Science.)
- Published
- 2015
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.