1. Enhanced high‐temperature electrical properties and charge dynamics of inorganic/organic silicone elastomer nanocomposites via nanostructure grafting and molecular trap construction.
- Author
-
Wang, Qilong, Tanaka, Yasuhiro, Miyake, Hiroaki, Endo, Kazuki, An, Yeongguk, Du, Haosen, Chen, Xiangrong, and Paramane, Ashish
- Subjects
ENERGY levels (Quantum mechanics) ,SEMICONDUCTOR doping ,ELECTRIC conductivity ,DOPING agents (Chemistry) ,BAND gaps - Abstract
This study introduces a novel strategy to enhance the high‐temperature electrical performance of the silicone elastomer (SE), while ensuring control over its thermal and mechanical properties for SiC device packaging insulation application. For the same, the ultra‐low‐content inorganic/organic SE nanocomposites are prepared and tested (at room temperature and 150°C) by grafting polyhedral oligomeric silsesquioxane (POSS) nanofillers and doping organic semiconductors. It is found that grafting POSS nanofillers enhances the SE's thermal and mechanical properties. Moreover, doping the grafted SE with different organic semiconductors (ITIC, PCBM, and NTCDA) further improves its electrical properties and charge dynamics at 150°C. The optimal doping content for ITIC, PCBM, and NTCDA is found to be 0.05, 0.10, and 0.15 wt%, respectively. Among these, NTCDA exhibits superior electrical performance at 150°C. Particularly, compared to pure SE, NTCDA doping and POSS grafting reduce the electrical conductivity by an order of magnitude and increase the breakdown strength, charge hopping activation energy, and trap energy level by 65.5%, 0.20 eV and 0.73 eV, respectively. This study finds that organic semiconductors outperform nanostructures in inhibiting electron injection and immobilizing free electrons at high temperatures. Highlights: Nano‐POSS grafting enhances material properties by reinforced molecular chains.Charge dynamics is studied by space charge and current integrated charge at HT.Organic semiconductors improve electrical properties and charge dynamics at HT.Organic semiconductors outperform nanofillers in immobilizing electrons at HT.The ideal organic semiconductor doping level correlates with its energy gap. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF