147 results on '"Mitola S"'
Search Results
2. Role of VEGFs in metabolic disorders
- Author
-
di Somma, M., Vliora, M., Grillo, E., Castro, B., Dakou, E., Schaafsma, W., Vanparijs, J., Corsini, M., Ravelli, C., Sakellariou, E., and Mitola, S.
- Published
- 2020
- Full Text
- View/download PDF
3. Role of VEGFs in metabolic disorders
- Author
-
di Somma, M., primary, Vliora, M., additional, Grillo, E., additional, Castro, B., additional, Dakou, E., additional, Schaafsma, W., additional, Vanparijs, J., additional, Corsini, M., additional, Ravelli, C., additional, Sakellariou, E., additional, and Mitola, S., additional
- Published
- 2019
- Full Text
- View/download PDF
4. Insights on the receptor dynamics during the spreading of endothelial cells
- Author
-
Salvadori, A., Serpelloni, Mattia, Arricca, Matteo, Ravelli, C., Grillo, E., and Mitola, S.
- Published
- 2019
5. CEACAM1/VEGF cross-talk during neuroblastic tumour differentiation
- Author
-
Poliani, P L, Mitola, S, Ravanini, M, Ferrari-Toninelli, G, DʼIppolito, C, Notarangelo, L D, Bercich, L, Wagener, C, Memo, M, Presta, M, and Facchetti, F
- Published
- 2007
- Full Text
- View/download PDF
6. A novel VEGFR2 mutation has oncogenic potential in BRAF wild type melanoma
- Author
-
Di Somma, M., Grillo, E., Corsini, M., Ravelli, C., Zammataro, L., Presta, M., and Mitola, S.
- Published
- 2018
7. Modeling and Simulation of VEGF Receptors Recruitment in Angiogenesis
- Author
-
Salvadori, A., primary, Damioli, V., additional, Ravelli, C., additional, and Mitola, S., additional
- Published
- 2018
- Full Text
- View/download PDF
8. Phosphorylation and Alternative Splicing of MEF2C, a Dual Switch Function in Muscle Regeneration
- Author
-
Riuzzi, F., Beccafico, S., Sorci, G., Donato, R., Baruffaldi, F., Badodi, S., De Feo, L., Ganassi, M., Battini, R., Imbriano, C., Nicoletti, C., Musarò, A., Buckingham, M., Montarras, D., Molinari, S., Marroncelli, N., Noviello, C., Di Francescantonio, S., Consalvi, S., Saccone, V., Puri, P. L., Olson, E. N., Adamo, S., Moresi, V., Spada, F., Fuoco, C., Pirrò, S., Reggio, A., Paoluzi, S., Gargioli, C., Castagnoli, L., Cesareni, G., Basile, V., Dolfini, D., Ricci, L., Mantovani, R., Mancinelli, R., Guarnieri, S., Di Filippo, E.S., Pietrangelo, T., Fulle, S., Giordani, L., Le Grand, F., Giacomazzi, G., Quattrocelli, M., Sampaolesi, M., Serena, E., Zatti, S., Mattei, N., Vetralla, M., Giulitti, S., Selmin, G., Torchio, E., Vitiello, L., Elvassore, N., Marinkovic, M., Pavlidou, T., Ziraldo, G., Taccola, G., Coslovich, T., Lorenzon, P., Sciancalepore, M., Marcucci, L., Washio, T., Yanagida, T., Niewiadomski, P., Gawor, M., Bernadzki, K., Jóźwiak, J., Rojek, K., Rędowicz, M. Jolanta, Prószyński, T., Boncompagni, S., Michelucci, A., Pietrangelo, L., Dirksen, R.T., Protasi, F., Pisu, S., Rizzuto, E., Del Prete, Z., Nogara, L., Naber, N., Pate, E., Canton, M., Cooke, R., Reggiani, C., Bianco, P., Melli, L., Falorsi, G., Pertici, I., Coceano, G., Cojoc, D., Lombardi, V., Pierucci, F., Frati, A., Battistini, C., Bruzzone, E., Matteini, F., Penna, F., Costelli, P., Meacci, E., Passafaro, M., Madaro, L., Schirone, L., Berghella, L., Puri, P.L., Pin, F., Ballarò, R., Costamagna, D., Martinelli, G.B., Olivari, D., Talamini, L., Lecker, S.H., Ottoboni, L., Resovi, A., Giavazzi, R., Cervo, L., Piccirillo, R., Martinelli, G. B., Re Cecconi, A., Cerruti, F., Cascio, P., Bach, M. Beltrà, Guttridge, D.C., Giovarelli, M., Touvier, T., Clementi, E., DePalma, C., Pescatore, F., Albiero, M., Lutz, C., Schiaffino, S., Sandri, M., Conte, M., Armani, A., Franceschi, C., Salvioli, S., Petrilli, L.L., Codenotti, S., Faggi, F., Poliani, P. L., Cominelli, M., Chiarelli, N., Colombi, M., Vezzoli, M., Monti, E., Bono, F., Tulipano, G., Fiorentini, C., Zanola, A., Gavazzi, S., Lo, H. P., Parton, R. G., Keller, C., Fanzani, A., Mitola, S., Ronca, R., Bouche, M., Poliani, L., Longhena, F., Salani, B., Maggi, D., Kravic, B., Harbauer, A. B., Simeone, L., Kaiser, T., Romanello, V., Buttgereit, A., Neuhuber, W., Straubinger, M., Heuss, D., Rudolf, R., Friedrich, O., Meisinger, C., Hashemolhosseini, S., Huraskin, D., Eiber, N., Reichel, M., Zidek, L., Bernkopf, D., von Maltzahn, J., Behrens, J., Gherardi, G., Mammucari, C., Zamparo, I., Raffaello, A., Chemello, F., Cagnin, S., Braga, A., Zanin, S., Pallafacchina, G., Zentilin, L., De Stefani, D., Lanfranchi, G., Rizzuto, R., Perpetuini, A. Cerquone, Desiderio, G., Chrisam, M., Castagnaro, S., Spizzotin, M., Braghetta, P., Grumati, P., Cecconi, F., Bonaldo, P., Filomena, M.C., Yamamoto, D.L., Mastrototaro, G., Carullo, P., Caremani, M., Lieber, R., Nigro, V., Linari, M., Chen, J., Bang, M.L, Lo Verso, F., Soares, R., Albiero1, M., Guescini, M., Pelosi, L., Coggi, A., Forcina, L., Legnini, I., Di Timoteo, G., Rossi, F., Briganti, F., Sthandier, O., Morlando, M., Fatica, A., Andronache, A., Wade, M., Rajewsky, N., Bozzoni, I., Testa, S., Bianconi, V., Petrilli, L. L., Bernardini, S., Cannata, S., Torcinaro, A., De Santa, F., De Marco, A., Hamilton, S. L., Paolini, C., Canato, M., Salvadori, L., Sagheddu, R., Chiappalupi, S., Di Fonso, A., D’Onofrio, L., Camps, J., Carotenuto, F., Minieri, M., Di Nardo, P., Pigna, E., Coletti, D., Cescon, M., Gattazzo, F., Sabatelli, P., Megighian, A., Sanchez-Riera, C., Lahm, A., Guido, L., Cipriano, A., Tita, R., Bisceglie, L., Ballarino, M., Martini, M., Dobrowolny, G., Del Re, V., Spinozzi, S., Gamberucci, A., Barone, V., Sorrentino1, V., Sandonà, M., Tucciarone, L., Marsolier, J., Patissier, C., Gicquel, E., Adjali, O., Richard, I., Giambruno, R., Micheloni, S., Ferri, G., Jothi, M., Cabianca, D. S., Huber, J., Warner, S., and Gabellini, D.
- Subjects
MyoNews ,Article - Abstract
Muscle regeneration is a multistep process that is regulated by a restricted number of transcription factors whose activity is modulated at multiple levels. However, how different layers of regulation are coordinated to promote adult myogenesis is not yet understood. Here we show that the MEF2C transcription factor controls multiple steps of muscle regeneration, including myogenic progression of satellite cells and muscle maturation of newly generated myofibers, exhibiting multiple functions that depend on alternative splicing and post-translational modifications. Inclusion of the α1 exon in Mef2c transcripts is upregulated in proliferating mouse satellite cells and in the early phases of muscle regeneration. The encoded MEF2Cα1 isoform stimulates expansion of primary myoblasts ex vivo and in vivo. The pro-proliferative activity of MEF2C is mediated by phosphorylation of two phosphoserines located in exon α1. Subsequent terminal differentiation and growth of newly formed myofibers are promoted by dephosphorylated MEF2Cα1 and MEF2Cα2. Our results thus reveal an important role for regulatory interactions between alternative splicing and post translational modifications of a single transcription factor in the control of the multilayered regulatory programs required for adult myogenesis., Skeletal muscle exhibits a high capacity to regenerate, mainly due to the ability of satellite cells to replicate and differentiate in response to stimuli. Epigenetic control is effective at multiple steps of this process. The chromatin remodeling factor, HDAC4, is up-regulated in skeletal muscle upon injury, suggesting a role for this protein in muscle regeneration. With the aim to elucidate the role of HDAC4 in satellite cells and skeletal muscle regeneration, we generated inducible mice lacking HDAC4 in Pax7+ cells (HDAC4 KO mice). Despite having similar amount of satellite cells, HDAC4 KO mice show impaired muscle regeneration in vivo, and compromised satellite cell proliferation and differentiation in vitro. HDAC4 deletion in satellite cells is sufficient to block their differentiation, not acting via soluble factors, and possibly through the inhibition of Pax7 expression. The molecular mechanisms underling compromised muscle regeneration in HDAC4 KO mice are currently under investigation. All together, these data delineate the importance of HDAC4 in satellite cell differentiation and suggest a protective role of HDAC4 in response to muscle damage., The adult skeletal muscle has the ability to self-renew and repair in response to increased workload, stress conditions or limited damage. These properties rely on an array of different progenitor cell populations. While satellite cells play a central role in muscle regeneration, a variety of other mononuclear progenitor cells, either resident in the muscle or recruited from the blood stream, contribute to the complex crosstalk leading to muscle repair. In pathological conditions or with aging, the relative abundance and the activation stage of the different cell populations in the myogenic stem cell compartment vary. The ability to probe the heterogeneity and the dynamic of the muscle tissue is fundamental to achieve a complete understanding of muscle regeneration. To this end we have invested in a novel approach exploiting mass cytometry technology (CyTOF2 platform). CyTOF technology enables probing single cell events, by labelling intracellular and cell surface markers with up to 40 antibodies tagged with stable heavy metal isotopes. The sharp mass peaks obtained by TOF inductively coupled plasma mass spectrometry eliminates the problems of spectra overlap typical of fluorescence based flow cytometry. I will describe the panel of tagged antibodies that I have developed to characterize the heterogeneous muscle mononuclear cell populations and the advantages and limitations of mass cytometry. In addition I will present preliminary data on the dynamic of cell populations under different conditions and stimuli., The mechanisms that regulate skeletal muscle development involve the coordinated activity of transcription factors (TFs) and a precise timing of gene expression patterns. NF-Y is a heterotrimeric TF with a pioneer role in the transcriptional and epigenetic regulation of promoters containing the CCAAT-box. NF-Y activates the expression of various genes related to the cell cycle, particularly genes of the G2/M phase. NF-YA, the regulatory DNA-binding subunit of the complex, is expressed in proliferating myoblasts and down-regulated during terminal differentiation. The NF-YA gene encodes for two alternatively spliced isoforms, namely NF-YAs and NF-YAl, which are not functionally identical. Using mouse C2C12 cells, we provide evidence of a different role for NF-YA variants in the myogenic program. While NF-YAs enhances myoblasts proliferation, NF-YAl boosts their differentiation by up-regulating the transcription of novel target genes, among which Mef2D, Sixs and Cdkn1C, which are known to be involved in the differentiation program. We further demonstrate that NF-YA is expressed in resident stem cells (SCs) and the two isoforms are transcribed at different levels during SCs activation and differentiation. The inhibition of NF-Y activity impairs both proliferation and differentiation of SCs and the overexpression of the two NF-YA isoforms differentially affects their fate., Sarcopenia is the age-related loss of muscle leading to loss of muscle power, which in the end results in frailty and disability. At molecular level, sarcopenia is characterized by insufficient antioxidant defense mechanism, increased oxidative stress and altered function of respiratory chain. It has been hypothesized that the accumulation of oxidative stress is also related to an impaired regeneration cooperating to the atrophic state that characterizes muscle ageing. To the purpose, we investigated the myogenic process in satellite cells, the skeletal muscle stem cells, as myoblasts and myotubes collected by human Vastus Lateralis skeletal muscle of young and old subjects through needle-biopsies. To measure both the O2- and ROS level we used NBT and H2DCF-DA assays revealing higher concentration in elderly myoblasts compared to young ones. To evaluate if mitochondria are damaged by ROS we measured mitochondrial transmembrane potential after an oxidant insult as H2O2. We found that in elderly myoblasts mitochondrial transmembrane potential decreases much more than in young ones probably due to their lower endogenous antioxidant abilities. Specifically, MitoSOX™ Red reagent for direct measurements of O2- in mitochondria revealed that in elderly myoblasts O2- production is increased respect to young ones and the result is worsened in myotubes. Furthermore, the upregulation of the atrophic and ubiquitin-proteasome pathways together with a dysregulation of the proliferative one revealed an alteration at gene expression level in elderly myoblasts vs young ones. Overall our data confirm that oxidative stress impairs muscle regeneration in elderly subjects., Skeletal muscle is a complex structure endowed with extreme regenerative capability; this ability relies on the orchestrated interplay between different muscle populations that reside within the tissue. Functional changes occurring at the microenvironmental level during aging or pathological conditions however interfere with this ability leading to fibrosis and fat infiltration. Despite a large body of work still we are far from completely understanding these changes; even when genetic cause is known (e.g. Duchenne muscular Dystrophy) we are still unable to pin-point the steps that lead from the molecular cause to the outcome of the disease. The main reason for this bottleneck is that our knowledge has been limited so far by the lack of technical tools to dissect the heterogeneity of these populations. The use of bulk-scale methods able only to provide averaged information has frustrated our effort to characterize those pathological changes leaving those dysfunctional, disease-specific subpopulation to remain hidden within the bulk. Here we present a novel approach based on single cell mass spectrometry to study the populations that reside in the muscle. Using Cytof technology we would profile at single cell resolution the muscle resident populations during aging and in diseased state. This would allow us to identify dysfunctional subsets involved in the regeneration defect. This study would not only shed light on the mechanisms underpinning muscle regeneration but would provide a solid ground for the future identification of diagnostic biomarkers through the study of disease specific subpopulations., Hypertrophy and dystrophy are distinct, yet linked processes that remodel both skeletal and cardiac muscles in physiological or pathological settings. Not only is hypertrophy important during development, but it also plays major role upon acute or chronic damage. Muscular dystrophies (MDs) cause progressive degeneration and loss of functionality in both striated muscle types. In MD patients and animal models, an initial hypertrophic response occurs, with contrasting effects on skeletal and cardiac muscle. Recently it has been established that muscle fibers secrete exosomes, whose cargo acts as endocrine signals during myogenesis. We aim at deciphering the exosomal information guiding hypertrophy/dystrophy in both muscle in order to establish a new strategy based on miRNA modulation for novel myogenic regeneration. We performed ex vivo exosome analysis comparing age-matched WT, Sgcb-null (dystrophic), and MAGIC-F1+/+ (hypertrophic) mice. We detected several differentially regulated miRNAs, virtually relevant for striated muscle remodeling and de-/re-generation. We have preliminary results on the effects of ex vivo exosomes on cell types relevant for skeletal and cardiac muscle analysis. Moreover we are currently investigating the uptake routes of exosomes in both muscle types. In the future we will rely on miRNA-sequencing of ex vivo exosomes, to identify key mRNA/miRNA distinctive signatures by means of an high-throughput approach and place our ongoing results into a genome-wide setting. As a final goal, the hypertrophic/dystrophic signatures and tissue-specific information will further be integrated to establish skeletal- and cardiac-enhancing cocktails to selectively improve the regenerative outcome of patient-specific progenitors in vivo, into a xenograft-permissive murine model., Duchenne muscular dystrophy (DMD) is the most common, lethal, inherited myopathy, which results in muscle degeneration. In this work, we aimed at developing an innovative 3D satellite cell niche derived from human induced pluripotent stem cells (hiPSC) within their native sublaminal position in an engineered human skeletal muscle myofiber. One of the main limitations of cell therapy for DMD is the high number of myogenic cells required and the efficiency of engraftment in vivo. hiPSC ensure large amount of cells and the possibility of derive patient-specific cells, but obtaining myogenic cells in vitro from hiPSC is difficult and the yield is low. In this work, we induced the myogenic differentiation of hiPSC through multiple transfection of modified mRNA of the master transcription factors MYOD, PAX3 and PAX7. To this aim, we exploited a microfluidic platform that allows the downscaling of the process for performing cost-effective, multiparametric and highthroughput experimental investigations. We optimized the protocol for transfecting hiPSC colonies leading to a transfection efficiency of 60% per single transfection. After multiple transfections, exogenous MyoD is expressed in 95% of the cells and endogenous expression of desmin and myosin heavy chain was observed (4 days after the last transfection). Ongoing experiments are extending these results to Pax3 and Pax7. Another key factor for a successful cell therapy is the cell delivery. In this sight, we developed a 3D poly-acrilammide/hyaluronic acid hydrogel (HY) scaffold and optimized its biochemical and mechanical properties in order to sustain the myogenic differentiation of human primary myoblasts and to reproduce the protective microenvironment of the satellite cell niche. The scaffold was designed in order to control the cell topology: 3D parallel micro-channels (80-160 μm in diameter, 10-15 mm long) were produced inside the scaffold and functionalized with ECM proteins. To reproduce the physiological mechanobiology, HY chemical composition was optimized in order to obtain a soft scaffold with physiological elastic modulus, E≈12±4kPa. Human primary myoblasts were used to optimize the seeding, culture and differentiation protocols. At 10 days, we observed tightly packed myotubes bundles, expressing myosin heavy chain, α-actinin and dystrophin. We are now integrating hESC-derived myoblast and we observed differentiation into myoubes and expression of myosin heavy chai, α-actinin and desmin.We hypothesize that such engineered niche will provide, upon in vivo implantation, satellite cells able to regenerate the damaged muscle of DMD patients, and reconstitute the stem cell pool for future muscle damages. On the other hand, our 3D niche could be exploited as an in vitro tool to study the biology of the niche itself, the mechanism of the pathology or as a tool for testing new drugs and therapies in a personalized manner., Skeletal muscle regeneration is mediated by a complex crosstalk between various resident mononucleated cell populations. These cell interactions after fiber damage or stress are finely regulated in time and space. Satellite cells, skeletal muscle stem cells, play a pivotal role during regeneration being the main source of new myoblasts. However, their activation, proliferation and differentiation relies on environmental cues shaped by cell populations such as macrophages, pericytes, and fibro-adipogenic progenitors (FAPs). FAPs have a leading role in the regeneration process since they promote myotube formation by positively regulating satellite cell differentiation. However, in pathological conditions, such as muscular dystropies, these cells play a negative role since they are responsible for fibrosis and fatty tissue accumulation. In in vitro experiments we have observed an improvement in the maturation of myotubes derived from satellite cells, when co-cultured with FAPs. Furthermore, we have also observed that direct contact of these two cell populations inhibits adipogenic differentiation of FAPs while in the transwell system this inhibition does not occur. Even though there is a clear interaction between these two populations, it has not been thoroughly characterized yet. Thus exploiting Luminex technology we are aiming at identifying molecules affecting the differentiation process of these two cell types focusing on cytokines, chemokines and growth factors. In addition we are planning to include in these studies macrophages and pericytes in order to obtain a more complete picture of molecular networks involved in myogenesis and finally build a cell-cell interaction model of skeletal muscle regeneration., Electrical stimulation (ES) of skeletal muscle has been proposed to mimic the beneficial effects of physical training and to counteract the muscle atrophy associated with reduced motor activity. If properly used, it can be a potent tool to increase strength and endurance in patients affected by muscle weakness due to ageing or prolonged debilitating illness. However, classical ES exhibits several limitations, such as the unpleasant symptoms due to pulse strength and the occurrence of muscle fatigue. The most appropriate parameters of stimulation, such as intensity, frequency and pulse duration, are still under debate. Field ESs were given to mouse skeletal myotubes in culture. Changes in membrane potential were detected by perforated patch recordings and calcium dynamics was followed using fluorescent indicators. Different patterns of ES were tested. Tetanic high frequency stimulation at 45 Hz induced voltage changes invariably characterized by failures, and discontinuous firing preceding the complete disappearance of the electrical activity, whereas low-frequency stimulations at 1 Hz more efficiently elicited single action potentials. An innovative “noisy” waveform ES pattern was tested, obtained from a segment of electromyogram recording, sampled from a limb muscle of adult volunteers during the execution of a rhythmic motor activity. Using half of the intensity of stimulation employed for more stereotyped ES patterns, it was found to be more efficient in inducing repetitive cell firing, calcium transients and cell twitching. We suggest this approach as a new strategy for the design of new electrical devices able to provide a therapy option for injured muscles in human patients., Muscle contraction is generated by cyclical interactions of myosin heads with actin filaments to form the actomyosin complex. The stable configurations of the actomyosin complex have been described in detail, but whether in vivo, at physiological temperatures, these configurations are fixed to the ones observed in cryomicroscopy (at low temperature) or undergo thermal oscillations is unknown and not generally considered in mathematical modeling. By comparing three mathematical models, we analyze how this intrinsic property of the actomyosin complex affects muscle contraction at three level; namely, single cross-bridge, single fiber and organ levels, in a ceteris paribus analysis. We observed that state fluctuations allow the lever arm of myosin to easily and dynamically explore all possible minima in the energy landscape, generating several backward and forward jumps between states during the lifetime of the actomyosin complex, whereas the rigid case is characterized by fewer force generating events. Therefore, dynamical oscillations enable an efficient contraction mechanism, in which a higher force is sustained by fewer attached cross-bridges., Mammalian neuromuscular junctions (NMJs) undergo a postnatal topological transformation from a simple oval plaque to a complex branch-shaped structure often called a “pretzel”. Although abnormalities in NMJ maturation and/or maintenance are frequently observed in neuromuscular disorders, such as congenital myasthenic syndromes (CMSs), the mechanisms that govern synaptic developmental remodeling are poorly understood. It was reported that myotubes, when cultured aneurally on laminin-coated surfaces, form complex postsynaptic machinery, which resembles that at the NMJ. Interestingly, these assemblies of postsynaptic machinery undergo similar stages in developmental remodeling from “plaques” to “pretzels” as those formed in vivo. We have recently demonstrated that podosomes, actin-rich adhesive organelles, promote the remodeling process in cultured myotubes and showed a key role of one podosome component, Amotl2. We now provide evidence that several other known podosome-associated proteins are present at the NMJ in vivo and are located to the sites of synaptic remodeling. Additionally, we identified proteins that interact with Amotl2 in muscle cells. We show that two of them: Rassf8 and Homer1, together with other podosome components, are concentrated at postsynaptic areas of NMJs in the indentations between the AChR-rich branches. Our results provide further support for the hypothesis that podosome-like organelles are involved in synapse remodeling and that Rassf8 and Homer1 may regulate this process., Depletion of calcium (Ca2+) from intracellular stores (endoplasmic reticulum, ER), triggers Ca2+ entry across the plasma membrane, a process known as store-operated Ca2+ entry (SOCE). SOCE is mediated by the interaction between STIM1 (stromal interaction molecule 1), which functions as the Ca2+ sensor in the ER, and Ca2+ permeable Orai1 channels in the external membrane. In skeletal muscle, SOCE is the primary mechanism of Ca2+ entry during repetitive activity, a crucial step that prevents/delays fatigue. Despite the importance of this mechanism for proper muscle function during sustained activity, the subcellular sites for SOCE in skeletal fibers have not been identified. Here we show that prolonged muscle activity (treadmill running in mice) drives the formation of previously unidentified intracellular junctions between the sarcoplasmic reticulum (SR) and extensions of the external transverse tubule (TT) membrane. The activity-dependent formation of these unique SR-TT junctions reflects a striking and unexpected remodeling of the existing sarcotubular system at the I band of the sarcomere. Using immunochemistry and immuno-gold labeling we also demonstrate that these newly formed, activity-driven junctions contain the molecular machinery known to mediate SOCE in muscle: STIM1 Ca2+ sensor proteins in the SR, already present in the I band in control conditions, and Ca2+- permeable Orai1 channels, which move into the I band with TTs during prolonged muscle activity. Thus, we refer to these junctions as Ca2+ Entry Units, the first new, molecularly defined subcellular structure in skeletal muscle in over 30 years., The loss of connection between muscle and nerve is a crucial biological mechanism involved in Amyotrophic Lateral Sclerosis (ALS), a neurodegenerative disease associated with motor neuron degeneration, muscle atrophy and paralysis [1]. Recent studies showed the primary role of the skeletal muscle in the pathogenesis of the disease, pointing out the key role of the communication between muscle and nerve. In this context, we developed a protocol to measure, ex vivo, the neuromuscular junction (NMJ) functionality [2]. The experimental technique is based on the comparison between the muscle contractile response elicited by membrane stimulation and the response evoked by nerve stimulation. Since this latter stimulation bypasses the neuronal signalling, any difference between the two responses may be related to NMJ alterations. In particular, we started studying the Soleus-sciatic nerve preparation of one of the most studied ALS animal models, the SOD1G93A mouse [3], with the particular aim of following the pathology’s progress. We observed that the first functional alterations begin at 90 days of age, with an intrinsic damage of the muscle and defects in NMJ functionality who increase until the end-stage of the disease. Subsequently, we approached the study of the MLC/SOD1G93A mouse model, in which superoxyde dismutase-1 mutated gene is expressed exclusively in the skeletal muscle [4]. Our preliminary results highlighted defects in soleus muscle and NMJs functionality in MLC/SOD1G93A mouse model, compared to the wild type, suggesting a direct muscle impairment. Further analysis on this model will provide useful information about the NMJ alterations directly related to oxidative stress on skeletal muscles., Myosin is an abundant ATPase protein. It is estimated that 10% of muscle tissue weight is myosin. Due to its abundance, myosin can be a good target to raise basal metabolic rate in animals. A new low-ATP-consumption state of myosin has recently been proposed (1, 2). This new state has been called the “Super Relaxed State (SRX)” of Myosin. Structural evidence for the SRX state have recently been published showing a close complex formed by the two-myosin heads (3). It is characterized by an ATPase time constant in the order of 300 seconds versus the 15 seconds for the so-called “Disordered Relax State” (DRX)(1,2). The idea is that behind that large number of “dormant” ATPases, there is the key to raise basal metabolism in a physiological way. The amount of myosin in the SRX state is estimated to be approximately 60% of the total. Switching of the myosin heads from the SRX state to the DRX state is regulated by phosphorylation in a cooperativeness-driven-equilibrium. Controlling this equilibrium may lead to an increase in basal metabolism that would consume an additional energy of up to 1000 Kcal/day. We studied the effect of several Regulatory Light Chain mutants on the SRX state and we applied this information to the development of a high throughput screen. We are searching a molecule that is able to destabilize the SRX state in skeletal muscle fibers. We screened 2000 compound of an FDA approved library. Potential lead compounds will be discussed, The muscle cell is a biological machine where steady force and shortening are generated by arrays of the motor protein myosin II pulling the actin filament towards the centre of the sarcomere (the ~2 μm long structural unit of muscle) during cyclical ATP-driven interactions. The fraction of the time of the ATP hydrolysis cycle that myosin II spends attached to actin depends on the sarcomere load and at low load can be as small as 0.02. The array-type arrangement of the motors enhances and makes steady the production of force and shortening, but has so far limited the investigation of mechanics, energetics and structural dynamics of this collective motor to top-down approaches, such as single-cell mechanics and X-ray diffraction (Piazzesi et al. Cell 131:784-795, 2007). The laser trap technique in the Three Bead Assay (TBA) configuration allowed the recording of single actin-myosin interaction in vitro, but only when the duration of attachment was increased by reducing the ATP concentration to a few tens of micromolar (two orders of magnitude lower than that in situ in physiological conditions). In this project we use an alternative approach consisting in assembling molecular motor proteins on a nanostructured support to generate a synthetic sarcomere-scale machine, the mechanical output of which is measured with a double laser optical tweezers apparatus (Bianco et al. Biophys. J. 101:866-874, 2011). The shape, the material and the coating of the support carrying the motor array have been optimised using a preliminary version of the machine consisting of an ensemble of motor proteins randomly adsorbed on a flat surface and brought to interact with an actin filament attached to the trapped bead with the correct polarity. Tests on the density and the disposition of the myosin motors on the surface have been done using AFM. The most reproducible results have been obtained when the support for the motor ensemble is the lateral surface of a chemically etched single mode optical fibre (diameter 4 µm). In solution with physiological [ATP] (2 mM), the ensemble drives 350 nm of actin filament sliding developing a steady force of 50 pN. Supported by Italian Institute of Technology-SEED, project MYOMAC (Genova) and PRIN-MIUR, Italy., Skeletal muscle atrophy is caused by several and heterogeneous conditions, such as cancer (cachexia), neuromuscular disorders and aging. In most types of skeletal muscle atrophy overall rates of protein synthesis are suppressed, protein degradation is consistently elevated and atrogenes, such as the ubiquitin ligase Atrogin-1/MAFbx, are up-regulated. Sphingolipids represent a class of bioactive molecules capable of modulating the destiny of many cell types, including skeletal muscle cells. In particular, we and others have shown that sphingosine 1-phosphate (S1P), formed by sphingosine kinase (SphK), is able to act as trophic and morphogenic factor in myoblasts. Here, we report that the inhibition of SphK1 by specific gene silencing or pharmacological inhibition drastically reduced myotube size and myonuclei number, and increased Atrogin-1/MAFbx expression. Notably, the atrophic phenotype of C2C12 myotubes treated with dexamethasone and of muscle fibers obtained from cachectic mice inoculated with C26 adenocarcinoma, was characterized by increased expression of Atrogin-1/MAFbx and reduced levels of active SphK1. In addition, we found that C2C12 muscle cell atrophy was accomplished by changes in the pattern of expression of S1P receptor subtypes (S1PRs) and treatment of myotubes with S1P was able to prevent Dexa-induced atrophic marker expression. Finally, by using specific S1PR agonists and antagonists, we extended the investigation on the role played by S1PRs in the control of Atrogin-1/MAFbx expression. Altogether, these findings provide the first evidence that S1P/SphK1/S1PR axis acts as a molecular regulator of skeletal muscle atrophy, thereby representing a new possible target for therapy in many physiological and pathological conditions., Skeletal muscle is a dynamic tissue that can respond to external stimuli through both anabolic and catabolic processes. In a variety of conditions, including immobilization, AIDS and neuromuscular disorders, skeletal muscle mass is decreased (atrophy). Upon denervation or disuse, skeletal muscle undergoes atrophy, leading to reduced size of myofibers, impaired contractile and metabolic activities. Previous studies have identified key molecular pathways leading to protein breakdown and degradation of sarcomeric proteins; yet, it remains a gap of knowledge on whether muscle resident cell populations can regulate the response of muscle to atrophic stimuli. Indeed, the recent identification of muscle-derived interstitial cells, named fibro-adipogenic progenitors, that can adopt multiple lineages and contribute, either directly o indirectly, to muscle regeneration (Joe et al,2010; Uezumi et al,2010) indicates a previously unrecognized complexity in the regulation of muscle homeostasis (Saccone et al,2014). We have discovered an unexpected key role of specific muscle-derived mononuclear cells in the pathogenesis of muscle atrophy. The characterization of the mechanism by which these cells contribute to the loss of muscle mass may lead to the identification of new therapeutic targets to counteract muscolar atrophy., PGC-1α overexpression is able to protect skeletal muscle from fasting or denervation-induced atrophy (1) and to improve sarcopenia in old mice (2). Consistently, in the skeletal muscle of cachectic tumor-bearing mice, PGC-1α expression is reduced (3), in Association with the accumulation of PAX7+ cells, which is suggestive of an impairment of myogenesis (4). Preliminary observations obtained in mice overexpressing PGC-1α specifically in the skeletal muscle show that the number of CD34+/Sca1+ cells, both integrin-α7 positive (satellite cells) and negative (other myogenic precursors), was higher in the muscle of transgenic (TG) mice than in those of wild-type (wt) animals. Not only, myotubes originating from TG-derived myogenic precursors were increased in both number and size in comparison to those obtained from wt progenitors. Aim of the present study was to investigate if PGC-1α overexpression can improve the regenerative capacity in the muscle of tumor (C26)-bearing animals after chemically-induced injury. BaCl2 (30 μl, 1.2% w/v) was injected in the tibialis anterior muscle the day after tumor implantation. Thirteen days after injury, both wt and TG controls almost completely recovered the initial myofiber cross sectional area (CSA; 70% of uninjured muscle). By contrast, CSA recovery was markedly delayed in wt or TG tumor-bearing mice (30% of uninjured muscle). Such a lack of CSA rescue in TG C26 hosts occurred despite TG mice constitutively possess a number of myogenic precursors higher than wt animals. As an estimate of mitochondria number, cytochrome c expression was evaluated. The results show that cytochrome c levels were significantly reduced in the regenerating muscle of wt C26 hosts, while remained comparable to those of uninjured muscle in BaCl2-treated TG tumor bearers. Previous observations showed that inhibition of ERK activity improved muscle wasting and myogenesis in the C26 hosts (4). In this regard, muscle pERK levels were significantly lower in TG tumor bearers than in wt C26 hosts. In conclusion, the present study shows that PGC-1α overexpression in the regenerating muscle of tumor hosts resulted in improved mitochondrial mass, and likely, oxidative capacity, and in reduced pERK levels, however without obtaining a significant CSA rescue. These observations suggest that while PGC1α overexpression exerts positive effects on tumor-induced derangements at the molecular level, it does not appear able to impinge on the multifactorial nature of muscle wasting., Cancer cachexia is a life-threatening syndrome that affects most patients with advanced cancers and involves severe body weight loss, with rapid depletion of skeletal muscle. No effective treatment is available. We analyzed microarray datasets to identify a subset of genes whose expression is specifically altered in cachectic muscles of Yoshida hepatoma-bearing rodents, but not in those with diabetes, disuse, uremia or fasting. By Ingenuity Pathways Analysis, we found three genes belonging to the CXCR4 pathway downregulated only in muscles atrophying because of cancer: SDF1, PAK1 and ADCY7. Consistently, we show that the expression of all SDF1 isoforms declines also in Tibialis Anterior from cachectic mice bearing colon adenocarcinoma or renal cancer and anti-cachexia drugs such as sunitinib restore it. Overexpressing genes of this pathway (i.e. SDF1 or CXCR4) in cachectic muscles increases the fiber area by 20%, partially protecting them from wasting. The mechanisms behind this muscle preservation during cachexia include both reduced degradation of long-lived proteins, by either SDF1α or SDF1β on atrophying myotubes, and increased protein synthesis, mainly by SDF1α. However, inhibiting CXCR4 signaling with the antagonist AMD3100 does not affect protein homeostasis in atrophying myotubes at all, whereas normal myotubes treated with AMD3100 display decreased diameter in a time- and dose-dependent manner, until a plateau. This further confirms the involvement of a saturable pathway (i.e. CXCR4). Overall, these findings support the idea that activating the CXCR4 pathway in muscle suppresses the deleterious wasting associated with cancer., Cancer cachexia is a systemic syndrome that consists of a dramatic weight loss with rapid muscle depletion due to enhanced protein degradation, irrespective of food intake. Remarkably, 50% of advanced cancer patients are affected by cachexia, which accounts for approximately 20% of cancer deaths. No therapy is available. Interestingly, females are more resistant to cancer cachexia than males. We analyzed previous microarray datasets to identify genes whose expression is specifically altered in cachectic muscles of Yoshida hepatoma-bearing male rodents. Among these genes, we found that apelin was drastically downregulated to 8% of controls in cachectic gastrocnemius muscles (with 14% of weight loss) from male rats bearing Yoshida hepatoma for 5 days. We confirmed by Q-PCR that apelin was downregulated to 45% and 2% of controls also in Tibialis Anterior (TA) muscles in Lewis Lung Carcinoma and in Colon Adenocarcinoma 26 (C26)-bearing mice, respectively. Moreover, in TA from C26-bearing mice also the expression of apelin receptor (APJ), a member of G-protein coupled receptors, was reduced to 16%. Q-PCR analysis further confirmed that apelin downregulation occurred at all stages of cancer cachexia of C26-bearing male mice, while the expression of APJ was significantly reduced to 30% of controls only in early cachectic mice with less than 14% of body weight loss. Since apelin is expressed on X chromosome both in humans and mice and it is not downregulated in muscles from C26-bearing female mice, we believe that apelin could be a good candidate to explain the gender difference of cancer cachexia., Cachexia is a syndrome frequently occurring in cancer patients. It is characterized by body and skeletal muscle wasting and by metabolic abnormalities. These latter are mediated, partially at least, by humoral factors. Energy balance perturbations also contribute to the onset of cachexia. In this regard, impaired mitochondrial functions and altered energy expenditure likely play a role. Recent observations suggest that in addition to classical humoral factors such as hormones or cytokines, also tumor-derived microvesicles (MVs), circulating particles containing different molecules such as proteins, mRNAs and microRNAs, may contribute to derangements associated with cachexia (1). MVs were isolated by differential ultracentrifugation from the conditioned medium of LLC (Lewis Lung Carcinoma) cells and were quantified by a NanoSight apparatus. After five day culture in differentiation medium, C2C12 myotubes were treated for 24 h with LLC-derived MVs. In C2C12 myotubes tumor-derived MVs induce a reduction of PGC-1α, the master regulator of oxidative metabolisms and mitochondrial biogenesis, as well as of Cyt-c mRNA expression. These results are in agreement with previous observations showing decreased PGC1α expression in the skeletal muscle of cachectic mice. In myotubes oxygen consumption is significantly decreased while lactate levels in the culture medium are increased after treatment with MVs. BNIP3 mRNA expression is significantly increased, while no differences can be observed as for myotube size and mRNA expression of both Atrogin1 and MuRF-1, two muscle-specific ubiquitin ligases. These results suggest that tumor-derived MVs affect mitochondria in C2C12 cultures. The reduction of mitochondrial mass (decreased Cyt-c mRNA expression) and function is associated with down-regulation of PGC-1α expression and enhancement of selective autophagy (mitophagy). On the whole, MV-induced alterations could contribute to muscle wasting during cancer cachexia., High mobility group box 1 (HMGB1) is a nuclear protein that acts extracellularly as an alarmin to modulate inflammation and tissue repair by recruiting cells and promoting their migration and activation. Recently, we showed that HMGB1 orchestrates both processes by switching among mutually exclusive redox states. Fully reduced HMGB1 acts as a chemoattractant, whereas a disulfide bond makes it a proinflammatory cytokine and further cysteine oxidation by reactive oxygen species (ROS) abrogates both activities. The fully reduced HMGB1 is prevalent in the extracellular environment immediately after acute muscle injury, and disulfide- HMGB1 appears a few hours later. Thus, the generation of ROS during muscle damage might modulate the redox status of the protein and eventually limit its lifespan and functions. We created a mutant (3S-HMGB1) not susceptible to redox modifications and we evaluated its regenerative activity in a model of acute muscle injury induced by cardiotoxin. We demonstrated so far that HMGB1 has beneficial effects in skeletal muscle regeneration after acute injury by dramatically increasing the number of healthy fibers and the number of satellite cells and M2c macrophages, two cell types essential for muscle repair. Moreover, HMGB1 acts directly on primary myoblasts by inducing their migration and their fusion to form large myotubes. Remarkably, 3S-HMGB1 behaves as a superagonist of HMGB1 in vivo, suggesting that it is a promising candidate for muscle repair therapies. Our study will be extended to other models of muscle damage, in particular dystrophies, in order to evaluate the therapeutic potential of 3S-HMGB1 in chronic conditions., Atrophy is an active process controlled by specific signaling pathways and transcriptional programs. The identification of the precise signaling cascades that regulate muscle wasting remains poorly understood. The Ubiquitin Proteasome System (UPS) is one of the major systems that control protein breakdown during muscle wasting. The specificity of ubiquitin-dependent degradation derives from many E3s that recognize specific substrates. This work is focus on a novel muscle-specific circadian-rhythm dependent ubiquitin ligase named Asb2β. To dissect its role, we have generated muscle specific and tamoxifen-inducible muscle specific knock-out mice. We have characterized these knockout mice in physiological and in catabolic conditions. Asb2β defective muscles show normal muscle morphology and mitochondrial content but muscles display a fiber type switch and glycogen accumulation. Glucose tolerance test revealed an improved glucose uptake in knockout mice. Moreover, glycogen content dramatically decreased in Asb2β knockout mice during fasting. The changes in glucose homeostasis are Akt independent but TBC1D1and AS160 dependent. However, absence of nutrients triggers necrotic degeneration and appearance of abnormal mitochondria in Asb2β-null muscles. We have also started to characterize the tamoxifen-inducible knockout mice. Preliminary data show that acute inhibition of Asb2β induces a time dependent muscle growth. In conclusion, we have identified a novel muscle specific ubiquitin ligase, Asb2β, that plays an important role in glucose homeostasis and muscle hypertrophy., Aging is characterized by loss of skeletal muscle mass and function, condition known as sarcopenia. The mechanisms underlying sarcopenia are not completely understood, however a role for ectopic fat accumulation has been proposed. Skeletal muscle accumulates lipid in form of triglycerides within lipid droplets (LDs). LDs are characterized by the presence of Perilipins (Plins), that control lipid accumulation and metabolism under physiological and pathological conditions. In skeletal muscle one of the most representative is Plin2, particularly involved in lipid storage. However, the exact role of Plin2 is not still clear. We found that in human muscle the expression of Plin2 increases with aging and it is inversely associated with muscle mass and strength. Moreover, Plin2 expression is associated with atrophy-related genes, MuRF-1 and Atrogin, suggesting a role for Plin2 in muscle aging and atrophy. We also analysed the expression of Plin2 in adult mice where muscle atrophy was induced by denervation. Denervation of tibialis anterior muscle was compared with the contralateral intact side. After denervation, beside the expected increase of MuRF-1 and Atrogin, also Plin2 expression actually increases. This suggested that Plin2 expression is somehow associated with muscle atrophy. To support this hypothesis, we performed muscle-specific in vivo silencing experiments of Plin2. After 7 days from injection, a decrease of Plin2 was observed, and most interestingly the cross-sectional area (CSA) of Plin2-negative fibres resulted increased of about 30% with respect to Plin2-positive ones. As a whole, these data suggest that in skeletal muscle Plin2 is involved not only in muscle atrophy, but also in hypertrophy. Further studies are ongoing to better clarify this new role of Plin2 in skeletal muscle., The rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in people under 20 years of age. It can commonly arise anywhere in the body but the head and neck, the extremities and the genitourinary tract are predominant sites. Based on histology, RMS tumors are classified into two major subtypes, embryonal and alveolar, which also differ in the molecular pathogenesis of development. Despite these differences, the origin of aRMS and eRMS seems to be the same but the precise cell type that triggers RMS is still unclear. Some evidence supports the notion that skeletal muscle precursors, probably satellite cells, may initiate RMS. Alternative theories propose mesenchymal stem cells, or even cells belonging to the adipocyte lineage, as possible tumor-initiating cells. In order to shed light on the origin of eRMS, we adopted the KrasG12D/+Trp53Fl/Fl conditional mouse model. This model allows us to generate eRMS in the hind limb of mice by infecting them with an adenovirus vector carrying the CRE recombinase. In a first approach we want to describe and rationalize the changes in the tumor mass cell populations by analyzing the tumor at different stages of development by using flow and mass cytometry techniques. In a second approach we aim at identifying the cell population(s) that are responsible for initiating the tumor. To this end we induce the gene mutations that are responsible for rhabdomyosarcoma development by infecting, with the CRE recombinase adenovirus, isolated muscle mononucleate cell populations and monitor their ability to develop rhabdomyosarcoma tumorigenic properties in vitro., The purpose of this study was to investigate whether MURC/cavin-4, a plasma membrane and Z-line associated protein exhibiting an overlapping distribution with Caveolin-3 (Cav-3) in heart and muscle tissues, may be expressed and play a role in rhabdomyosarcoma (RMS), an aggressive myogenic tumor affecting childhood. We found MURC/cavin-4 to be expressed, often concurrently with Cav3, in mouse and human RMS, as demonstrated through in silico analysis of gene datasets and immunohistochemical analysis of tumor samples. In vitro expression studies carried out using human cell lines and primary mouse tumor cultures showed that expression levels of both MURC/cavin-4 and Cav-3, while being low or undetectable during cell proliferation, became robustly increased during myogenic differentiation, as detected via semi-quantitative RT-PCR and immunoblotting analysis. Furthermore, confocal microscopy analysis performed on human RD and RH30 cell lines confirmed that MURC/cavin-4 mostly marks differentiated cell elements, colocalizing at the cell surface with Cav-3 and labeling myosin heavy chain (MHC) expressing cells. Finally, MURC/cavin-4 silencing prevented the differentiation in the RD cell line, leading to morphological cell impairment characterized by depletion of myogenin, Cav-3 and MHC protein levels. Overall, our data suggest that MURC/cavin-4, especially in combination with Cav-3, may play a consistent role in the differentiation process of RMS., Rhabdomyosarcoma (RMS) is a childhood soft tissue tumor with broad expression of markers that are typically found in skeletal muscle. Cavin-1 is a recently discovered protein actively cooperating with Caveolin-1 (Cav-1) in the morphogenesis of caveolae and whose role in cancer is drawing increasing attention. Using a combined in silico and in vitro analysis here we show that Cavin-1 is expressed in myogenic RMS tumors as well as in human and primary mouse RMS cultures, exhibiting a broad subcellular localization, ranging from nuclei and cytosol to plasma membrane. In particular, the coexpression and plasma membrane interaction between Cavin-1 and Cav-1 characterized the proliferation of human and mouse RMS cell cultures, while a downregulation of their expression levels was observed during the myogenic differentiation. Knockdown of Cavin-1 or Cav-1 in the human RD and RH30 cells led to impairment of cell proliferation and migration. Moreover, loss of Cavin-1 in RD cells impaired the anchorage-independent cell growth in soft agar. While the loss of Cavin-1 did not affect the Cav-1 protein levels in RMS cells, Cav-1 overexpression and knockdown triggered a rise or depletion of Cavin-1 protein levels in RD cells, respectively, in turn reflecting on increased or decreased cell proliferation, migration and anchorage-independent cell growth. Collectively, these data indicate that the interaction between Cavin-1 and Cav-1 underlies the cell growth, migration and differentiation grade in myogenic tumors., Recently, it was shown that in yeast CK2-dependent phosphorylation of the mitochondrial import receptor Tom22 promotes biogenesis of the TOM translocase and is required for import of mitochondrial proteins. We asked whether CK2-dependent phosphorylation of TOM proteins also occurs in mammals. Using CK2β-deficient skeletal muscle lysates, we observed less phosphorylation of Tom22. Moreover, we confirmed CK2 phosphorylating residues serine 15 and threonine 43 of murine Tom22. Further, CK2-dependent phosphorylation of Tom22 changes its binding affinity for proteins need to be imported into mitochondria. In the absence of CK2 mitochondrial protein import is impaired in muscle fibers and mitochondria are dysfunctional. Pink1, a mitochondria health sensor and involved in Parkinson s disease, accumulates within mutant muscle cells, and labels removal of dysfunctional mitochondria by mitophagy and involvement of autophagic adaptor protein p62/SQSTM1. Consequently, the metabolism of oxidative muscle fibers in mutant muscles shifted towards glycolytic. As proof of concept, removal of aggregated p62/SQSTM1 by muscular in vivo electroporation of phosphomimetic Tom22 was successful. This is the first evidence for both, regulated protein import into mammalian mitochondria, and muscle weaknes due to a mitochondrial protein import defect., Canonical Wnt/β-catenin signaling plays a role in myogenic differentiation, but its role in adult muscle fibers is completely unknown. We approached canonical Wnt signaling in adult myofibers by well-known reporter Axin2-lacZ mice, monitoring X-Gal staining in muscle stem cells, in adult muscle fibers and at their neuromuscular synapse. In muscle stem cells, canonical Wnt signalling is absent in quiescent cells and 72 h proliferating cells. In adult muscle fibers, canonical Wnt signaling is strongly detectable by Axin2- and β-catenin-positive skeletal muscle fibers, where it is expressed only in fast fiber types with small cross-sectional areas. In these fibers, canonical Wnt signaling is active together with Hippo signaling members, YAP/TAZ and TEAD1. During differentiation of C2C12 cells, Axin2 increases together with the expression of TEAD1-target genes: CTGF, Ankrd1 and Cyr61. In cultured primary muscle cells, we observed Axin1 and Axin2 being involved in proliferation and myotube formation in a Wnt1 and Wnt3a dependent manner. We present a model how canonical Wnt/β-catenin signaling, together with YAP/TAZ and TEAD1, influences muscle fiber diameter in fiber-type specific manner., Muscle atrophy contributes to the poor prognosis of many pathophysiological conditions, but pharmacological therapies are still limited. Muscle activity leads to major swings in mitochondrial [Ca2+] which control aerobic metabolism, cell death and survival pathways. We have investigated in vivo the effects of mitochondrial Ca2+ homeostasis in skeletal muscle function and trophism, by overexpressing or silencing the Mitochondrial Calcium Uniporter (MCU). The results demonstrate that both in developing and in adult muscles MCU-dependent mitochondrial Ca2+ uptake has a marked trophic effect that does not depend on aerobic control, but impinges on two major hypertrophic pathways of skeletal muscle, PGC-1α4 and IGF1-AKT/PKB. In addition, MCU overexpression protects from denervation-induced atrophy. These data reveal a novel Ca2+-dependent organelle-to-nucleus signaling route, which links mitochondrial function to the control of muscle mass and may represent a possible pharmacological target in conditions of muscle loss., PKC (protein kinase C) family is composed by 3 subgroups: conventional, novel and atypical PKC. These kinases are involved in a large number of biological processes (such as protein synthesis, glucose metabolism, apoptosis). PKCzeta and PKClambda/iota belong to the atypical PKC subgroup and differ from conventional and novel PKCs for their activation mechanism. Indeed atypical PKCs are calcium and diacylglycerol (DAG) insensitive, while classical PKCs are activated by calcium and DAG, and novel PKCs are activated by DAG but not by calcium (1,2). Little is known on the role of PKCzeta on skeletal muscle homeostasis. Thus, we overexpressed this kinase by in vivo transient transfection. We observed a marked hypertrophy in PKCzeta positive myofibers compared to surrounding not transfected fibers. In addition PKCzeta overexpression protected muscle from denervation-induced atrophy. Next, we studied the effects of 3 different PKCzeta mutants on fiber size: 1) PKCzeta-DN (a dominant negative isoform carrying a point mutation on the ATP-binding site); 2) PKCzeta-ΔNPS (a costitutive active mutant); 3) PKCzeta-InLoop (a dominant negative isoform mutated in the activation loop). Surprisingly all these mutants cause muscle hypertrophy and protect from denervation-induced atrophy suggesting a possible kinase-independent mechanism of PKCzeta on skeletal muscle trophism., P38 mitogen activated protein kinases (MAPKs) are required at several stages during differentiation of muscle progenitor cells. P38 phosphorylation initially accompanies satellite cells activation and triggers asymmetric division. At a later stage, it orchestrates myoblast differentiation promoting myotube formation. The signals that trigger or modulate p38 activation during the differentiation process are still debated. Both cellJtoJcell contact and TNFα prime p38α/β phosphorylation and activation during myogenesis. Cdo, a multifunctional surface protein has been implicated in myogenesis. Following cellJtoJcell contact and ligation to cadherin, Cdo binds JLP and BnipJ2 which act as scaffolds for recruitment of p38α/β and Cdc42. The formation of the complex leads to activation of Cdc42, which is fundamental to promote p38α/β phosphorylation and myogenic differentiation. However, the phosphorylation cascade leading to p38α/β activation has not been elucidated. We focused on Pak1, a member of the p21 activated kinase family, which is activated by Cdc42. We have observed that treatment of differentiating myogenic progenitors (mesoangioblasts) with the Pak1 inhibitor IPAJ3 negatively modulates p38α/β phosphorylation and myogenin expression without affecting cell proliferation. This inhibition of the myogenic differentiation program results in a lower efficiency of myotube formation. We followed these observations in vivo by monitoring regeneration efficiency in mice treated with IPA-3 and we observed that mice treated with IPA-3 displayed a delayed recovery after cardiotoxin injury. These results suggest the Pak1 contributes to myogenic differentiation of progenitor cells in vitro and participates in muscle regeneration in vivo., Ambra1 (activating molecule in Beclin 1-regulated autophagy) is an adaptor protein involved in a plethora of cellular processes. Studies in mice with a randomly mutated Ambra1 locus (Ambra1gt/gt) showed that this gene is essential for the development of the central nervous system. A recently published work by our team suggests that Ambra1 may also play a key role for muscle development in zebrafish and mouse. Indeed, Ambra1gt/gt E13.5 mouse embryos display severe defects of neck, tongue, dorsal and limb muscles, being characterized by increased cellularity and a marked disorganization of myofibers. To better clarify the role of Ambra1 in skeletal muscles, we generated mice with a floxed Ambra1 allele (Ambra1flox/flox). Ambra1flox/flox mice were then crossed with a CAG-Cre transgenic line, which express Cre recombinase in the oocytes, thus obtaining Ambra1+/- mice. Here we show that Ambra1–/– mice die at late developmental stages and display severe morphological defects, similar to Ambra1gt/gt embryos. Adult Ambra1+/- mice show an increased percentage of centrally nucleated fibers and a decreased proportion of oxidative fibers. Ambra1flox/flox mice were then bred with MLC-1f-Cre transgenic animals, which only express Cre recombinase in mature myofibers. Our preliminary data in adult Ambra1flox/flox;MLC-1f-Cre mice show a significant increase of centrally nucleated fibers, although we did not observe any overt defect of oxidative fibers. Altogether, our data suggest that Ambra1 is important for the development of skeletal muscle. Further studies in different muscles of Ambra1flox/flox;MLC-1f-Cre mice under different stress conditions will allow elucidating the role of this adaptor protein in myofiber homeostasis, Myopalladin (MYPN) is a striated muscle-specific sarcomeric protein belonging to a small family of actin-associated immunoglobulin-containing proteins. MYPN mutations have been identified in patients with dilated (DCM), hypertrophic, and restrictive cardiomyopathy. Furthermore, we identified three MYPN mutations in limb girdle muscular dystrophy (LGMD) patients with associated DCM. Within the sarcomeric Z-line, myopalladin binds to α-actinin, nebulin, and PDZ-LIM proteins. Furthermore, it is present in the nucleus and the I-band where it binds to the stress-inducible transcriptional cofactor CARP/Ankrd1, which, in turn, binds to the I-band region of titin, suggesting a role of MYPN in mechanosensing. In our preliminary studies, we found that MYPN can bind to and bundle filamentous actin, thereby promoting actin polymerization. Moreover, MYPN interacts with MRTF-A and strongly increases MRTF-A-mediated activation of serum response factor (SRF) signaling. In studies of MYPN knockout (MKO) mice, we found that MKO mice are significantly smaller compared to wildtype (WT) mice and have an about 30% reduction in skeletal muscle cross-sectional area (CSA) at all ages. Consistently, reduced differentiation rate and myotube width was observed in primary skeletal muscle cultures derived from MKO mice. Furthermore, studies of muscle performance in 2-month-old MKO mice showed reduced isometric force and power during isotonic shortening at any loads as a result of the reduced cross sectional area, whereas the force developed by each myosin molecular motor was unaffected. By up- and downhill treadmill running, MKO and WT mice performed similarly. However, while the performance of WT mice was unaffected following four consecutive days of downhill running, the performance of MKO mice decreased progressively and signs of muscle regeneration following muscle damage were observed. Consistent with a higher susceptibility to muscle damage, progressive Z-line widening was observed in MKO skeletal muscle from about 8 months of age. RNAseq revealed downregulation of actin isoforms and other SRF-target genes in MKO muscle both at 2 and 4 weeks of age, suggesting altered SRF signaling as a possible explanation for the reduced CSA in MKO mice., Impairment of autophagy in muscle leads to precocious ageing1. In particular, autophagy deficient mice are characterized by weakness are atrophy that are associated with alteration in Neuro Muscular Junction (NMJ) and loss of innervation. In order to investigate the cross-talk between muscle and nerve, we found that the expression of FGFBP1, a neurotrophic factor that is critical to preserve muscle-nerve interaction, is suppressed in muscle of autophagy deficient mice. FGFBP1 has been found to be regulated by miRNA206, the muscle-specific miRNA2. When we checked the level of miRNA206 expression, we found higher level of miRNA206 in serum of muscle specific autophagy deficient mice than in controls. Importantly, miRNA206 was detected in the heart of those mice. To understand whether autophagy deficient muscles released vesicles containing microRNAs, we analysed exosomes Quantitative RT-PCR analyses confirmed an increased expression of miRNA206 in purified exosomes from both denervated and autophagy deficient fibers. Moreover expression of BDNF in neurons treated with purified exosomes containing miRNA206 was down-regulated. This finding suggests a potential role of exosomes and miRNA206 in modulating synaptic plasticity. In order to mimic autophagy deficient mice condition, we systemically injected exosomes transfected with miRNA206 in wild-type animals. MiRNA206 was found in several tissues, in particular liver and heart. Moreover the treatment was sufficient to induce skeletal muscle atrophy and changes in the expression of several neurotrophic factors. These data support the role of exosome as a signaling mechanism that connects muscle with different tissues including motorneuron, heart and liver., Duchenne muscular dystrophy (DMD) is a genetic disease in which loss of functional dystrophin protein results in progressive skeletal muscle degeneration. Although the genetic defect is widely known, the mechanisms by which the absence of dystrophin leads to the complex pathophisiology of the disease is not completely understood. MiRNAs are small non coding RNA that are important regulatory elements for muscle development and function [1]. Altered levels of specific miRNAs were found in several muscular disorders, including DMD [2, 3]. In particular it has been identified a specific DMD-signature miRNAs that may serve as a marker for therapeutic purposes [4]. Moreover, in a recent work it has been defined a specific group of miRNAs strictly correlated to dystrophin levels and whose deregulated expression could explain several pathogenetic features of DMD [5]. Previously we have demonstrated that the local expression of mIGF-1 in mdx mice ameliorates the dystrophic phenotype reducing myonecrosis and upregulating survival pathways such as AKT pathway [6]. In this work, we show that a specific group of miRNAs, dystrophin-indipendent, are modulated by mIGF-1 expression. In particular, local expression of mIGF-1 promotes the modulation of miR-206 and miR-24 as well as muscle specific genes associated with maturation of regenerating muscle fibers and differentiation. These results indicates that local overexpression of the anabolic factor mIGF-1 in mdx mice ameliorates the dystrophic microenviroment modulating the expression of a specific group of miRNAs and inducing a partial rescue of the characteristic DMD-signature., Circular RNAs have been recently re-discovered as a large class of putative non-coding RNAs with a peculiar structure and poorly understood functions. Although their biogenesis, which proceeds via a back-splicing reaction, has been studied and dissected in the last years, their role in biologically relevant processes is still uncharacterized. Here, we performed expression profiling of circRNAs during in vitro differentiation of murine and human myoblasts, we selected and validated the expression of a subset of highly expressed, conserved circular RNAs and applied a high-content functional genomic screen in order to identify molecules that were able to impact on the differentiation process. We focused on three circRNAs whose down-regulation resulted in important phenotypes and further scrutinized one of them, named circ-ZNF609, with the aim of undestanding its molecular function. We found that circ-ZNF609 contains an open reading frame spanning from the native start codon of its host transcript and terminating at an in-frame stop codon that is created upon circularization. Circ-ZNF609 is associated to heavy polysomes and is translated into a 30-KDa peptide that is able to promote human myoblasts proliferation., Stem cells and regenerative medicine have greatly increased the expectations of the scientific community and the public for their potential in applications that aim at recovering or replacing injured, aged and diseased tissues. Nevertheless their clinical application is currently hindered by cell survival, inflammatory response, tissue engraftment, vascularization and efficient differentiation. Tissue engineering exploits biomaterials to improve stem cell engraftment and differentiation by mimicking organogenesis. Skeletal muscle tissue engineering is an up-and-coming biotechnology that could offer great potential, in the near future, for muscle repair. Reconstructing the skeletal muscle architecture and function is still a challenge requiring parallel alignment of myofibrils arranged into organized sarcomeres. We show that an “anatomical bioreactor-like” represented by the surface of mouse tibialis anterior muscle (TA), positively influences maturation and alignment of fibers derived from adult muscle stem/progenitor cells embedded into a poly-ethylene-glycol-fibrinogen (PF) hydrogel. This approach leads to the generation of an artificial normal muscle. Furthermore by the same approach we succeeded in replacing a complete mouse TA after massive muscle ablation, recovering morphology and function of the substituting artificial TA. Starting from these observations, we are now developing a novel approach for regeneration and/or reconstruction of skeletal muscle tissue segments human-like size in order to translate this technique to clinical application. For this purpose human derived muscle pericytes have been isolated from muscle biopsies and have been investigated for their myogenic potential. Moreover by exploiting the PF properties, we demonstrated the noteworthy potential of this cell population for human skeletal muscle tissue engineering., Histone deacetylases (HDACs) control the transcriptional networks underlying both muscle differentiation and progression of dystrophy. Considering that, HDAC inhibitors (HDACi) are important candidate drugs for pharmacological interventions in muscular dystrophies. Although the beneficial effects of HDACi in the treatment of muscular dystrophy are known, it remains to dissect the mechanism of action and the cellular mediators of these drugs. The goal of this project is to analyze the molecular mechanisms underlying the role of resident satellite cells and infiltrating macrophages in mediating the activity of HDACi ITF2357 (also referred to as Givinostat) in dystrophic muscle of mdx mice, the best animal model of Duchenne Muscular Dystrophy (DMD). We analyzed the dystrophic phenotype of mdx mice treated with Givinostat at different stages of disease, specifically 6, 12 and 36 weeks, corresponding to necrotic/inflammatory, regenerative and fibrotic stage, respectively. The histopathological and morphometric analyses show an amelioration of dystrophic phenotype with a significant increase of muscle fiber cross-sectional area and a consistent reduction of intramuscular fibrosis, surprisingly also at late stage of disease, suggest a positive outcome also in old mdx mice. Moreover, gene expression analysis of whole skeletal muscle and purified cell populations pointed out a modulation of fibrosis and inflammatory markers and fibroadipogenic differentiation. Overall, these data confirm the beneficial effects of Givinostat on dystrophic muscle and identify the involvement of macrophages in mediating Givinostat activity., Central Core Disease (CCD) and Malignant Hyperthermia (MH) are related disorders linked to mutations in the ryanodine receptopr-1 (RYR1) gene, encoding for the sarcoplasmic reticulum (SR) Ca2+ release channel. CCD is a congenital myopathy characterized by amorphous regions lacking mitochondrial activity (cores) in skeletal fibers. In humans, the RYR1-Y522S mutation is associated with MH and formation of structural cores. Skeletal fibers of knock-in RYR1Y522S/WT mice develop mitochondrial damage and cores, caused by excessive oxidative stress (Boncompagni et al. 2009 PNAS). We treated RYR1Y522S/WT mice with an antioxidant, N-acetylcysteine (NAC), provided ad-libitum in drinking water (1%w/v) for 2 months and verified reduction of oxidative stress: indeed, level of 3-nitrotyrosine was increased by 1.44-folds in RYR1Y522S/WT mice, but reduced to control levels after NAC treatment. Electron microscopy was used to assess mitochondrial integrity following NAC-treatment: a) mitochondria swelling and frequency of damaged mitochondria were both decreased (-24% and -10%, respectively); b) the number/100 µm2 of mitochondria (25.9 ± 0.7 vs 29.1 ± 0.6) and their proper association with the SR (+22%) were both increased. Using histological analysis, we also verified that NAC was effective in reducing the frequency of cores (-20% contracture cores; -30% unstructured cores). Finally, we evaluated muscle function in treated mice by grip strength test: NAC was able to improve muscle strength of about 80%. This work provides the bases for clinical trial as it demonstrate that NAC-administration prevents mitochondrial damage, development of cores, and improves muscle function in a mouse model of CCD., In humans, lethal hyperthermic episodes can be trigger by anesthetics (a disorder known as Malignant Hyperthermia, Susceptibility, MHS) and by high temperature and/or strenuous exercise (crises identified as Environmental/Exertional Heat Strokes, EHSs). The correlation between MHS and EHS is strongly supported by extensive work in animal models: indeed, both RYR1Y522S/WT knock-in and CASQ-1 knockout mice trigger similar lethal crises when exposed to both halothane and heat. Here we tested the following hypotheses: a) strenuous exercise is a stimulus capable to trigger EHS-lethal episodes; b) MHS and EHS share common molecular mechanisms underlying crises. When RYR1Y522S/WT and CASQ1-null mice were subjected to an exertional-stress (ES) protocol (executed on a treadmill placed in an environmental chamber), which was well tolerated by WT animals (0% of deaths), the mortality rate was dramatically increased (80% and 75%, respectively), with a rise in core temperature (hyperthermia) significantly higher than in WT at the end of the stimulus. During exertional-crises, most fibers from RYR1 Y522S/WT and CASQ1-null mice suffer severe structural damage (~99% and ~64% of fibers, respectively), indication of rhabdomyolysis. Importantly, pre-treatment of animals with azumolene (a more water soluble dantrolene analog, the only drug approved for treatment of MH crises in humans) almost completely abolished mortality rate in RYR1 Y522S/WT and CASQ1-null animals, by reducing hyperthermia, rhabdomyolysis, and Ca2+leak from the SR. All these results strongly suggest that EHS share common molecular mechanisms with anesthetic-induced MH episodes and that drugs used to treat classic MH should be considered for treatment of EHS., Duchenne muscular dystrophy (DMD) is an X-linked neuromuscular disorder characterized by progressive muscle degeneration due to lack of dystrophin, a protein essential for the integrity of sarcolemma during contraction. In DMD compensative degeneration/regeneration cycles determine a condition of chronic inflammation contributing to progressive muscle wasting. RAGE (receptor for advanced glycation end-products) is a multiligand receptor belonging to the immunoglobulin superfamily involved in physiological and pathological processes including inflammation and myogenesis [1]. RAGE is not expressed in adult muscle tissue, whereas it is expressed in regenerating myofibers during muscle regeneration [2,3], in dystrophic muscles and activated immune cells. To have information about the role of RAGE in the pathophysiology of DMD we generated a double mutant mdx/Ager–/– mouse lacking dystrophin and RAGE (Ager). We analyzed diaphragms and hind-limb muscles (i.e., tibialis anterior and quadriceps femoris) of mdx, mdx/Ager–/–, Ager–/– and WT mice at different ages (i.e., 2, 3, 4 and 5 weeks, and 3 and 6 months of age). We found that although the absence of RAGE in dystrophic mice did not affect the onset of the pathology, muscles of 5 week- and 6 month-old mdx/Ager–/– mice showed significantly reduced numbers of necrotic myofibers, and reduced areas of immune cell infiltrate compared with age-matched mdx mice. Also, muscles of mdx/Ager–/–mice showed strongly reduced expression of the marker of activated macrophages, MAC3, compared with mdx mice. Moreover, muscles of mdx/Ager–/– mice exhibited significantly reduced PAX7+ve and myogenin+ve cell numbers, pointing to a reduced recruitment of muscle precursor cells and a more efficient regeneration in dystrophic mice lacking RAGE. Our results suggest that RAGE has an important role in sustaining inflammatory and degenerative processes in dystrophic muscles, and that inhibition of RAGE expression/activity might represent a potential therapeutic approach in DMD patients., Ageing is associated to a dramatic increase in the incidence of heart failure, even if the existence of a real age-related cardiomyopathy remains controversial. As effective contraction and relaxation of cardiomyocytes also depends on Ca2+ supply to myofibrils (handled by calcium release units, CRUs) and on efficient ATP production (provided by mitochondria), in this study we performed a morphological study of cardiac cells in hearts from adult and old mice (4 months vs. ≥ 24 months of age) using confocal and electron microscopy. The analysis of CRUs indicates that couplons become shorter with age and that the number of CRUs/50 µm2 is decreased of about 24% (adults: 5.1±0.32; old: 3.9±0.19). Also mitochondria present structural modifications, with a significant increase in the percentage of organelles presenting severe alterations (3.5% vs. 16.5%). Importantly, both CRUs and mitochondria undergo a spatial re-organization with respect to sarcomeres/myofibrils: CRUs may be miss-oriented (longitudinal) or miss-placed (found at the A band instead of being correctly placed in proximity of Z-lines), while mitochondria are often grouped in an abnormal fashion. In addition, WB analysis shows that in aged mice, there is a significant reduced expression of junctophilin-2 (JP-2), a membrane protein involved in maintaining stability and morphometry of dyads. These age-related ultra-structural changes may underlie an inefficient supply of Ca2+ and ATP to contractile elements, providing a possible explanation for heart dysfunction associate to age., Progressive muscle degeneration followed by dilated cardiomyopathy is a hallmark of muscular dystrophy. Stem cell therapy is suggested to replace diseased by healthy myofibers, although so far we are faced by low efficiencies of migration, engraftment and differentiation of stem cells. Chemokines are signalling proteins guiding cell migration and have been shown to tightly regulate cardiac repair. We sought to determine which chemokines are expressed in a dystrophic heart that is undergoing cardiac remodelling. Therefor we analysed chemokine expression of Sarcoglycan-α (Sgcα) null, Sarcoglycan-β (Sgcβ) null and immunodeficient Sgcβ-null mice. High expression of all three monocyte-chemotactic proteins was observed, especially Ccl8 in both Sgcβ-null models and to a greater extent in Sgcα-null mice. Additionally, Fractalkine (Cx3cl1) was upregulated in both the immunocompetent and immunodeficient Sgcβ-null mice. In addition, we aim to evaluate the migration potential of cardiovascular progenitors derived from pluripotent stem cells in vitro, that have the potential to differentiate with high efficiency towards cardiomyocytes, smooth muscle cells and endothelial cells in vitro. We plan to test these cells for their in vivo differentiation and migration capacity towards the previously mentioned chemokines. This sheds perspective for an approachable mechanism, which could potentially improve stem cell homing towards the dystrophic myocardium., Cardiac dysfunction from cardiomyopathy is a frequent manifestation of muscular dystrophy. The primary defect common to most dystrophies involves the disruption of the dystrophin-glycoprotein complex (DGC) with subsequent sarcolemma instability and Ca2+ influx, inducing cellular necrosis. Defective Ca2+ uptake resulting from decreased expression and reduced activity of calcium-transporting ATPase (SERCA2a) and, recently, SERCA2a gene therapy has been demonstrated to mitigate dystrophic diseases. Our previous studies have demonstrated that the dystrophic phenotype observed in δ-sarcoglycan–null hamster is dramatically improved by a long-term dietary supplementation with flaxseeds (FS) (rich in n3-PUFAs), but the molecular mechanisms have not yet been fully understood. The present study was designed to test the hypothesis that FS enriched diet could regulate DGC and SERCA2a proteins that play an important structural and functional role in cardiomyocytes. Therefore, the levels of these proteins and mRNAs were analyzed in heart dystrophic hamsters fed with FS diet for long (five months) or short time (48 hours). Results showed that α- distroglycan, α-, β, γ-sarcoglycan and SERCA2a proteins were down-regulated in dystrophic hearts and FS-diet restored their normal expression pattern. The RT-PCR analysis showed that α-distroglycan, α-sarcoglycan and SERCA2a were up-regulated at the transcriptional level. Interestingly, the mRNAs increase was observed even when FS was administered for short periods suggesting the involvement of an epigenetic mechanism. Therefore, it seems plausible to consider the administration of plant-originated n-3 PUFAs as an adjuvant strategy for attenuating sarcolemma instability and defective Ca2+ uptake that represent major damages associated with dystrophic cardiomyopathies., Oxidative stress (OS) is an imbalance between the production of free radicals, in particular reactive oxygen species (ROS), and the ability of the cells to counteract them by antioxidant responses. ROS production in skeletal muscle occurs mainly in mitochondria, both following physiological stimuli (e.g. aging, physical exercise, or at birth) (1-3) and in response to pathological events, such as denervation (4). In all cases, high levels of ROS actively influence the maintenance of muscle homeostasis. Histone deacetylase 4 (HDAC4) is a member the class II of the HDAC superfamily that regulates many cellular processes (5-7). Following denervation, HDAC4 is upregulated in skeletal muscle: it induces muscle atrophy and represses reinnervation (8-9). Increased levels of ROS cause HDAC4 translocation from the nucleus to the cytoplasm, thus inducing the release of genes transcriptionally repressed by HDAC4(10). However, HDAC4 targets in skeletal muscle have not been discovered yet. In order to investigate the role of HDAC4 in response to OS in skeletal muscle, we use a mouse model with the selective deletion of HDAC4 in myogenin positive cells (HDAC4 mKO mice). HDAC4 mKO mice are viable and do not show gross abnormalities in skeletal muscle. We analyzed mice in two different conditions characterized by elevated OS: at birth and in adult mice following denervation. Molecular responses to oxidative stress are blunted in both newborn and adult HDAC4 mKO compared to control mice. Since elevated ROS contribute to mitochondrial damage and are important in redox signaling from the organelle to the rest of the cell, we analyzed mitochondrial ultrastructure. Both newborn and adult HDAC4 mKO muscles presented damaged mitochondria, altered mitochondrial dynamics and defects in myofiber organization. Our results indicate that HDAC4 is important in skeletal muscle to maintain muscle integrity and a proper response upon OS. Current studies are focused on the identification of HDAC4 targets in the OS response in skeletal muscle, Collagen VI (ColVI) is a major extracellular matrix component made of three genetically distinct α chains and abundantly deposited in the basement membrane of both skeletal muscles and peripheral nerves. Mutations in COL6A1, COL6A2 and COL6A3 genes are known to cause different forms of muscle diseases, including Bethlem myopathy, Ullrich congenital muscular dystrophy and myosclerosis myopathy. ColVI null (Col6a1–/–) mice display a myopathic phenotype characterized by latent mitochondrial dysfunction, spontaneous apoptosis, defective autophagy regulation and compromised muscle regeneration. We recently demonstrated that the absence of ColVI in peripheral nerves leads to hypermyelination, altered Remak bundles, sensory-motor functional deficits and decreased nerve conduction velocities, thus pointing at ColVI as a crucial molecule for peripheral nerve structure and function. Given the muscle and nerve defects displayed by Col6a1 null mice, we decided to explore the role of ColVI in the neuromuscular junction (NMJ). Our unpublished studies revealed that ColVI is indeed deposited at the synapse. Immunofluorescence analysis showed ColVI deposition in NMJs. Preliminary results revealed altered expression of synaptic genes and abnormal electrophysiological parameters in Col6a1–/– mice. These findings suggest a potential role for ColVI at the NMJ, and further studies will allow shedding new light on the roles of this extracellular matrix component in the nerve/muscle axis., Muscular dystrophies are non curable diseases. Recently, new strategies shed light to an increase of muscle regeneration. These strategies focus on epigenetic drugs. TSA (HDACi) achieve to enhance the regeneration rate in both mice and humans. However, new challenges stay on the horizon. Monitoring and controlling the changes of the treatment in muscle without invasive techniques are one of that’s. In our research we identified seven microRNAs differential expressed in FAPs population. FAPs are Key players of muscle regeneration under HDACi treatment. From these seven microRNA, miR-143 has been validated with qRT-PCR, and Chip techniques. This miR-143 form part of a cluster with miR-145 that locates into a long non coding RNA non characterized until that moment. The overexpression of this miR-143 turns FAPs into a non adipogenic phenotype, whereas the inhibition of it recovershe adipogenic behavior. Thus, in this work we are trying to characterize the role of this microRNA and their host gene to understand if it could be a good candidate to be used as marker during the treatment., The central dogma of gene expression is that DNA is transcribed into messenger RNAs, which in turn serve as the template for protein synthesis. In recent years, it has been discovered that genomes of multicellular organisms are characterized by the pervasive expression of different types of non-coding RNAs (ncRNA) and, among them, long non-coding RNAs (IncRNAs). In particular the mammalian genome contains many thousands of lncRNAs, which have been proposed to be fundamental in the regulation of many biological processes such as cellular differentiation and show an aberrant regulation in a variety of diseases. A transcriptome analysis performed during in vitro murine muscle differentiation allowed us to identify a subset of new lncRNAs differentially expressed during myogenesis (1). These transcripts were classified on the basis of their expression in proliferating versus differentiated conditions, muscle-restricted activation and subcellular localization. We are now focusing on the characterization of a nuclear lncRNA conserved in human, lnc-405, up-regulated during differentiation, whose expression is cardiac and skeletal muscle restricted. To dissect its role in myogenesis, we performed loss of function experiments using LNA-Gapmers followed by a transcriptome analysis. This approach revealed a strong down-regulation of a subset of genes involved in fiber contraction, cell fusion and related to several cardiomyopathies. With the idea to better explain its crucial role during myogenesis, we are now focusing on the molecular mechanism by which lnc-405 exerts its function in the nucleus by RIP, ChIRP and RNA pull-down assays that are on going., The functional connection between muscle and nerve is affected in several neuromuscular diseases, including Amyotrophic Lateral Sclerosis (ALS) whose major pathological processes are motor neuron degeneration. However, other cells may be involved in the pathogenesis of ALS and open the possibility that alteration in skeletal muscle homeostasis represents one of the principal mediators of motor neuron degeneration. We have evidences that indicate that muscle selective expression of SOD1G93A mutant gene modulates, at the level of spinal cord of MLC/SOD1G93A mice, relevant mRNA and microRNA associated with myelin homeostasis. Our study provided insights into the pathophysiological interplay between muscle and nerve and supports the hypothesis that skeletal muscle is a source of signals that can affect the nervous system., Calsequestrin (CASQ) is the major protein of the sarcoplasmic reticulum of striated muscle that binds Ca2+ with high capacity and moderate affinity. CASQ exist as a monomer and polymers, depending on Ca2+ concentration. CASQ switches from an unfolded state to a folded monomer when the ionic strength increases allowing the formation of front-to-front first and then back-to-back interactions in higher Ca2+ concentrations. In humans, mutations in the cardiac isoform CASQ2 lead to catecholamine-induced polymorphic ventricular tachycardia. Recently we reported one mutation in the skeletal CASQ1 gene in a group of patients with a vacuolar myopathy characterized by the presence of inclusions containing CASQ1 and other SR proteins. The CASQ1 mutation (CASQ1D244G) affects one of the high-affinity Ca2+-binding sites of the protein and alters the kinetics of Ca2+ release in muscle fibers from patients. Expression of the CASQ1D244G in myotubes and in mouse fibers causes the appearance of SR vacuoles containing aggregates of the mutant CASQ1 protein that resemble those observed in patients. Studies of Ca2+ release showed an increase in Ca2+ storage in CASQ1WT COS-7 transfected cells whereas no increase was observed in CASQ1D244G. Moreover both CASQ1WT and CASQ1D244G were expressed in bacteria, purified and analysed for their ability to polymerize at increasing Ca2+ concentrations. The results obtained indicate that the CASQ1D244G protein polymerizes at lower Ca2+ levels and more rapidly than CASQ1WT. These results suggest that the CASQ1D244G mutation interferes with the correct process of Ca2+ -dependent protein polymerization causing altered intracellular calcium storage and the formation of protein aggregates., Muscle regeneration is dependent upon a complex interplay of different cell types in the muscle stem cell niche. In particular, the recently described population of interstitial fibro-adipogenic progenitors (FAPs) and satellite cells (MuSCs) establish a complex network of interactions to coordinate muscle regeneration. FAPs are able to promote satellite cell differentiation and compensate for muscle necrosis. In our recent studies, we demonstrated that FAPs are the key cellular mediators of the beneficial effect of HDAC inhibitors at early stages of Duchenne Muscular Dystrophy (DMD). Indeed, FAPs, from young mdx mice HDACi, induce myogenesis at expense of adipogenesis and enhance their ability to support MuSCs differentiation. Conversely, FAPs from old mdx mice are resistant to HDACi and repress MuSCs differentiation (Mozzetta et al., 2013; Saccone et al., 2014). Given the importance of the cross-talk between FAPs and MuSCs in DMD progression, we are currently deciphering the role of FAP-released extracellular vesicles (and in particular the exosomes - endosome derived vesicles) as mediators of the functional interactions between mononuclear cell types that contribute to muscle regeneration., Limb Girdle Muscular Dystrophies are rare genetic diseases, characterized by weakness and progressive muscular atrophy. A subfamily of LGMD2 regroups sarcoglycanopathies caused by mutations in genes coding for sarcoglycans. These transmembrane proteins are part of the dystrophin complex that protects muscle fibers against mechanical stress due to contraction. There is no treatment available for these diseases.In order to understand the molecular mechanisms implicated in sarcoglycanopathies and to identify new therapeutic targets, we are conducting two studies: 1 - SG mutants are not present at the muscle fiber membrane because they are retained in the endoplasmic reticulum by the quality control (ERQC) and they are prematurely degraded by the proteasome. To study the ERCQ pathways responsible for sarcoglycan disposal at molecular level, we first generated cell lines expressing clonally one SG mutant. Those clones are now used to investigate the SGs cellular trafficking mechanisms and then to test pharmacological compounds modulating ERCQ pathways. 2 – In these diseases, muscular atrophy affects limb muscles and infrequently head muscles. To investigate mechanisms underlying the fact that some muscles are more affected than other, we analyzed different muscles to search for molecular differences that may sign their relative sensitivity to the genetic defects. The content in micro-RNA of muscles from the limbs and face of Macaca fascicularis was explored. Experiments are in progress to analyze the function of identified micro-RNAs and to evaluate their therapeutic potential for sarcoglycanopathies. These projects will improve the knowledge on physio-pathological mechanisms of sarcoglycanopathies in order to identify new therapies for patients., Facioscapulohumeral muscular dystrophy (FSHD) is one of the most common human myopathies and arises with progressive wasting of facial mimic muscles as well as upper arms and shoulder girdle muscles. In 95% of the cases, FSHD is associated with the copy number reduction of D4Z4 macrosatellite repeats at the subtelomeric region of chromosome 4 (4q35). This change is associated with an epigenetic deregulation of the region that ultimately leads to the de-repression of nearby genes, such as DUX4 and FRG1 that have been reported to contribute to the muscular dystrophic phenotype observed in FSHD patients. The chromatin-associated lncRNA DBE-T, encoded by the FSHD locus, has been shown to be one of the main players of such event, though the molecular mechanism has not been yet fully elucidated. DBE-T is preferentially expressed in FSHD patients where it favors the transcription of the 4q35 genes thanks to the recruitment of the histone methyl transferase of the Trithorax group of epigenetic activators ASH1L. Interestingly, through a structural/functional analysis, we have recognized several DBE-T functional domains that can be exploited as new molecular targets for therapeutic purposes. Specifically, we have identified a region and the molecular mechanism required for DBE-T tethering to the chromatin. In addition, we have mapped the minimal binding domains in ASH1L and DBE-T. Finally, we have highlighted a portion of DBE-T required to positively promote transcription. In agreement, a DBE-T mutant lacking this region is unable to trigger transcription. Currently, through proteomic approaches, we are investigating DBE-T protein partners that are specific for each DBE-T functional domain. Our goal is to identify unknown molecular players that, similarly to ASH1L, are recruited by DBE-T to the FSHD locus and can play a role in the disease. Overall, our study elucidates the molecular mechanism of DBE-T in FSHD and might unveil new therapeutic targets for the treatment of the disease.
- Published
- 2016
9. Activation of diacylglycerol kinase is required for VEGF-induced angiogenic signaling in vitro
- Author
-
BALDANZI G.L., MITOLA S., CUTRUPI S., FILIGHEDDU N., VAN BLITTERSWIJK W., SINIGAGLIA F., BUSSOLINO F., GRAZIANI , ANDREA, Baldanzi, G. L., Mitola, S., Cutrupi, S., Filigheddu, N., VAN BLITTERSWIJK, W., Sinigaglia, F., Bussolino, F., and Graziani, Andrea
- Published
- 2004
10. ACTIVATION OF DIACYLGLYCEROL KINASE alpha IS REQUIRED FOR VEGF-INDUCED ANGIOGENIC SISGNALING IN VITRO
- Author
-
Baldanzi G, Mitola S, Cutrupi S, Filigheddu N, Chianale F, WJ van Blitterswijk, Sinigaglia F, Bussolino F, GRAZIANI , ANDREA, Baldanzi, G, Mitola, S, Cutrupi, S, Filigheddu, N, Chianale, F, WJ van, Blitterswijk, Sinigaglia, F, Bussolino, F, and Graziani, Andrea
- Published
- 2003
11. IFN-α transcriptional response in endothelial cells reveals new potential modulators of vascular biology
- Author
-
Ciccarese, Francesco, Grassi, Angela, Agnusdei, Valentina, DI CAMILLO, Barbara, Toffolo, GIANNA MARIA, Mitola, S., and Indraccolo, Stefano
- Published
- 2013
12. Angiogenesis modulation: identification of a tetrameric tripeptide as inhibitor of VEGFR-1 by screening peptide combinatorial libraries
- Author
-
Marasco D., Ponticelli S., Takeda A., Mitola S., Stassen J.-M., Presta M., Ambati J., Ruvo M., and De Falco S
- Published
- 2008
13. Inflammatory cytokines in airways secretions from patients with cystic fibrosis upregulate endothelial adhesion molecules in vitro
- Author
-
Ponte, E, Mitola, S, Giardinelli, L, Colmo, M, Bussolino, Federico, and DE ROSE, Virginia
- Published
- 2002
14. Cu(II) and Zn(II) complexes with hyaluronic acid and its sulphated derivative. Effect on the motility of vascular endothelial cells
- Author
-
Barbucci, R., Magnani, Agnese, Lamponi, Stefania, Mitola, S., Ziche, Marina, Morbidelli, Lucia, and Bussolino, F.
- Subjects
Cultured ,Sulfates ,Cells ,Chemotaxis ,Inbred Strains ,Biocompatible Materials ,Mice, Inbred Strains ,Hydrogen-Ion Concentration ,Mice ,Zinc ,Drug Stability ,Cell Movement ,Vascular ,Materials Testing ,Animals ,Cell Adhesion ,Copper ,Endothelium ,Hyaluronic Acid ,Endothelium, Vascular ,Cells, Cultured - Abstract
With the aim of improving the compatibility of biomaterials to be used for the construction of cardiovascular prosthesis, we have designed bioactive macromolecules resulting from chemical modifications of hyaluronic acid (Hyal). The stability constants of Cu(II) and Zn(II) complexes with the sulphated derivative of hyaluronic acid (HyalS3.5) were evaluated. Two different complexes have been found for each metal ion, CuL, Cu(OH)2L and ZnL, Zn(OH)2L (L means the disaccharide unit of the ligands) in aqueous solution at 37 degrees C. The dihydroxo Cu(II) complex was present in high percentage at pH=7.4. On the contrary, the Zn(II) ion was present with a relatively low percentage of both complexes. The ability to stimulate endothelial cell adhesion and migration was evaluated for Hyal, HyalS3.5 and their complexes with Cu(II) and Zn(II) ions. The results revealed that Hyal and [Cu(OH)2HyalS3.5](4.5)- induced cell adhesion, while [ZnHyalS3.5](2.5)- and [Zn(OH)2HyalS3.5](4.5)- inhibited the process. The chemotactic activity of increasing concentrations of the above complexes was also evaluated, demonstrating that [Cu(OH)2HyalS3.5](4.5)- complex at 1 microM concentration was the most active in inducing cell migration. These results have been also strengthened by analysing adherent cell migration in agarose. In conclusion, sulphated hyaluronic acid coordinated to Cu(II) seems to be a promising matrix molecule for the construction of cardiovascular prosthesis.
- Published
- 2000
15. The bone morphogenic protein antagonist Drm/gremlin is a novel pro- angiogenic factor
- Author
-
Stabile, H, Mitola, S, Moroni, E, Belleri, M, Nicoli, S, Coltrini, D, Peri, F, Pessi, A, Orsatti, L, Talamo, F, Castronovo, V, Waltregny, D, Cotelli, F, Ribatti, D, Marco, P, Marco Presta, PERI, FRANCESCO, Stabile, H, Mitola, S, Moroni, E, Belleri, M, Nicoli, S, Coltrini, D, Peri, F, Pessi, A, Orsatti, L, Talamo, F, Castronovo, V, Waltregny, D, Cotelli, F, Ribatti, D, Marco, P, Marco Presta, and PERI, FRANCESCO
- Abstract
Angiogenesis plays a key role in various physiological and pathological conditions, including tumor growth. Drm/gremlin, a member the Dan family of bone morphogenic protein (BMP) antagonists, is commonly thought to affect different processes during growth, differentiation, and development by heterodimerizing various BMPs. Here we identify Drm/gremlin as a novel pro-angiogenic factor expressed by endothelium. Indeed, Drm/gremlin was purified to homogeneity from the conditioned medium of transformed endothelial cells using an endothelial cell sprouting assay to follow protein isolation. Accordingly, recombinant Drm/gremlin stimulates endothelial cell migration and invasion in fibrin and collagen gels, binds with high-affinity to various endothelial cell types, and triggers tyrosine phosphorylation of intracellular signaling proteins. Also, Drm/gremlin induces neovascularization in the chick embryo chorioallantoic membrane. BMP4 does not affect Drm/gremlin interaction with endothelium and both molecules exert a pro-angiogenic activity in vitro and in vivo when administered alone or in combination. Finally, Drm/gremlin is produced by the stroma of human tumor xenografts in nude mice and it is highly expressed in endothelial cells of human lung tumor vasculature when compared to non-neoplastic lung. Our observations point to a novel, previously unrecognized capacity of Drm/gremlin to interact directly with target endothelial cells and to modulate angiogenesis.
- Published
- 2007
16. Tumor Necrosis Factor-α in Airway Secretions from Cystic Fibrosis Patients Upregulate Endothelial Adhesion Molecules and Induce Airway Epithelial Cell Apoptosis: Implications for Cystic Fibrosis Lung Disease
- Author
-
Mitola, S., primary, Sorbello, V., additional, Ponte, E., additional, Copreni, E., additional, Mascia, C., additional, Bardessono, M., additional, Goia, M., additional, Biasi, F., additional, Conese, M., additional, Poli, G., additional, Bussolino, F., additional, and De Rose, V., additional
- Published
- 2008
- Full Text
- View/download PDF
17. Tumor progression in osteosarcoma (OS): Role of the chemokine receptor CXCR4 and of its ligand stromal-cell derived factor 1 (SDF-1)
- Author
-
Perissinotto, E., primary, Fonsato, V., additional, Cavalloni, G., additional, Leone, F., additional, Mitola, S., additional, Grignani, G., additional, Surrenti, N., additional, Bussolino, F., additional, Piacibello, W., additional, and Aglietta, M., additional
- Published
- 2004
- Full Text
- View/download PDF
18. Acetate intolerance is mediated by enhanced synthesis of nitric oxide by endothelial cells.
- Author
-
Amore, A, primary, Cirina, P, additional, Mitola, S, additional, Peruzzi, L, additional, Bonaudo, R, additional, Gianoglio, B, additional, and Coppo, R, additional
- Published
- 1997
- Full Text
- View/download PDF
19. Interactions between endothelial cells and HIV-1
- Author
-
Bussolino, F., Mitola, S., Serini, G., Barillari, G., and Ensoli, B.
- Published
- 2001
- Full Text
- View/download PDF
20. Molecular insight on the altered membrane trafficking of TrkA kinase dead mutants
- Author
-
Stefano Luin, Andrea Callegari, Letizia La Rosa, Riccardo Nifosì, Cosetta Ravelli, Rosy Amodeo, Maria Letizia Trincavelli, Chiara Giacomelli, Laura Marchetti, Stefania Mitola, Amodeo, R., Nifosì, R., Giacomelli, C., Ravelli, C., La Rosa, L., Callegari, A., Trincavelli, M. L., Mitola, S., Luin, S., and Marchetti, L.
- Subjects
0301 basic medicine ,Protein Conformation, alpha-Helical ,animal structures ,Membrane dynamics ,Molecular dynamics ,Mutation ,TrkA receptor ,Tyrosine kinase domain ,VEGFR2 receptor ,Mutant ,Tropomyosin receptor kinase A ,Molecular Dynamics Simulation ,Settore FIS/03 - Fisica della Materia ,03 medical and health sciences ,0302 clinical medicine ,Cell Line, Tumor ,Nerve Growth Factor ,Humans ,Phosphorylation ,Receptor, trkA ,Molecular Biology ,TrkA receptor, VEGFR2 receptor, Tyrosine kinase domain, Membrane dynamics, Molecular dynamics, Mutation ,Kinase ,Chemistry ,Cell Membrane ,Ubiquitination ,Cell Biology ,Actin cytoskeleton ,Vascular Endothelial Growth Factor Receptor-2 ,Cell biology ,Protein Structure, Tertiary ,Actin Cytoskeleton ,Protein Transport ,030104 developmental biology ,nervous system ,Protein kinase domain ,030220 oncology & carcinogenesis ,Mutagenesis, Site-Directed ,Tyrosine kinase ,Protein Processing, Post-Translational ,Intracellular - Abstract
We address the contribution of kinase domain structure and catalytic activity to membrane trafficking of TrkA receptor tyrosine kinase. We conduct a systematic comparison between TrkA-wt, an ATP-binding defective mutant (TrkA-K544N) and other mutants displaying separate functional impairments of phosphorylation, ubiquitination, or recruitment of intracellular partners. We find that only K544N mutation endows TrkA with restricted membrane mobility and a substantial increase of cell surface pool already in the absence of ligand stimulation. This mutation is predicted to drive a structural destabilization of the αC helix in the N-lobe by molecular dynamics simulations, and enhances interactions with elements of the actin cytoskeleton. On the other hand, a different TrkA membrane immobilization is selectively observed after NGF stimulation, requires both phosphorylation and ubiquitination to occur, and is most probably related to the signaling abilities displayed by the wt but not mutated receptors. In conclusion, our results allow to distinguish two different TrkA membrane immobilization modes and demonstrate that not all kinase-inactive mutants display identical membrane trafficking. © 2019 Elsevier B.V.
- Published
- 2019
21. Modulation of angiogenesis by a tetrameric tripeptide that antagonizes vascular endothelial growth factor receptor 1
- Author
-
Valeria Tarallo, Salvatore Ponticelli, Menotti Ruvo, Daniela Marasco, Stefania Mitola, Marco Presta, Jayakrishna Ambati, Jean Marie Stassen, Atsunobu Takeda, Sandro De Falco, Romulo Albuquerque, Ponticelli, S, Marasco, Daniela, Tarallo, V, Albuquerque, Rj, Mitola, S, Takeda, A, Stassen, Jm, Presta, M, Ambati, J, Ruvo, M, and De Falco, S.
- Subjects
Vascular Endothelial Growth Factor A ,medicine.medical_specialty ,Angiogenesis ,Neovascularization, Physiologic ,Tripeptide ,Chick Embryo ,Biology ,Biochemistry ,Chorioallantoic Membrane ,Cornea ,chemistry.chemical_compound ,Inhibitory Concentration 50 ,Mice ,angiogenesis ,Internal medicine ,medicine ,Animals ,Combinatorial Chemistry Techniques ,Humans ,vascular endothelial growth factor family ,Physiologic ,Peptide library ,Molecular Biology ,Inbred BALB C ,Neovascularization ,Pathologic ,Tube formation ,Mice, Inbred BALB C ,Vascular Endothelial Growth Factor Receptor-1 ,Neovascularization, Pathologic ,Mechanisms of Signal Transduction ,Gene Expression Regulation ,Peptides ,Cell Biology ,Cell biology ,Vascular endothelial growth factor ,Vascular endothelial growth factor B ,Vascular endothelial growth factor A ,Endocrinology ,Vascular endothelial growth factor C ,chemistry ,VEGFR1 ,embryonic structures ,cardiovascular system ,sense organs ,Plgf - Abstract
Vascular endothelial growth factor receptor-1 (VEGFR-1, also known as Flt-1) is involved in complex biological processes often associated to severe pathological conditions like cancer, inflammation, and metastasis formation. Consequently, the search for antagonists of Flt-1 has recently gained a growing interest. Here we report the identification of a tetrameric tripeptide from a combinatorial peptide library built using non-natural amino acids, which binds Flt-1 and inhibits in vitro its interaction with placental growth factor (PlGF) and vascular endothelial growth factor (VEGF) A and B (IC50 ∼ 10 μm). The peptide is stable in serum for 7 days and prevents both Flt-1 phosphorylation and the capillary-like tube formation of human primary endothelial cells stimulated by PlGF or VEGF-A. Conversely, the identified peptide does not interfere in VEGF-induced VEGFR-2 activation. In vivo, this peptide inhibits VEGF-A- and PlGF-induced neoangiogenesis in the chicken embryo chorioallantoic membrane assay. In contrast, in the cornea, where avascularity is maintained by high levels of expression of the soluble form of Flt-1 receptor (sFlt-1) that prevents the VEGF-A activity, the peptide is able to stimulate corneal mouse neovascularization in physiological condition, as reported previously for others neutralizing anti-Flt-1 molecules. This tetrameric tripeptide represents a new, promising compound for therapeutic approaches in pathologies where Flt-1 activation plays a crucial role.
- Published
- 2008
22. IL-12 regulates an endothelial cell-lymphocyte network: effect on metalloproteinase-9 production
- Author
-
Federico Bussolino, Mauro Prato, Marina Strasly, Paolo Ghia, Stefania Mitola, Mitola, S, Strasly, M, Prato, M, Ghia, PAOLO PROSPERO, and Bussolino, F.
- Subjects
CD4-Positive T-Lymphocytes ,Chemokine ,Angiogenesis ,Lymphocyte ,medicine.medical_treatment ,Cell Communication ,Chemokine CXCL9 ,Basement Membrane ,angiogenesis ,Cell Movement ,Leukocytes ,Immunology and Allergy ,innate immunity ,Cells, Cultured ,Cultured ,biology ,Chemotaxis ,Interleukin-12 ,Cell biology ,Extracellular Matrix ,Endothelial stem cell ,DNA-Binding Proteins ,Chemotaxis, Leukocyte ,medicine.anatomical_structure ,Cytokine ,STAT1 Transcription Factor ,Matrix Metalloproteinase 9 ,Cell Migration Inhibition ,Cells ,Chemokine CXCL10 ,Chemokines ,CXC ,Leukocyte ,Coculture Techniques ,Endothelium ,Vascular ,Humans ,Intercellular Signaling Peptides and Proteins ,Mononuclear ,Lymphocyte Subsets ,Signal Transduction ,Trans-Activators ,Interleukin 12 ,Chemokines, CXC ,Immunology ,Matrix Metalloproteinase Inhibitors ,medicine ,CXCL10 ,biology.protein ,Leukocytes, Mononuclear ,Endothelium, Vascular - Abstract
IL-12 is key cytokine in innate immunity and participates in tumor rejection by stimulating an IFN-γ-mediated response characterized by CD8+ mediated-cytotoxicity, inhibition of angiogenesis, and vascular injury. We previously demonstrated that activated lymphocytes stimulated with IL-12 induced an angiostatic program in cocultured vascular endothelial cells. In this study, we have extended this observation showing that a reciprocal modulation of cellular responses occurs. Actually, the presence of endothelial cells enhanced the inhibitory effect of IL-12 on metalloproteinase-9 expression in activated PBMC as well as their ability to transmigrate across an extracellular matrix. IL-12 triggered intracellular signaling, as indicated by STAT-1 activation, appeared to mainly operative in activated CD4 + cells challenged with IL-12, but it was also initiated in CD8+ lymphocytes in the presence of endothelial cells. On the other hand, stimulated PBMC reduced the expression and the activity of metalloproteinase-9, up-regulated that of tissue inhibitor metalloproteinase-1, and stimulated the STAT-1 pathway in cocultured endothelial cells. We used neutralizing Abs to show that the IFN-inducible protein 10 (CXCL10) and monokine-induced by IFN-γ (CXCL9) chemokines produced by both PBMC and endothelial cells are pivotal in inducing these effects. Altogether these results suggest the existence of an IL-12-regulated circuit between endothelium and lymphocytes resulting in a shift of proteolytic homeostasis at site of tissue injury.
- Published
- 2003
23. Identification of specific molecular structures of human immunodeficiency virus type 1 Tat relevant for its biological effects on vascular endothelial cells
- Author
-
Ilaria Zanon, Maria Ines Gutierrez, Federico Bussolino, Ben Berkhout, Mauro Giacca, Luca Barra, Stefania Mitola, Raffaella Soldi, Mitola, S., Soldi, R., Zanon, I., Barra, L., Gutierrez, M. I., Berkhout, B., Giacca, Mauro, Bussolino, F., and Other departments
- Subjects
Angiogenesis ,angiogenesis ,HIV-1 ,Immunology ,Mutant ,Integrin ,Microbiology ,Structure-Activity Relationship ,chemistry.chemical_compound ,In vivo ,Vascular ,Virology ,Receptors ,Gene Products ,Humans ,Receptors, Growth Factor ,Endothelium ,tat ,Phosphorylation ,Binding site ,GeneralLiterature_REFERENCE(e.g.,dictionaries,encyclopedias,glossaries) ,DNA Primers ,Base Sequence ,biology ,Growth Factor ,Vascular Endothelial Growth Factor ,Wild type ,Receptor Protein-Tyrosine Kinases ,Tyrosine phosphorylation ,Molecular biology ,In vitro ,Virus-Cell Interactions ,Receptors, Vascular Endothelial Growth Factor ,chemistry ,Insect Science ,Gene Products, tat ,Mutation ,Signal Transduction ,tat Gene Products ,Human Immunodeficiency Virus ,biology.protein ,tat Gene Products, Human Immunodeficiency Virus ,Endothelium, Vascular - Abstract
Human immunodeficiency virus type 1 (HIV-1) Tat transactivates viral genes and is released by infected cells, acting as a soluble mediator. In endothelial cells (EC), it activates a proangiogenic program by activating vascular endothelial growth factor receptor type 2 (VEGFR-2) and integrins. A structure-activity relationship study was performed by functional analysis of Tat substitution and deletion variants to define the Tat determinants necessary for EC activation. Variants were made (i) in the basic and (ii) in the cysteine-rich domains and (iii) in the C-terminal region containing the RGD sequence required for integrin recognition. Our results led to the following conclusions. (i) Besides a high-affinity binding site corresponding to VEGFR-2, EC express low-affinity binding sites. (ii) The basic and the cysteine-rich variants bind only to the low-affinity binding sites and do not promote tyrosine phosphorylation of VEGFR-2. Furthermore, they have a reduced ability to activate EC in vitro, and they lack angiogenic activity. (iii) Mutants with mutations in the C-terminal region are partially defective for in vitro biological activities and in vivo angiogenesis, but they activate VEGFR-2 as Tat wild type. In conclusion, regions encoded by the first exon oftatare necessary and sufficient for activation of VEGFR-2. However, the C-terminal region, most probably through RGD-mediated integrin engagement, is indispensable for full activation of an in vitro and in vivo angiogenic program.
24. The expression level of VEGFR2 regulates mechanotransduction, tumor growth and metastasis of high grade serous ovarian cancer cells.
- Author
-
Grillo E, Ravelli C, Corsini M, Domenichini M, Scamozzi M, Zizioli D, Capoferri D, Bresciani R, Romani C, and Mitola S
- Abstract
Recent data shows that alterations in the expression and/or activation of the vascular endothelial growth factor receptor 2 (VEGFR2) in high grade serous ovarian cancer (HGSOC) modulate tumor progression. However, controversial results have been obtained, showing that in some cases VEGFR2 inhibition can promote tumorigenesis and metastasis. Thus, it is urgent to better define the role of the VEGF/VEGFR2 system to understand/predict the effects of its inhibitors administered as anti-angiogenic in HGSOC. Here, we modulated the expression levels of VEGFR2 and analyzed the effects in two cellular models of HGSOC. VEGFR2 silencing (or its pharmacological inhibition) promote the growth and invasive potential of OVCAR3 cells in vitro and in vivo. Consistent with this, the low levels of VEGFR2 in OV7 cells are associated with more pronounced proliferative and motile phenotypes when compared to OVCAR3 cells, and VEGFR2 overexpression in OV7 cells inhibits cell growth. In vitro data confirmed that VEGFR2 silencing in OVCAR3 cells favors the acquisition of an invasive phenotype by loosening cell-ECM contacts, reducing the size and the signaling of focal adhesion contacts (FAs). This is translated into a reduced FAK activity at FAs, ECM-dependent alterations of mechanical forces through FAs and YAP nuclear translocation. Together, the data show that low expression, silencing or inhibition of VEGFR2 in HGSOC cells alter mechanotransduction and lead to the acquisition of a pro-proliferative/invasive phenotype which explains the need for a more cautious use of anti-VEGFR2 drugs in ovarian cancer., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024. Published by Elsevier GmbH.)
- Published
- 2024
- Full Text
- View/download PDF
25. WDR45-dependent impairment of cell cycle in fibroblasts of patients with beta propeller protein-associated neurodegeneration (BPAN).
- Author
-
Garavaglia B, Nasca A, Mitola S, and Ingrassia R
- Subjects
- Humans, Carrier Proteins metabolism, Carrier Proteins genetics, Neuroaxonal Dystrophies metabolism, Neuroaxonal Dystrophies genetics, Neuroaxonal Dystrophies pathology, Mutation, Autophagy genetics, Cells, Cultured, Iron Metabolism Disorders, Fibroblasts metabolism, Cell Cycle genetics, Basic Helix-Loop-Helix Leucine Zipper Transcription Factors metabolism, Basic Helix-Loop-Helix Leucine Zipper Transcription Factors genetics
- Abstract
De novo mutations in the WDR45 gene have been found in patients affected by Neurodegeneration with Brain Iron Accumulation type 5 (NBIA5 or BPAN), with Non-Transferrin Bound Iron (NTBI) accumulation in the basal ganglia and WDR45-dependent impairment of autophagy. Here we show the downregulation of TFEB and cell cycle impairment in BPAN primary fibroblasts. Noteworthy, TFEB overexpression rescued this impairment, depicting a novel WDR45-dependent cell cycle phenotype., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
26. Mutation in the Kinase Domain Alters the VEGFR2 Membrane Dynamics.
- Author
-
Corsini M, Ravelli C, Grillo E, Domenichini M, and Mitola S
- Subjects
- Animals, Humans, CHO Cells, Cricetulus, Phosphorylation, Protein Domains, Protein Multimerization, Signal Transduction, Cell Membrane metabolism, Mutation genetics, Vascular Endothelial Growth Factor Receptor-2 metabolism, Vascular Endothelial Growth Factor Receptor-2 genetics
- Abstract
Background: Recently, the substitution R1051Q in VEGFR2 has been described as a cancer-associated "gain of function" mutation. VEGFR2
R1051Q phosphorylation is ligand-independent and enhances the activation of intracellular pathways and cell growth both in vitro and in vivo. In cancer, this mutation is found in heterozygosity, suggesting that an interaction between VEGFR2R1051Q and VEGFR2WT may occur and could explain, at least in part, how VEGFR2R1051Q acts to promote VEGFR2 signaling. Despite this, the biochemical/biophysical mechanism of the activation of VEGFR2R1051Q remains poorly understood. On these bases, the aim of our study is to address how VEGFR2R1051Q influences the biophysical behavior (dimerization and membrane dynamics) of the co-expressed VEGFR2WT ., Methods: We employed quantitative FLIM/FRET and FRAP imaging techniques using CHO cells co-transfected with the two forms of VEGFR2 to mimic heterozygosity., Results: Membrane protein biotinylation reveals that VEGFR2WT is more exposed on the cell membrane with respect to VEGFR2R1051Q . The imaging analyses show the ability of VEGFR2WT to form heterodimers with VEGFR2R1051Q and this interaction alters its membrane dynamics. Indeed, when the co-expression of VEGFR2WT /VEGFR2R1051Q occurs, VEGFR2WT shows reduced lateral motility and a minor pool of mobile fraction., Conclusions: This study demonstrates that active VEGFR2R1051Q can affect the membrane behavior of the VEGFR2WT .- Published
- 2024
- Full Text
- View/download PDF
27. Correction: Alternative method to visualize receptor dynamics in cell membranes.
- Author
-
Ravelli C, Corsini M, Ventura A, Domenichini M, Grillo E, and Mitola S
- Abstract
[This corrects the article DOI: 10.1371/journal.pone.0304172.]., (Copyright: © 2024 Ravelli et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
- Published
- 2024
- Full Text
- View/download PDF
28. Statin-Sensitive Akt1/Src/Caveolin-1 Signaling Enhances Oxidative Stress Resistance in Rhabdomyosarcoma.
- Author
-
Codenotti S, Sandrini L, Mandracchia D, Lorenzi L, Corsetti G, Poli M, Asperti M, Salvi V, Bosisio D, Monti E, Mitola S, Triggiani L, Guescini M, Pozzo E, Sampaolesi M, Gastaldello S, Cassandri M, Marampon F, and Fanzani A
- Abstract
Identifying the molecular mechanisms underlying radioresistance is a priority for the treatment of RMS, a myogenic tumor accounting for approximately 50% of all pediatric soft tissue sarcomas. We found that irradiation (IR) transiently increased phosphorylation of Akt1, Src, and Cav1 in human RD and RH30 lines. Synthetic inhibition of Akt1 and Src phosphorylation increased ROS levels in all RMS lines, promoting cellular radiosensitization. Accordingly, the elevated activation of the Akt1/Src/Cav1 pathway, as detected in two RD lines characterized by overexpression of a myristoylated Akt1 form (myrAkt1) or Cav1 (RDCav1), was correlated with reduced levels of ROS, higher expression of catalase, and increased radioresistance. We found that treatment with cholesterol-lowering drugs such as lovastatin and simvastatin promoted cell apoptosis in all RMS lines by reducing Akt1 and Cav1 levels and increasing intracellular ROS levels. Combining statins with IR significantly increased DNA damage and cell apoptosis as assessed by γ histone 2AX (γH2AX) staining and FACS analysis. Furthermore, in combination with the chemotherapeutic agent actinomycin D, statins were effective in reducing cell survival through increased apoptosis. Taken together, our findings suggest that the molecularly linked signature formed by Akt1, Src, Cav1, and catalase may represent a prognostic determinant for identifying subgroups of RMS patients with higher probability of recurrence after radiotherapy. Furthermore, statin-induced oxidative stress could represent a treatment option to improve the success of radiotherapy.
- Published
- 2024
- Full Text
- View/download PDF
29. The D647N mutation of FGFR1 induces ligand-independent receptor activation.
- Author
-
Domenichini M, Ravelli C, Corsini M, Codenotti S, Moreschi E, Gogna A, Capoferri D, Zizioli D, Bresciani R, Grillo E, and Mitola S
- Subjects
- Humans, Ligands, Cell Line, Tumor, Phosphorylation, Mutation, Receptor, Fibroblast Growth Factor, Type 1 genetics, Receptor, Fibroblast Growth Factor, Type 1 metabolism, Signal Transduction
- Abstract
The activation loop (A-loop) of kinases, a key regulatory region, is recurrently mutated in several kinase proteins in cancer resulting in dysregulated kinase activity and response to kinase inhibitors. FGFR1 receptor tyrosine kinase represents an important oncogene and therapeutic target for solid and hematological tumors. Here we investigate the biochemical and molecular effects of D647N mutation lying in the A-loop of FGFR1. When expressed in normal and tumoral in vitro cell models, FGFR1
D647N is phosphorylated also in the absence of ligands, and this is accompanied by the activation of intracellular signaling. The expression of FGFR1D647N significantly increases single and collective migration of cancer cells in vitro and in vivo, when compared to FGFR1WT . FGFR1D647N expression exacerbates the aggressiveness of cancer cells, increasing their invasiveness in vitro and augmenting their pro-angiogenic capacity in vivo. Remarkably, the D647N mutation significantly increases the sensitivity of FGFR1 to the ATP-competitive inhibitor Erdafitinib suggesting the possibility that this mutation could become a specific target for the development of new inhibitors. Although further efforts are warranted for an exhaustive description of the activation mechanisms, for the identification of more specific inhibitors and for confirming the clinical significance of mutated FGFR1D647N , overall our data demonstrate that the D647N substitution of FGFR1 is a novel pro-oncogenic activating mutation of the receptor that, when found in cancer patients, may anticipate good response to erdafitinib treatment., Competing Interests: Declaration of Competing Interest The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Mitola Stefania and Michela Corsini reports financial support was provided by Italian Association for Cancer Research. Silvia Codenotti and Elisabetta Grillo reports financial support was provided by Umberto Veronesi Foundation., (Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved.)- Published
- 2023
- Full Text
- View/download PDF
30. Finding the junction between claudins and endometrial carcinoma.
- Author
-
Capoferri D, Bignotti E, Ravaggi A, Mitola S, and Romani C
- Subjects
- Female, Humans, Epithelial Cells metabolism, Tight Junctions metabolism, Tight Junctions pathology, Signal Transduction, Claudins genetics, Claudins metabolism, Endometrial Neoplasms genetics, Endometrial Neoplasms metabolism, Endometrial Neoplasms pathology
- Abstract
Endometrial carcinoma (EC) defines a heterogeneous group of neoplastic diseases originating from the transformation of endometrial cells that constitute the internal lining of the uterus. To date several molecular targets have been analysed to describe the natural course of the disease, claudins being among these. Claudins are the main components of tight junctions (TJs), and their main functions are ascribed to the compartmentalization of tissues and cell-cell communication by means of intracellular ions diffusion: these features are typical of epithelial cells. Their overexpression, mis-localization or loss contribute to the malignancy of EC cells. This review collected all available data regarding the expression, regulation and claudin-related signaling pathways to provide a comprehensive view on the influence of claudin in EC progression. Further, the translational potential of claudin differential expression was explored, indicating that their role in personalized medicine could also contribute to EC therapy besides their employment for diagnosis and prognosis., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
31. Deficiency of AP1 Complex Ap1g1 in Zebrafish Model Led to Perturbation of Neurodevelopment, Female and Male Fertility; New Insight to Understand Adaptinopathies.
- Author
-
Mignani L, Facchinello N, Varinelli M, Massardi E, Tiso N, Ravelli C, Mitola S, Schu P, Monti E, Finazzi D, Borsani G, and Zizioli D
- Subjects
- Animals, Female, Humans, Male, Mice, Endosomes metabolism, Epithelial Cells metabolism, Protein Isoforms metabolism, trans-Golgi Network metabolism, Zebrafish genetics, Zebrafish metabolism, Neurodevelopmental Disorders genetics, Transcription Factor AP-1 metabolism, Zebrafish Proteins metabolism
- Abstract
In vertebrates, two homologous heterotetrameric AP1 complexes regulate the intracellular protein sorting via vesicles. AP-1 complexes are ubiquitously expressed and are composed of four different subunits: γ, β1, μ1 and σ1. Two different complexes are present in eukaryotic cells, AP1G1 (contains γ1 subunit) and AP1G2 (contains γ2 subunit); both are indispensable for development. One additional tissue-specific isoform exists for μ1A, the polarized epithelial cells specific to μ1B; two additional tissue-specific isoforms exist for σ1A: σ1B and σ1C. Both AP1 complexes fulfil specific functions at the trans -Golgi network and endosomes. The use of different animal models demonstrated their crucial role in the development of multicellular organisms and the specification of neuronal and epithelial cells. Ap1g1 (γ1) knockout mice cease development at the blastocyst stage, while Ap1m1 (μ1A) knockouts cease during mid-organogenesis. A growing number of human diseases have been associated with mutations in genes encoding for the subunits of adaptor protein complexes. Recently, a new class of neurocutaneous and neurometabolic disorders affecting intracellular vesicular traffic have been referred to as adaptinopathies. To better understand the functional role of AP1G1 in adaptinopathies, we generated a zebrafish ap1g1 knockout using CRISPR/Cas9 genome editing. Zebrafish ap1g1 knockout embryos cease their development at the blastula stage. Interestingly, heterozygous females and males have reduced fertility and showed morphological alterations in the brain, gonads and intestinal epithelium. An analysis of mRNA profiles of different marker proteins and altered tissue morphologies revealed dysregulated cadherin-mediated cell adhesion. These data demonstrate that the zebrafish model organism enables us to study the molecular details of adaptinopathies and thus also develop treatment strategies.
- Published
- 2023
- Full Text
- View/download PDF
32. Role of gremlin-1 in the pathophysiology of the adipose tissues.
- Author
-
Grillo E, Ravelli C, Colleluori G, D'Agostino F, Domenichini M, Giordano A, and Mitola S
- Subjects
- Humans, Bone Morphogenetic Proteins, Vascular Endothelial Growth Factor A, Diabetes Mellitus, Type 2
- Abstract
Gremlin-1 is a secreted bone morphogenetic protein (BMP) antagonist playing a pivotal role in the regulation of tissue formation and embryonic development. Since its first identification in 1997, gremlin-1 has been shown to be a multifunctional factor involved in wound healing, inflammation, cancer and tissue fibrosis. Among others, the activity of gremlin-1 is mediated by its interaction with BMPs or with membrane receptors such as the vascular endothelial growth factor receptor 2 (VEGFR2) or heparan sulfate proteoglycans (HSPGs). Growing evidence has highlighted a central role of gremlin-1 in the homeostasis of the adipose tissue (AT). Of note, gremlin-1 is involved in AT dysfunction during type 2 diabetes, obesity and non-alcoholic fatty liver disease (NAFLD) metabolic disorders. In this review we discuss recent findings on gremlin-1 involvement in AT biology, with particular attention to its role in metabolic diseases, to highlight its potential as a prognostic marker and therapeutic target., (Copyright © 2022 Elsevier Ltd. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
33. The impact of adipokines on vascular networks in adipose tissue.
- Author
-
Vliora M, Ravelli C, Grillo E, Corsini M, Flouris AD, and Mitola S
- Subjects
- Humans, Inflammation metabolism, Obesity metabolism, Neovascularization, Physiologic physiology, Adipokines metabolism, Adipose Tissue blood supply, Adipose Tissue metabolism, Metabolic Diseases metabolism
- Abstract
Adipose tissue (AT) is a highly active and plastic endocrine organ. It secretes numerous soluble molecules known as adipokines, which act locally to AT control the remodel and homeostasis or exert pleiotropic functions in different peripheral organs. Aberrant production or loss of certain adipokines contributes to AT dysfunction associated with metabolic disorders, including obesity. The AT plasticity is strictly related to tissue vascularization. Angiogenesis supports the AT expansion, while regression of blood vessels is associated with AT hypoxia, which in turn mediates tissue inflammation, fibrosis and metabolic dysfunction. Several adipokines can regulate endothelial cell functions and are endowed with either pro- or anti-angiogenic properties. Here we address the role of adipokines in the regulation of angiogenesis. A better understanding of the link between adipokines and angiogenesis will open the way for novel therapeutic approaches to treat obesity and metabolic diseases., Competing Interests: Conflict of interest All authors declare no Conflict of Interest that are directly or indirectly related to the work submitted for publication., (Copyright © 2022 Elsevier Ltd. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
34. Alternative In Vivo Models to Study Teratoma.
- Author
-
Corsini M and Mitola S
- Subjects
- Animals, Chick Embryo, Chorioallantoic Membrane, Embryonic Stem Cells, Mice, Teratoma
- Abstract
Embryonic stem cells give rise to teratomas when injected in vivo in experimental animal models. The characterization, the manipulation, and the breaking off of this specific characteristic are doubtlessly the last frontier for the applications of stem cells in translational medicine. Moreover, the urgency to adapt to new scientific demands drives the researcher to find alternative and faster models for testing the teratogenic properties of embryonic stem cells. Here, we compare the emerging model of the chick embryo chorioallantoic membrane (CAM) to the murine model, which represents the gold standard procedure for teratogenesis., (© 2023. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.)
- Published
- 2023
- Full Text
- View/download PDF
35. Hyperactive Akt1 Signaling Increases Tumor Progression and DNA Repair in Embryonal Rhabdomyosarcoma RD Line and Confers Susceptibility to Glycolysis and Mevalonate Pathway Inhibitors.
- Author
-
Codenotti S, Zizioli D, Mignani L, Rezzola S, Tabellini G, Parolini S, Giacomini A, Asperti M, Poli M, Mandracchia D, Vezzoli M, Bernardi S, Russo D, Mitola S, Monti E, Triggiani L, Tomasini D, Gastaldello S, Cassandri M, Rota R, Marampon F, and Fanzani A
- Subjects
- Animals, Child, DNA Repair, DNA-Activated Protein Kinase genetics, Deoxyglucose, Doxorubicin pharmacology, Glucose, Glycolysis, Hexokinase metabolism, Histones metabolism, Humans, Ki-67 Antigen metabolism, Lovastatin, MTOR Inhibitors, Mevalonic Acid, Oxidoreductases metabolism, Phosphatidylinositol 3-Kinases metabolism, Phosphatidylinositols, Ribosomal Protein S6 Kinases, 70-kDa metabolism, Sirolimus pharmacology, TOR Serine-Threonine Kinases metabolism, Zebrafish genetics, Proto-Oncogene Proteins c-akt metabolism, Rhabdomyosarcoma, Embryonal drug therapy
- Abstract
In pediatric rhabdomyosarcoma (RMS), elevated Akt signaling is associated with increased malignancy. Here, we report that expression of a constitutively active, myristoylated form of Akt1 (myrAkt1) in human RMS RD cells led to hyperactivation of the mammalian target of rapamycin (mTOR)/70-kDa ribosomal protein S6 kinase (p70S6K) pathway, resulting in the loss of both MyoD and myogenic capacity, and an increase of Ki67 expression due to high cell mitosis. MyrAkt1 signaling increased migratory and invasive cell traits, as detected by wound healing, zymography, and xenograft zebrafish assays, and promoted repair of DNA damage after radiotherapy and doxorubicin treatments, as revealed by nuclear detection of phosphorylated H2A histone family member X (γH2AX) through activation of DNA-dependent protein kinase (DNA-PK). Treatment with synthetic inhibitors of phosphatidylinositol-3-kinase (PI3K) and Akt was sufficient to completely revert the aggressive cell phenotype, while the mTOR inhibitor rapamycin failed to block cell dissemination. Furthermore, we found that pronounced Akt1 signaling increased the susceptibility to cell apoptosis after treatments with 2-deoxy-D-glucose (2-DG) and lovastatin, enzymatic inhibitors of hexokinase, and 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR), especially in combination with radiotherapy and doxorubicin. In conclusion, these data suggest that restriction of glucose metabolism and the mevalonate pathway, in combination with standard therapy, may increase therapy success in RMS tumors characterized by a dysregulated Akt signaling.
- Published
- 2022
- Full Text
- View/download PDF
36. Implication of Irisin in Different Types of Cancer: A Systematic Review and Meta-Analysis.
- Author
-
Vliora M, Nintou E, Karligiotou E, Ioannou LG, Grillo E, Mitola S, and Flouris AD
- Subjects
- Cytokines, Exercise, Humans, Transcription Factors, Fibronectins metabolism, Neoplasms
- Abstract
Cancer is a set of diseases characterized by several hallmark properties, such as increased angiogenesis, proliferation, invasion, and metastasis. The increased angiogenic activity constantly supplies the tumors with nutrients and a plethora of cytokines to ensure cell survival. Along these cytokines is a newly discovered protein, called irisin, which is released into the circulation after physical exercise. Irisin is the product of fibronectin type III domain-containing protein 5 (FNDC5) proteolytic cleavage. Recently it has been the topic of investigation in several types of cancer. In this study, we conducted a systematic review and meta-analysis to investigate its implication in different types of cancer. Our results suggest that irisin expression is decreased in cancer patients, thus it can be used as a valid biomarker for the diagnosis of several types of cancer. In addition, our results indicate that irisin may have an important role in tumor progression and metastasis since it is involved in multiple signaling pathways that promote cell proliferation and migration.
- Published
- 2022
- Full Text
- View/download PDF
37. Editorial: Molecular Insights Into Ligand-Receptor Interactions on the Cell Surface.
- Author
-
Marchetti L, Porciani D, Mitola S, and Giacomelli C
- Abstract
Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
- Published
- 2022
- Full Text
- View/download PDF
38. Irisin regulates thermogenesis and lipolysis in 3T3-L1 adipocytes.
- Author
-
Vliora M, Grillo E, Corsini M, Ravelli C, Nintou E, Karligiotou E, Flouris AD, and Mitola S
- Subjects
- 3T3-L1 Cells, Adipocytes metabolism, Adipose Tissue, Brown metabolism, Animals, Mice, Phosphatidylinositol 3-Kinases metabolism, Fibronectins genetics, Lipolysis, Thermogenesis genetics
- Abstract
Background: Adipose tissue plays a pivotal role in the development and progression of the metabolic syndrome which along with its complications is an epidemic of the 21st century. Irisin is an adipo-myokine secreted mainly by skeletal muscle and targeting, among others, adipose tissue. In brown adipose tissue it upregulates uncoupling protein-1 (UCP1) which is responsible for mitochondrial non-shivering thermogenesis., Methods: Here we analyzed the effects of irisin on the metabolic activity of 3T3-L1 derived adipocytes through a mitochondrial flux assay. We also assessed the effects of irisin on the intracellular signaling through Western Blot. Finally, the gene expression of ucp1 and lipolytic genes was examined through RT-qPCR., Results: Irisin affects mitochondrial respiration and lipolysis in a time-dependent manner through the regulation of PI3K-AKT pathway. Irisin also induces the expression of UCP1 and the regulation of NF-κB, and CREB and ERK pathways., Conclusion: Our data supports the role of irisin in the induction of non-shivering thermogenesis, the regulation of energy expenditure and lipolysis in adipocytes., General Significance: Irisin may be an attractive therapeutic target in the treatment of obesity and related metabolic disorders., (Copyright © 2022 Elsevier B.V. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
39. Novel potential oncogenic and druggable mutations of FGFRs recur in the kinase domain across cancer types.
- Author
-
Grillo E, Ravelli C, Corsini M, Gaudenzi C, Zammataro L, and Mitola S
- Subjects
- Amino Acid Sequence, Carcinogenesis genetics, Humans, Neoplasms drug therapy, Neoplasms genetics, Phosphorylation, Protein Domains, Carcinogenesis pathology, Mutation, Neoplasms pathology, Protein Kinase Inhibitors pharmacology, Receptor Protein-Tyrosine Kinases genetics, Receptors, Fibroblast Growth Factor genetics
- Abstract
Fibroblast growth factor receptors (FGFRs) are recurrently altered by single nucleotide variants (SNVs) in many human cancers. The prevalence of SNVs in FGFRs depends on the cancer type. In some tumors, such as the urothelial carcinoma, mutations of FGFRs occur at very high frequency (up to 60%). Many characterized mutations occur in the extracellular or transmembrane domains, while fewer known mutations are found in the kinase domain. In this study, we performed a bioinformatics analysis to identify novel putative cancer driver or therapeutically actionable mutations of the kinase domain of FGFRs. To pinpoint those mutations that may be clinically relevant, we exploited the recurrence of alterations on analogous amino acid residues within the kinase domain (PK_Tyr_Ser-Thr) of different kinases as a predictor of functional impact. By exploiting MutationAligner and LowMACA bioinformatics resources, we highlighted novel uncharacterized mutations of FGFRs which recur in other protein kinases. By revealing unanticipated correspondence with known variants, we were able to infer their functional effects, as alterations clustering on similar residues in analogous proteins have a high probability to elicit similar effects. As FGFRs represent an important class of oncogenes and drug targets, our study opens the way for further studies to validate their driver and/or actionable nature and, in the long term, for a more efficacious application of precision oncology., (Copyright © 2021. Published by Elsevier B.V.)
- Published
- 2022
- Full Text
- View/download PDF
40. Production and Biochemical Characterization of Dimeric Recombinant Gremlin-1.
- Author
-
Mitola S, Ravelli C, Corsini M, Gianoncelli A, Galvagni F, Ballmer-Hofer K, Presta M, and Grillo E
- Subjects
- HEK293 Cells, Humans, Intercellular Signaling Peptides and Proteins chemistry, Intercellular Signaling Peptides and Proteins genetics, Intercellular Signaling Peptides and Proteins isolation & purification, Recombinant Proteins genetics, Bone Morphogenetic Proteins antagonists & inhibitors, Chromatography, Affinity methods, Intercellular Signaling Peptides and Proteins metabolism, Recombinant Proteins pharmacology, Vascular Endothelial Growth Factor Receptor-2 agonists
- Abstract
Gremlin-1 is a secreted cystine-knot protein that acts as an antagonist of bone morphogenetic proteins (BMPs), and as a ligand of heparin and the vascular endothelial growth factor receptor 2 (VEGFR2), thus regulating several physiological and pathological processes, including embryonic development, tissue fibrosis and cancer. Gremlin-1 exerts all these biological activities only in its homodimeric form. Here, we propose a multi-step approach for the expression and purification of homodimeric, fully active, histidine-tagged recombinant gremlin-1, using mammalian HEK293T cells. Ion metal affinity chromatography (IMAC) of crude supernatant followed by heparin-affinity chromatography enables obtaining a highly pure recombinant dimeric gremlin-1 protein, exhibiting both BMP antagonist and potent VEGFR2 agonist activities.
- Published
- 2022
- Full Text
- View/download PDF
41. Protein domain-based approaches for the identification and prioritization of therapeutically actionable cancer variants.
- Author
-
Grillo E, Ravelli C, Corsini M, Zammataro L, and Mitola S
- Subjects
- Humans, Genetic Variation genetics, Neoplasms genetics, Protein Domains genetics
- Abstract
The tremendous number of cancer variants that can be detected by NGS analyses has required the development of computational approaches to prioritize mutations on the basis of their biological and clinical significance. Standard strategies take a gene-centric approach to the problem, allowing exclusively the identification of highly frequent variants. On the contrary, protein domain (PD)-based approaches allow to identify functionally relevant low frequency variants by searching for mutations that recur on analogous residues across homologous proteins (i.e. containing the same PD). Such approaches enable to transfer information about the effects and druggability from one known mutation to unknown ones. Here we describe how PD-based strategies work, and discuss how they could be exploited for mutation prioritization. The principle that mutations clustered on specific residues of PDs have the same functional consequences and are therapeutically actionable in a similar manner could help the choice of patient-specific targeted drugs, eventually improving the management of cancer patients., (Copyright © 2021 Elsevier B.V. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF
42. Specific targeting of the KRAS mutational landscape in myeloma as a tool to unveil the elicited antitumor activity.
- Author
-
Sacco A, Federico C, Todoerti K, Ziccheddu B, Palermo V, Giacomini A, Ravelli C, Maccarinelli F, Bianchi G, Belotti A, Ribolla R, Favasuli V, Revenko AS, Macleod AR, Willis B, Cai H, Hauser J, Rooney C, Willis SE, Martin PL, Staniszewska A, Ambrose H, Hanson L, Cattaneo C, Tucci A, Rossi G, Ronca R, Neri A, Mitola S, Bolli N, Presta M, Moschetta M, Ross S, and Roccaro AM
- Subjects
- Animals, Antineoplastic Agents pharmacology, Antineoplastic Agents therapeutic use, Cell Line, Tumor, Humans, Mice, SCID, Molecular Targeted Therapy, Neoplasm Recurrence, Local drug therapy, Neoplasm Recurrence, Local genetics, Oligonucleotides, Antisense therapeutic use, Small Molecule Libraries pharmacology, Small Molecule Libraries therapeutic use, Mice, Multiple Myeloma drug therapy, Multiple Myeloma genetics, Mutation drug effects, Oligonucleotides, Antisense pharmacology, Proto-Oncogene Proteins p21(ras) genetics
- Abstract
Alterations in KRAS have been identified as the most recurring somatic variants in the multiple myeloma (MM) mutational landscape. Combining DNA and RNA sequencing, we studied 756 patients and observed KRAS as the most frequently mutated gene in patients at diagnosis; in addition, we demonstrated the persistence or de novo occurrence of the KRAS aberration at disease relapse. Small-molecule inhibitors targeting KRAS have been developed; however, they are selective for tumors carrying the KRASG12C mutation. Therefore, there is still a need to develop novel therapeutic approaches to target the KRAS mutational events found in other tumor types, including MM. We used AZD4785, a potent and selective antisense oligonucleotide that selectively targets and downregulates all KRAS isoforms, as a tool to dissect the functional sequelae secondary to KRAS silencing in MM within the context of the bone marrow niche and demonstrated its ability to significantly silence KRAS, leading to inhibition of MM tumor growth, both in vitro and in vivo, and confirming KRAS as a driver and therapeutic target in MM., (© 2021 by The American Society of Hematology.)
- Published
- 2021
- Full Text
- View/download PDF
43. Bartonella henselae Persistence within Mesenchymal Stromal Cells Enhances Endothelial Cell Activation and Infectibility That Amplifies the Angiogenic Process.
- Author
-
Scutera S, Mitola S, Sparti R, Salvi V, Grillo E, Piersigilli G, Bugatti M, Alotto D, Schioppa T, Sozzani S, and Musso T
- Subjects
- Angiomatosis, Bacillary pathology, Biomarkers, Disease Susceptibility, Host-Pathogen Interactions, Humans, Angiomatosis, Bacillary metabolism, Angiomatosis, Bacillary microbiology, Bartonella henselae physiology, Endothelial Cells metabolism, Mesenchymal Stem Cells metabolism, Neovascularization, Pathologic metabolism
- Abstract
Some bacterial pathogens can manipulate the angiogenic response, suppressing or inducing it for their own ends. In humans, Bartonella henselae is associated with cat-scratch disease and vasculoproliferative disorders such as bacillary angiomatosis and bacillary peliosis. Although endothelial cells (ECs) support the pathogenesis of B. henselae , the mechanisms by which B. henselae induces EC activation are not completely clear, as well as the possible contributions of other cells recruited at the site of infection. Mesenchymal stromal cells (MSCs) are endowed with angiogenic potential and play a dual role in infections, exerting antimicrobial properties but also acting as a shelter for pathogens. Here, we delved into the role of MSCs as a reservoir of B. henselae and modulator of EC functions. B. henselae readily infected MSCs and survived in perinuclearly bound vacuoles for up to 8 days. Infection enhanced MSC proliferation and the expression of epidermal growth factor receptor (EGFR), Toll-like receptor 2 (TLR2), and nucleotide-binding oligomerization domain-containing protein 1 (NOD1), proteins that are involved in bacterial internalization and cytokine production. Secretome analysis revealed that infected MSCs secreted higher levels of the proangiogenic factors vascular endothelial growth factor (VEGF), fibroblast growth factor 7 (FGF-7), matrix metallopeptidase 9 (MMP-9), placental growth factor (PIGF), serpin E1, thrombospondin 1 (TSP-1), urokinase-type plasminogen activator (uPA), interleukin 6 (IL-6), platelet-derived growth factor D (PDGF-D), chemokine ligand 5 (CCL5), and C-X-C motif chemokine ligand 8 (CXCL8). Supernatants from B. henselae-infected MSCs increased the susceptibility of ECs to B. henselae infection and enhanced EC proliferation, invasion, and reorganization in tube-like structures. Altogether, these results indicate MSCs as a still underestimated niche for persistent B. henselae infection and reveal MSC-EC cross talk that may contribute to exacerbate bacterium-induced angiogenesis and granuloma formation.
- Published
- 2021
- Full Text
- View/download PDF
44. Corrigendum to "Genetic perturbation of IFN-α transcriptional modulators in human endothelial cells uncovers pivotal regulators of angiogenesis" [Comput Struct Biotechnol J. 2020 Dec 2;18:3977-3986. doi: https://doi.org//10.1016/j.csbj.2020.11.048. eCollection 2020].
- Author
-
Ciccarese F, Grassi A, Pasqualini L, Rosano S, Noghero A, Montenegro F, Bussolino F, Di Camillo B, Finesso L, Toffolo GM, Mitola S, and Indraccolo S
- Abstract
[This corrects the article DOI: 10.1016/j.csbj.2020.11.048.]., (© 2021 The Author(s).)
- Published
- 2021
- Full Text
- View/download PDF
45. Expression of activated VEGFR2 by R1051Q mutation alters the energy metabolism of Sk-Mel-31 melanoma cells by increasing glutamine dependence.
- Author
-
Grillo E, Corsini M, Ravelli C, Zammataro L, Bacci M, Morandi A, Monti E, Presta M, and Mitola S
- Subjects
- Adenosine Triphosphate metabolism, Antineoplastic Agents pharmacology, Cell Line, Tumor, Enzyme Inhibitors pharmacology, Glutaminase antagonists & inhibitors, Glutaminase metabolism, Humans, Melanoma drug therapy, Melanoma genetics, Melanoma pathology, Signal Transduction, Skin Neoplasms drug therapy, Skin Neoplasms genetics, Skin Neoplasms pathology, Vascular Endothelial Growth Factor Receptor-2 genetics, Energy Metabolism drug effects, Gain of Function Mutation, Glutamine metabolism, Melanoma metabolism, Skin Neoplasms metabolism, Vascular Endothelial Growth Factor Receptor-2 metabolism
- Abstract
Vascular endothelial growth factor receptor 2 (VEGFR2) activating mutations are emerging as important oncogenic driver events. Understanding the biological implications of such mutations may help to pinpoint novel therapeutic targets. Here we show that activated VEGFR2 via the pro-oncogenic R1051Q mutation induces relevant metabolic changes in melanoma cells. The expression of VEGFR2
R1051Q leads to higher energy metabolism and ATP production compared to control cells expressing VEGFR2WT . Furthermore, activated VEGFR2R1051Q augments the dependence on glutamine (Gln) of melanoma cells, thus increasing Gln uptake and their sensitivity to Gln deprivation and to inhibitors of glutaminase, the enzyme initiating Gln metabolism by cells. Overall, these results highlight Gln addiction as a metabolic vulnerability of tumors harboring the activating VEGFR2R1051Q mutation and suggest novel therapeutic approaches for those patients harboring activating mutations of VEGFR2., (Copyright © 2021. Published by Elsevier B.V.)- Published
- 2021
- Full Text
- View/download PDF
46. H-ferritin suppression and pronounced mitochondrial respiration make Hepatocellular Carcinoma cells sensitive to RSL3-induced ferroptosis.
- Author
-
Asperti M, Bellini S, Grillo E, Gryzik M, Cantamessa L, Ronca R, Maccarinelli F, Salvi A, De Petro G, Arosio P, Mitola S, and Poli M
- Subjects
- Apoferritins genetics, Carbolines, Cell Line, Humans, Mitochondria, Respiration, Carcinoma, Hepatocellular, Ferroptosis, Liver Neoplasms
- Abstract
Ferroptosis is a form of regulated cell death dependent on iron, reactive oxygen species and characterized by the accumulation of lipid peroxides. It can be experimentally initiated by chemicals, such as erastin and RSL3, that modulate GPX4 activity, the cellular antioxidant machinery that avert lipid peroxidation. The study aimed to investigate mitochondrial respiration and ferritin function as biomarkers of ferroptosis sensitivity of HepG2 and HA22T/VGH, two Hepatocellular Carcinoma (HCC) cell line models. Cell viability was determined by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide (MTT) assay, labile iron levels were determined using Calcein-AM fluorescence microscopy, ferritin, glutathione and lipid peroxidation were assayed with commercially available kits. The Seahorse assay was used to investigate mitochondrial function in the cells. The study shows that highly differentiated HepG2 cells were more sensitive to RSL3-induced ferroptosis than the poorly differentiated HA22T/VGH (HCC) cell line (RSL3 IC
50 0.07 μM in HepG2 vs 0.3 μM in HA22T/VGH). Interestingly, HepG2 exhibited higher mitochondrial respiration and lower glycolytic activity than HA22T/VGH and were more sensitive to RSL3-induced ferroptosis, indicating a mitochondrial-specific mechanism of action of RSL3. Interestingly, iron metabolism seems to be involved in this different sensitivity, specifically, the downregulation of H-ferritin (but not of L-subunit), makes HA22T/VGH more sensitive toward both RSL3-and iron-induced ferroptosis. Hence only the H-ferritin seems involved in the protection from this cell death process., (Copyright © 2021 Elsevier Inc. All rights reserved.)- Published
- 2021
- Full Text
- View/download PDF
47. Simultaneously characterization of tumoral angiogenesis and vasculogenesis in stem cell-derived teratomas.
- Author
-
Corsini M, Ravelli C, Grillo E, Dell'Era P, Presta M, and Mitola S
- Subjects
- Animals, Chick Embryo, Chorioallantoic Membrane, Embryonic Stem Cells metabolism, Mice, Mice, Knockout, Teratoma metabolism, Cell Differentiation, Embryonic Stem Cells pathology, Neovascularization, Pathologic, Receptor, Fibroblast Growth Factor, Type 1 physiology, Teratoma blood supply, Teratoma pathology
- Abstract
Tumor neovascularization may occur via both angiogenic and vasculogenic events. In order to investigate the vessel formation during tumor growth, we developed a novel experimental model that takes into account the differentiative and tumorigenic properties of Embryonic Stem cells (ESCs). Leukemia Inhibitory Factor-deprived murine ESCs were grafted on the top of the chick embryo chorionallantoic membrane (CAM) in ovo. Cell grafts progressively grew, forming a vascularized mass within 10 days. At this stage, the grafts are formed by cells with differentiative features representative of all three germ layers, thus originating teratomas, a germinal cell tumor. In addition, ESC supports neovascular events by recruiting host capillaries from surrounding tissue that infiltrates the tumor mass. Moreover, immunofluorescence studies demonstrate that perfused active blood vessels within the tumor are of both avian and murine origin because of the simultaneous occurrence of angiogenic and vasculogenic events. In conclusion, the chick embryo ESC/CAM-derived teratoma model may represent a useful approach to investigate both vasculogenic and angiogenic events during tumor growth and for the study of natural and synthetic modulators of the two processes., (Copyright © 2021. Published by Elsevier Inc.)
- Published
- 2021
- Full Text
- View/download PDF
48. The Claudin-Low Subtype of High-Grade Serous Ovarian Carcinoma Exhibits Stem Cell Features.
- Author
-
Romani C, Capoferri D, Grillo E, Silvestri M, Corsini M, Zanotti L, Todeschini P, Ravaggi A, Bignotti E, Odicino F, Sartori E, Calza S, and Mitola S
- Abstract
Claudin-low cancer (CL) represents a rare and biologically aggressive variant of epithelial tumor. Here, we identified a claudin-low molecular profile of ovarian high-grade serous carcinoma (HGSOC), which exhibits the main characteristics of the homonym breast cancer subtype, including low epithelial differentiation and high mesenchymal signature. Hierarchical clustering and a centroid based algorithm applied to cell line collection expression dataset labeled 6 HGSOC cell lines as CL. These have a high energy metabolism and are enriched in CD44
+ /CD24- mesenchymal stem-like cells expressing low levels of cell-cell adhesion molecules (claudins and E-Cadherin) and high levels of epithelial-to-mesenchymal transition (EMT) induction transcription factors (Zeb1, Snai2, Twist1 and Twist2). Accordingly, the centroid base algorithm applied to large retrospective collections of primary HGSOC samples reveals a tumor subgroup with transcriptional features consistent with the CL profile, and reaffirms EMT as the dominant biological pathway functioning in CL-HGSOC. HGSOC patients carrying CL profiles have a worse overall survival when compared to others, likely to be attributed to its undifferentiated/stem component. These observations highlight the lack of a molecular diagnostic in the management of HGSOC and suggest a potential prognostic utility of this molecular subtyping.- Published
- 2021
- Full Text
- View/download PDF
49. Alpha-Synuclein in the Regulation of Brain Endothelial and Perivascular Cells: Gaps and Future Perspectives.
- Author
-
Bogale TA, Faustini G, Longhena F, Mitola S, Pizzi M, and Bellucci A
- Subjects
- Animals, Biomarkers, Brain pathology, Cell Communication, Central Nervous System metabolism, Central Nervous System pathology, Disease Susceptibility, Gene Expression Regulation, Humans, Microglia immunology, Microglia metabolism, Neurodegenerative Diseases etiology, Neurodegenerative Diseases metabolism, Neurodegenerative Diseases pathology, alpha-Synuclein genetics, Blood-Brain Barrier metabolism, Brain metabolism, Endothelial Cells metabolism, alpha-Synuclein metabolism
- Abstract
Misfolded proteins, inflammation, and vascular alterations are common pathological hallmarks of neurodegenerative diseases. Alpha-synuclein is a small synaptic protein that was identified as a major component of Lewy bodies and Lewy neurites in the brain of patients affected by Parkinson's disease (PD), Lewy body dementia (LBD), and other synucleinopathies. It is mainly involved in the regulation of synaptic vesicle trafficking but can also control mitochondrial/endoplasmic reticulum (ER) homeostasis, lysosome/phagosome function, and cytoskeleton organization. Recent evidence supports that the pathological forms of α-synuclein can also reduce the release of vasoactive and inflammatory mediators from endothelial cells (ECs) and modulates the expression of tight junction (TJ) proteins important for maintaining the blood-brain barrier (BBB). This hints that α-synuclein deposition can affect BBB integrity. Border associated macrophages (BAMs) are brain resident macrophages found in association with the vasculature (PVMs), meninges (MAMs), and choroid plexus (CPMs). Recent findings indicate that these cells play distinct roles in stroke and neurodegenerative disorders. Although many studies have addressed how α-synuclein may modulate microglia, its effect on BAMs has been scarcely investigated. This review aims at summarizing the main findings supporting how α-synuclein can affect ECs and/or BAMs function as well as their interplay and effect on other cells in the brain perivascular environment in physiological and pathological conditions. Gaps of knowledge and new perspectives on how this protein can contribute to neurodegeneration by inducing BBB homeostatic changes in different neurological conditions are highlighted., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2021 Bogale, Faustini, Longhena, Mitola, Pizzi and Bellucci.)
- Published
- 2021
- Full Text
- View/download PDF
50. A novel variant of VEGFR2 identified by a pan-cancer screening of recurrent somatic mutations in the catalytic domain of tyrosine kinase receptors enhances tumor growth and metastasis.
- Author
-
Grillo E, Corsini M, Ravelli C, di Somma M, Zammataro L, Monti E, Presta M, and Mitola S
- Subjects
- Animals, Apoptosis, Biomarkers, Tumor genetics, Cell Movement, Cell Proliferation, Gene Expression Profiling, Humans, Lung Neoplasms drug therapy, Lung Neoplasms genetics, Lung Neoplasms metabolism, Melanoma drug therapy, Melanoma genetics, Melanoma metabolism, Mice, Mice, Inbred NOD, Mice, SCID, Phosphorylation, Prognosis, Protein Kinase Inhibitors therapeutic use, Survival Rate, Tumor Cells, Cultured, Vascular Endothelial Growth Factor Receptor-2 genetics, Xenograft Model Antitumor Assays, Biomarkers, Tumor metabolism, Gene Expression Regulation, Neoplastic, Lung Neoplasms secondary, Melanoma pathology, Mutation, Vascular Endothelial Growth Factor Receptor-2 metabolism
- Abstract
In cancer genomics, recurrence of mutations in gene families that share homologous domains has recently emerged as a reliable indicator of functional impact and can be exploited to reveal the pro-oncogenic effect of previously uncharacterized variants. Pan-cancer analyses of mutation hotspots in the catalytic domain of a subset of tyrosine kinase receptors revealed that two infrequent mutations of VEGFR2 (R1051Q and D1052N) recur in analogous proteins and correlate with reduced patient survival. Functional validation showed that both R1051Q and D1052N mutations increase the enzymatic activity of VEGFR2. The expression of VEGFR2
R1051Q potentiates the PI3K/Akt signaling axis in cancer cells, increasing their tumorigenic potential in vitro and in vivo. In addition, it confers to cancer cells an increased sensitivity to the VEGFR2-targeted tyrosine kinase inhibitor Linifanib. In the context of an efficacious application of anti-cancer targeted therapies, these findings indicate that the screening for uncharacterized mutations, like VEGFR2R1051Q , may help to predict patient prognosis and drug response, with significant clinical implications., (Copyright © 2020 Elsevier B.V. All rights reserved.)- Published
- 2021
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.