1. Disrupting the α-synuclein-ESCRT interaction with a peptide inhibitor mitigates neurodegeneration in preclinical models of Parkinson’s disease
- Author
-
Satra Nim, Darren M. O’Hara, Carles Corbi-Verge, Albert Perez-Riba, Kazuko Fujisawa, Minesh Kapadia, Hien Chau, Federica Albanese, Grishma Pawar, Mitchell L. De Snoo, Sophie G. Ngana, Jisun Kim, Omar M. A. El-Agnaf, Enrico Rennella, Lewis E. Kay, Suneil K. Kalia, Lorraine V. Kalia, and Philip M. Kim
- Subjects
Science - Abstract
Abstract Accumulation of α-synuclein into toxic oligomers or fibrils is implicated in dopaminergic neurodegeneration in Parkinson’s disease. Here we performed a high-throughput, proteome-wide peptide screen to identify protein-protein interaction inhibitors that reduce α-synuclein oligomer levels and their associated cytotoxicity. We find that the most potent peptide inhibitor disrupts the direct interaction between the C-terminal region of α-synuclein and CHarged Multivesicular body Protein 2B (CHMP2B), a component of the Endosomal Sorting Complex Required for Transport-III (ESCRT-III). We show that α-synuclein impedes endolysosomal activity via this interaction, thereby inhibiting its own degradation. Conversely, the peptide inhibitor restores endolysosomal function and thereby decreases α-synuclein levels in multiple models, including female and male human cells harboring disease-causing α-synuclein mutations. Furthermore, the peptide inhibitor protects dopaminergic neurons from α-synuclein-mediated degeneration in hermaphroditic C. elegans and preclinical Parkinson’s disease models using female rats. Thus, the α-synuclein-CHMP2B interaction is a potential therapeutic target for neurodegenerative disorders.
- Published
- 2023
- Full Text
- View/download PDF