594 results on '"Misao Sasaki"'
Search Results
2. New shape of parity-violating graviton non-Gaussianity
- Author
-
Jinn-Ouk Gong, Maria Mylova, and Misao Sasaki
- Subjects
de Sitter space ,Effective Field Theories ,Nuclear and particle physics. Atomic energy. Radioactivity ,QC770-798 - Abstract
Abstract We show that the general vacuum states that respect the de Sitter symmetry, known as the α-vacua, can introduce non-vanishing parity-violating tensor non-Gaussianities. This is due to the mixing by the Bogoliubov transformation of the positive and negative frequency modes of the Bunch-Davies vacuum. We calculate explicitly the bispectra of tensor perturbations and show that the amplitude can be exponentially enhanced for certain choices of the squeezing parameter α and the phase ϕ of the α-vacua. We find a new shape for the parity-violating tensor bispectrum which peaks in the flattened configuration.
- Published
- 2023
- Full Text
- View/download PDF
3. Universal gravitational waves from interacting and clustered solitons
- Author
-
Kaloian D. Lozanov, Misao Sasaki, and Volodymyr Takhistov
- Subjects
Physics ,QC1-999 - Abstract
Causal soliton formation (e.g. oscillons, Q-balls) in the primordial Universe is expected to give rise to a universal gravitational wave (GW) background, at frequencies smaller than scales of nonlinearity. We show that modifications of the soliton density field, driven by soliton interactions or initial conditions, can significantly enhance universal GWs. Gravitational clustering of solitons naturally leads to generation of correlations in the large-scale soliton density field. As we demonstrate for axion-like particle (ALP) oscillons, the growing power spectrum amplifies universal GW signals, opening new avenues for probing the physics of the early Universe with upcoming GW experiments. Our results are applicable to variety of scenarios, such as solitons interacting through a long range Yukawa-like fifth force.
- Published
- 2024
- Full Text
- View/download PDF
4. Primordial-tensor-induced stochastic gravitational waves
- Author
-
Mohammad Ali Gorji and Misao Sasaki
- Subjects
Physics ,QC1-999 - Abstract
Cosmological stochastic gravitational waves (GWs) induced by a spectator field are usually expected to have an amplitude very small compared with those generated by the curvature perturbation, or equivalently by a field dominating the universe. On the contrary to this expectation, we show that a spectator field that provides a tensor perturbation, on top of the metric tensor perturbation, can generate a significant amount of GWs. The amplitude and frequency of the generated GWs may lie within the sensitivity range of future GW detectors. In particular, if the sound velocities of the two tensor perturbations coincide, the induced GW amplitude may become very large due to resonance by forced oscillation, even in the limit of small coupling between them. A distinct feature of this scenario is that, since tensor modes can hardly lead to the formation of primordial black holes (PBHs), we expect no presence of PBHs, in contrast to the usual scalar-induced case, in which the detection of strong enough induced GWs suggests the existence of PBHs.
- Published
- 2023
- Full Text
- View/download PDF
5. Extra-tensor-induced origin for the PTA signal: No primordial black hole production
- Author
-
Mohammad Ali Gorji, Misao Sasaki, and Teruaki Suyama
- Subjects
Physics ,QC1-999 - Abstract
Recently, pulsar timing array (PTA) collaborations announced evidence for an isotropic stochastic gravitational wave (GW) background. The origin of the PTA signal can be astrophysical or cosmological. In the latter case, the so-called secondary scalar-induced GW scenario is one of the viable explanations, but it has a potentially serious issue of the overproduction of primordial black holes (PBHs) due to the enhanced curvature perturbation. In this letter, we present a new interpretation of the PTA signal. Namely, it is originated from an extra spectator tensor field that exists on top of the metric tensor perturbation. As the energy density of the extra tensor field is always subdominant, it cannot lead to the formation of PBHs. Thus our primordial-tensor-induced scenario is free from the PBH overproduction issue.
- Published
- 2023
- Full Text
- View/download PDF
6. Tunneling between Multiple Histories as a Solution to the Information Loss Paradox
- Author
-
Pisin Chen, Misao Sasaki, Dong-han Yeom, and Junggi Yoon
- Subjects
black hole ,Hawking evaporation ,information loss paradox ,entanglement entropy ,Euclidean path integral ,Page time ,Science ,Astrophysics ,QB460-466 ,Physics ,QC1-999 - Abstract
The information loss paradox associated with black hole Hawking evaporation is an unresolved problem in modern theoretical physics. In a recent brief essay, we revisited the evolution of the black hole entanglement entropy via the Euclidean path integral (EPI) of the quantum state and allow for the branching of semi-classical histories along the Lorentzian evolution. We posited that there exist at least two histories that contribute to EPI, where one is an information-losing history, while the other is an information-preserving one. At early times, the former dominates EPI, while at the late times, the latter becomes dominant. By doing so, we recovered the essence of the Page curve, and thus, the unitarity, albeit with the turning point, i.e., the Page time, much shifted toward the late time. In this full-length paper, we fill in the details of our arguments and calculations to strengthen our notion. One implication of this modified Page curve is that the entropy bound may thus be violated. We comment on the similarity and difference between our approach and that of the replica wormholes and the islands’ conjectures.
- Published
- 2023
- Full Text
- View/download PDF
7. Graviton non-gaussianity in α-vacuum
- Author
-
Sugumi Kanno and Misao Sasaki
- Subjects
Early Universe Particle Physics ,Models of Quantum Gravity ,Space-Time Symmetries ,Nuclear and particle physics. Atomic energy. Radioactivity ,QC770-798 - Abstract
Abstract We compute the leading order non-Gaussianity, i.e., the bispectrum, of the tensor perturbation in the general α-vacuum on de Sitter space in general relativity. In addition to the well-known Bunch-Davies (BD) vacuum, there exits an infinite number of de Sitter invariant vacua represented by a real parameter α and a phase ϕ, with α = 0 being the BD vacuum. They are called α-vacua. In the standard slow-roll inflation, as de Sitter invariance no longer applies, the α-vacua lose its relevance in the rigorous sense. Nevertheless, if we assume that the parameter α is only weakly dependent on the wavenumber with an appropriate UV cutoff, we may consider pseudo-α-vacua. In the case of false vacuum inflation where the background spacetime is pure de Sitter, a non-trivial (non-BD) α-vacuum could indeed be realized. We find an intriguing result that the bispectrum may be exponentially enhanced to be detectable by observation even if the spectrum is too small to be detected.
- Published
- 2022
- Full Text
- View/download PDF
8. One small step for an inflaton, one giant leap for inflation: A novel non-Gaussian tail and primordial black holes
- Author
-
Yi-Fu Cai, Xiao-Han Ma, Misao Sasaki, Dong-Gang Wang, and Zihan Zhou
- Subjects
Physics ,QC1-999 - Abstract
We report a novel prediction from single-field inflation that even a tiny step in the inflaton potential can change our perception of primordial non-Gaussianities of the curvature perturbation. Our analysis focuses on the tail of probability distribution generated by an upward step transition between two stages of slow-roll evolution. The nontrivial background dynamics with off-attractor behavior is identified. By using a non-perturbative δN analysis, we explicitly show that a highly non-Gaussian tail can be generated by a tiny upward step, even when the conventional nonlinearity parameters fNLlocal, gNLlocal, etc. remain small. With this example, we demonstrate for the first time the sensitive dependence of non-perturbative effects on the tail of probability distribution. Our scenario has an inconceivable application to primordial black holes by either significantly boosting their abundance or completely forbidding their appearance.
- Published
- 2022
- Full Text
- View/download PDF
9. Exploring evaporating primordial black holes with gravitational waves
- Author
-
Guillem Domènech, Volodymyr Takhistov, and Misao Sasaki
- Subjects
Physics ,QC1-999 - Abstract
Primordial black holes (PBHs) from the early Universe have been connected with the nature of dark matter and can significantly affect cosmological history. We show that coincidence dark radiation and density fluctuation gravitational wave signatures associated with evaporation of ≲109 g PBHs can be used to explore and obtain important hints about the formation mechanisms of spinning and non-spinning PBHs spanning orders of magnitude in mass-range, which is challenging to do otherwise.
- Published
- 2021
- Full Text
- View/download PDF
10. Multi-field dark energy: Cosmic acceleration on a steep potential
- Author
-
Yashar Akrami, Misao Sasaki, Adam R. Solomon, and Valeri Vardanyan
- Subjects
Quintessence ,Multi-field dark energy ,Clustering dark energy ,Swampland ,Large-scale structure ,Physics ,QC1-999 - Abstract
We argue that dark energy with multiple fields is theoretically well-motivated and predicts distinct observational signatures, in particular when cosmic acceleration takes place along a trajectory that is highly non-geodesic in field space. Such models provide novel physics compared to ΛCDM and quintessence by allowing cosmic acceleration on steep potentials. From the theoretical point of view, these theories can easily satisfy the conjectured swampland constraints and may in certain cases be technically natural, potential problems which are endemic to standard single-field dark energy. Observationally, we argue that while such multi-field models are likely to be largely indistinguishable from the concordance cosmology at the background level, dark energy perturbations can cluster, leading to an enhanced growth of large-scale structure that may be testable as early as the next generation of cosmological surveys.
- Published
- 2021
- Full Text
- View/download PDF
11. Hawking radiation as instantons
- Author
-
Pisin Chen, Misao Sasaki, and Dong-han Yeom
- Subjects
Astrophysics ,QB460-466 ,Nuclear and particle physics. Atomic energy. Radioactivity ,QC770-798 - Abstract
Abstract There have been various interpretations of Hawking radiation proposed based on the perturbative approach, and all have confirmed Hawking’s original finding. One major conceptual challenge of Hawking evaporation is the associated black hole information loss paradox, which remains unresolved. A key factor to the issue is the end-stage of the black hole evaporation. Unfortunately by then the evaporation process becomes non-perturbative. Aspired to provide a tool for the eventual solution to this problem, here we introduce a new interpretation of Hawking radiation as the tunneling of instantons. We study instantons of a massless scalar field in Einstein gravity. We consider a complex-valued instanton that connects an initial pure black hole state to a black hole with a scalar field that represents the Hawking radiation at future null infinity, where its action depends only on the areal entropy difference. By comparing it with several independent approaches to Hawking radiation in the perturbative limit, we conclude that Hawking radiation may indeed be described by a family of instantons. Since the instanton approach can describe non-perturbative processes, we hope that our new interpretation and holistic method may shed lights on the information loss problem.
- Published
- 2019
- Full Text
- View/download PDF
12. Quintessence saves Higgs instability
- Author
-
Chengcheng Han, Shi Pi, and Misao Sasaki
- Subjects
Physics ,QC1-999 - Abstract
We study a model where quintessence potential e−ξϕ coupled to Higgs potential. We calculate the evolution of the quintessence, and track the running of the effective Higgs self coupling. We find it slightly larger than that of the standard model in the past. Requiring the electroweak vacuum to be absolutely stable in inflationary era, we find a lower bound ξ>0.35±0.05, where the uncertainty is mainly from the measurement of the top quark mass. This lower bound, together with the upper bound from the observation for dark energy ξ≲0.6, narrows down the parameter space and makes it possible to test this model in the near future. Interestingly, the bound on ξ, if actually shown to be the case by observation, supports the recently proposed Swampland Conjecture. Keywords: Dark energy, Quintessence, Higgs instability, Swampland Conjecture
- Published
- 2019
- Full Text
- View/download PDF
13. Testing stochastic gravitational wave signals from primordial black holes with optical telescopes
- Author
-
Sunao Sugiyama, Volodymyr Takhistov, Edoardo Vitagliano, Alexander Kusenko, Misao Sasaki, and Masahiro Takada
- Subjects
Physics ,QC1-999 - Abstract
Primordial black holes (PBHs) can constitute the predominant fraction of dark matter (DM) if PBHs reside in the currently unconstrained “sublunar” mass range. PBHs originating from scalar perturbations generated during inflation can naturally appear with a broad spectrum in a class of models. The resulting stochastic gravitational wave (GW) background generated from such PBH production can account for the recently reported North American Nanohertz Observatory for Gravitational Waves (NANOGrav) pulsar timing array data signal, and will be testable in future GW observations by interferometer-type experiments such as Laser Interferometer Space Antenna (LISA). We show that the broad mass function of such PBH DM is already being probed by Subaru Hyper Suprime-Cam (HSC) microlensing data and is consistent with a detected candidate event. Upcoming observations of HSC will be able to provide an independent definitive test of the stochastic GW signals originating from such PBH DM production scenarios.
- Published
- 2021
- Full Text
- View/download PDF
14. Hamiltonian analysis of an on-shell U(1) gauge field theory
- Author
-
Chunshan Lin and Misao Sasaki
- Subjects
Physics ,QC1-999 - Abstract
We perform the Hamiltonian analysis of an on-shell U(1) gauge field theory, in which the action is not invariant under local U(1) transformations but recovers the invariance when the equations of motion are imposed. We firstly apply Dirac's method of Hamiltonian analysis. We find one first-class constraint and two second-class constraints in the vector sector. It implies the photons have only two polarisations, at least at the classical level, although the standard U(1) symmetry is explicitly broken. The reduced Hamiltonian is bounded from below and the on-shell U(1) gauge field theory is free from ghosts at the classical level.
- Published
- 2017
- Full Text
- View/download PDF
15. Thermal activation of thin-shells in anti-de Sitter black hole spacetime
- Author
-
Pisin Chen, Guillem Domènech, Misao Sasaki, and Dong-han Yeom
- Subjects
Black Holes ,Nonperturbative Effects ,Models of Quantum Gravity ,Thermal Field Theory ,Nuclear and particle physics. Atomic energy. Radioactivity ,QC770-798 - Abstract
Abstract We investigate thermal activation of thin-shells around anti-de Sitter black holes. Under the thin-shell approximation, we extensively study the parameter region that allows a bubble nucleation bounded by a thin-shell out of a thermal bath. We show that in general if one fixes the temperature outside the shell, one needs to consider the presence of a conical deficit inside the shell in the Euclidean manifold, due to the lack of solutions with a smooth manifold. We show that for a given set of theoretical parameters, i.e., vacuum and shell energy density, there is a finite range of black hole masses that allow this transition. Most interestingly, one of them describes the complete evaporation of the initial black hole.
- Published
- 2017
- Full Text
- View/download PDF
16. Consistency relation and inflaton field redefinition in the δN formalism
- Author
-
Guillem Domènech, Jinn-Ouk Gong, and Misao Sasaki
- Subjects
Physics ,QC1-999 - Abstract
We compute for general single-field inflation the intrinsic non-Gaussianity due to the self-interactions of the inflaton field in the squeezed limit. We recover the consistency relation in the context of the δN formalism, and argue that there is a particular field redefinition that makes the intrinsic non-Gaussianity vanishing, thus improving the estimate of the local non-Gaussianity using the δN formalism.
- Published
- 2017
- Full Text
- View/download PDF
17. Global adiabaticity and non-Gaussianity consistency condition
- Author
-
Antonio Enea Romano, Sander Mooij, and Misao Sasaki
- Subjects
Physics ,QC1-999 - Abstract
In the context of single-field inflation, the conservation of the curvature perturbation on comoving slices, Rc, on super-horizon scales is one of the assumptions necessary to derive the consistency condition between the squeezed limit of the bispectrum and the spectrum of the primordial curvature perturbation. However, the conservation of Rc holds only after the perturbation has reached the adiabatic limit where the constant mode of Rc dominates over the other (usually decaying) mode. In this case, the non-adiabatic pressure perturbation defined in the thermodynamic sense, δPnad≡δP−cw2δρ where cw2=P˙/ρ˙, usually becomes also negligible on superhorizon scales. Therefore one might think that the adiabatic limit is the same as thermodynamic adiabaticity. This is in fact not true. In other words, thermodynamic adiabaticity is not a sufficient condition for the conservation of Rc on super-horizon scales. In this paper, we consider models that satisfy δPnad=0 on all scales, which we call global adiabaticity (GA), which is guaranteed if cw2=cs2, where cs is the phase velocity of the propagation of the perturbation. A known example is the case of ultra-slow-roll (USR) inflation in which cw2=cs2=1. In order to generalize USR we develop a method to find the Lagrangian of GA K-inflation models from the behavior of background quantities as functions of the scale factor. Applying this method we show that there indeed exists a wide class of GA models with cw2=cs2, which allows Rc to grow on superhorizon scales, and hence violates the non-Gaussianity consistency condition.
- Published
- 2016
- Full Text
- View/download PDF
18. Adiabaticity and gravity theory independent conservation laws for cosmological perturbations
- Author
-
Antonio Enea Romano, Sander Mooij, and Misao Sasaki
- Subjects
Physics ,QC1-999 - Abstract
We carefully study the implications of adiabaticity for the behavior of cosmological perturbations. There are essentially three similar but different definitions of non-adiabaticity: one is appropriate for a thermodynamic fluid δPnad, another is for a general matter field δPc,nad, and the last one is valid only on superhorizon scales. The first two definitions coincide if cs2=cw2 where cs is the propagation speed of the perturbation, while cw2=P˙/ρ˙. Assuming the adiabaticity in the general sense, δPc,nad=0, we derive a relation between the lapse function in the comoving slicing Ac and δPnad valid for arbitrary matter field in any theory of gravity, by using only momentum conservation. The relation implies that as long as cs≠cw, the uniform density, comoving and the proper-time slicings coincide approximately for any gravity theory and for any matter field if δPnad=0 approximately. In the case of general relativity this gives the equivalence between the comoving curvature perturbation Rc and the uniform density curvature perturbation ζ on superhorizon scales, and their conservation. This is realized on superhorizon scales in standard slow-roll inflation.We then consider an example in which cw=cs, where δPnad=δPc,nad=0 exactly, but the equivalence between Rc and ζ no longer holds. Namely we consider the so-called ultra slow-roll inflation. In this case both Rc and ζ are not conserved. In particular, as for ζ, we find that it is crucial to take into account the next-to-leading order term in ζ's spatial gradient expansion to show its non-conservation, even on superhorizon scales. This is an example of the fact that adiabaticity (in the thermodynamic sense) is not always enough to ensure the conservation of Rc or ζ.
- Published
- 2016
- Full Text
- View/download PDF
19. Resonant primordial gravitational waves amplification
- Author
-
Chunshan Lin and Misao Sasaki
- Subjects
Physics ,QC1-999 - Abstract
We propose a mechanism to evade the Lyth bound in models of inflation. We minimally extend the conventional single-field inflation model in general relativity (GR) to a theory with non-vanishing graviton mass in the very early universe. The modification primarily affects the tensor perturbation, while the scalar and vector perturbations are the same as the ones in GR with a single scalar field at least at the level of linear perturbation theory. During the reheating stage, the graviton mass oscillates coherently and leads to resonant amplification of the primordial tensor perturbation. After reheating the graviton mass vanishes and we recover GR.
- Published
- 2016
- Full Text
- View/download PDF
20. A new parameter in attractor single-field inflation
- Author
-
Jinn-Ouk Gong and Misao Sasaki
- Subjects
Physics ,QC1-999 - Abstract
We revisit the notion of slow-roll in the context of general single-field inflation. As a generalization of slow-roll dynamics, we consider an inflaton ϕ in an attractor phase where the time derivative of ϕ is determined by a function of ϕ, ϕ˙=ϕ˙(ϕ). In other words, we consider the case when the number of e-folds N counted backward in time from the end of inflation is solely a function of ϕ, N=N(ϕ). In this case, it is found that we need a new independent parameter to properly describe the dynamics of the inflaton field in general, in addition to the standard parameters conventionally denoted by ϵ, η, cs2 and s. Two illustrative examples are presented to discuss the non-slow-roll dynamics of the inflaton field consistent with observations.
- Published
- 2015
- Full Text
- View/download PDF
21. Ghosts in classes of non-local gravity
- Author
-
Antonio De Felice and Misao Sasaki
- Subjects
Physics ,QC1-999 - Abstract
We consider a class of non-local gravity theories where the Lagrangian is a function of powers of the inverse d'Alembertian operator acting on the Ricci scalar. We take an approach in which the non-local Lagrangian is made local by introducing auxiliary scalar fields, and study the degrees of freedom of the localized Lagrangian. We find that among the auxiliary scalar fields introduced, some of them are always ghost-like. That is, in the Einstein frame they develop a negative kinetic term. Because of this, except for a particular case already known in the literature, in general, it is not clear how to quantize these models and how to interpret this theory in the light of standard field theory.
- Published
- 2015
- Full Text
- View/download PDF
22. The effects of anisotropy and non-adiabaticity on the evolution of the curvature perturbation
- Author
-
Sergio Andrés Vallejo Peña, Antonio Enea Romano, Atsushi Naruko, and Misao Sasaki
- Published
- 2022
23. Primordial black hole formation from massless scalar isocurvature
- Author
-
Chul-Moon Yoo, Tomohiro Harada, Shin’ichi Hirano, Hirotada Okawa, and Misao Sasaki
- Subjects
High Energy Physics - Theory ,General Relativity and Quantum Cosmology ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,High Energy Physics - Theory (hep-th) ,FOS: Physical sciences ,General Relativity and Quantum Cosmology (gr-qc) ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We numerically study the primordial black hole (PBH) formation by an isocurvature perturbation of a massless scalar field on super Hubble scales in the radiation-dominated universe. As a first step we perform simulations of spherically symmetric configurations. For the initial condition, we employ the spatial gradient expansion and provide the general form of the growing mode solutions valid up through the second order in this expansion. The initial scalar field profile is assumed to be Gaussian with a characteristic comoving wavenumber $k$; $\sim\exp(-k^2R^2)$, where $R$ is the radial coordinate. We find that a PBH is formed for a sufficiently large amplitude of the scalar field profile. Nevertheless, we find that the late time behavior of the gravitational collapse is dominated by the dynamics of the fluid but not by the scalar field, which is analogous to the PBH formation from an adiabatic perturbation in the radiation-dominated universe., 17 pages, 6 figures
- Published
- 2022
24. Primordial black holes from CDM isocurvature perturbations
- Author
-
Samuel Passaglia and Misao Sasaki
- Subjects
General Relativity and Quantum Cosmology ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,General Relativity and Quantum Cosmology (gr-qc) ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We show that primordial black holes can be produced from the collapse of large isocurvature perturbations of the cold dark matter. We develop a novel procedure to compute the resulting black hole abundance by studying matched perturbations of matter-only universes, and we use our procedure to translate observational constraints on black hole abundances into model-independent constraints on cold dark matter isocurvature perturbations over a wide range of scales. The constraint on the typical amplitude of the primordial perturbations weakens slightly slower than linearly on small scales., Comment: 11 pages, 5 figures
- Published
- 2022
25. Threshold of primordial black hole formation against velocity dispersion in matter-dominated era
- Author
-
Tomohiro Harada, Kazunori Kohri, Misao Sasaki, Takahiro Terada, and Chul-Moon Yoo
- Subjects
High Energy Physics - Theory ,High Energy Physics - Phenomenology ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,High Energy Physics - Phenomenology (hep-ph) ,High Energy Physics - Theory (hep-th) ,FOS: Physical sciences ,Astronomy and Astrophysics ,General Relativity and Quantum Cosmology (gr-qc) ,General Relativity and Quantum Cosmology ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We study the effects of velocity dispersion on the formation of primordial black holes~(PBHs) in a matter-dominated era. The velocity dispersion is generated through the nonlinear growth of perturbations and has the potential to impede the gravitational collapse and thereby the formation of PBHs. To make discussions clear, we consider two distinct length scales. The larger one is where gravitational collapse occurs which could lead to PBH formation, and the smaller one is where the velocity dispersion develops due to nonlinear interactions. We estimate the effect of the velocity dispersion on the PBH formation by comparing the free-fall timescale and the timescale for a particle to cross the collapsing region. As a demonstration, we consider a log-normal power spectrum for the initial density perturbation with the peak value $\sigma_0^2$ at a scale that corresponds to the larger scale. We find that the threshold value of the density perturbation $\tilde \delta_{\rm th}$ at the horizon entry for the PBH formation scales as $\tilde \delta_{\rm th}\propto \sigma_0^{2/5}$ for $\sigma_0\ll1$., Comment: 35 pages, 4 figures
- Published
- 2023
26. Exploring evaporating primordial black holes with gravitational waves
- Author
-
Volodymyr Takhistov, Guillem Domènech, and Misao Sasaki
- Subjects
Nuclear and High Energy Physics ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,media_common.quotation_subject ,QC1-999 ,Dark matter ,FOS: Physical sciences ,Primordial black hole ,Astrophysics ,General Relativity and Quantum Cosmology (gr-qc) ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,General Relativity and Quantum Cosmology ,High Energy Physics - Phenomenology (hep-ph) ,0103 physical sciences ,010303 astronomy & astrophysics ,media_common ,Physics ,010308 nuclear & particles physics ,Gravitational wave ,Universe ,High Energy Physics - Phenomenology ,Orders of magnitude (time) ,13. Climate action ,Dark radiation ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Primordial black holes (PBHs) from the early Universe have been connected with the nature of dark matter and can significantly affect cosmological history. We show that coincidence dark radiation and density fluctuation gravitational wave signatures associated with evaporation of $\lesssim10^9$ g PBHs can be used to explore and obtain important hints about the formation mechanisms of spinning and non-spinning PBHs spanning orders of magnitude in mass-range, which is challenging to do otherwise., Comment: 7 pages, 1 figure; matches published version
- Published
- 2021
27. Establishing the Non-Primordial Origin of Black Hole-Neutron Star Mergers
- Author
-
Misao Sasaki, Volodymyr Takhistov, Valeri Vardanyan, and Ying-li Zhang
- Subjects
High Energy Astrophysical Phenomena (astro-ph.HE) ,General Relativity and Quantum Cosmology ,High Energy Physics - Phenomenology ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,High Energy Physics - Phenomenology (hep-ph) ,Space and Planetary Science ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Primordial black holes (PBHs) from the early Universe constitute an attractive dark matter candidate. First detections of black hole-neutron star (BH-NS) candidate gravitational wave events by the LIGO/Virgo collaboration, GW200105 and GW200115, already prompted speculations about non-astrophysical origin. We analyze, for the first time, the total volumetric merger rates of PBH-NS binaries formed via two-body gravitational scattering, finding them to be subdominant to the astrophysical BH-NS rates. In contrast to binary black holes, a significant fraction of which can be of primordial origin, either formed in dark matter halos or in the early Universe, PBH-NS rates cannot be significantly enhanced by contributions preceding star formation. Our findings imply that the identified BH-NS events are of astrophysical origin, even when PBH-PBH events significantly contribute to the GW observations., 7 pages, 2 figures, published in APJ
- Published
- 2021
28. TeV Emission of Galactic Plane Sources with HAWC and H.E.S.S
- Author
-
Nicola Omodei, Sebastian Panny, A. Sandoval, Q. Piel, S. Raab, Arturo Iriarte, Kirsty Feijen, R. D. Parsons, Michael Newbold, J. Zorn, Michael Schneider, Fernando Garfias, D. Huber, Christo Venter, Jacek Niemiec, Arnaud Mares, Frank M. Rieger, Thomas Weisgarber, A. Dmytriiev, Olaf Reimer, A. Zech, E. Ruiz-Velasco, Thomas Bylund, Y. A. Gallant, David Sánchez, R. López-Coto, Jorge Cotzomi, Jacques Muller, H. León Vargas, Alison Peisker, Justine Devin, Thomas Murach, P. Morris, Harm Schoorlemmer, Jonathan Mackey, Andrea Albert, Samuel Zouari, Pascal Vincent, M. Zacharias, Stefan Ohm, S. Pita, Tadayuki Takahashi, Gilgamesh Luis-Raya, A. Yusafzai, Andreas Quirrenbach, Samuel Timothy Spencer, Stefano Gabici, Regis Terrier, Victor Doroshenko, L. Nellen, Włodek Kluźniak, R. Noriega-Papaqui, E. Kasai, C. Moore, L. Oakes, J. Bolmont, Michal Ostrowski, J.-P. Lenain, Pooja Surajbali, William H. Lee, L. Olivera-Nieto, E. Moulin, Tomasz Bulik, Rhiannon Turner, Lente Dreyer, O. Martinez, Stefan Klepser, Alessandro Montanari, D. J. van der Walt, Fernando Ureña-Mena, J. P. Harding, César Alvarez, Michael DuVernois, A.M. Taylor, J. C. Arteaga-Velézquez, Connor Duffy, Davit Zargaryan, R. J. White, Stefan Funk, Alicja Wierzcholska, Dmitriy Kostunin, J. Damascene Mbarubucyeye, R. Rauth, Maria Magdalena González, Kristi Engel, A. Galván-Gámez, Christoph Deil, Krzysztof Katarzynski, F. Eichhorn, Mohanraj Senniappan, E. Moreno, Michael Punch, Axel Donath, B. Hona, A. W. Chen, S. Steinmassl, Sami Caroff, Domenico Tiziani, D. Malyshev, Catherine Boisson, M. Panter, Mora Durocher, U. Katz, Pedro Miranda-Romagnoli, C. Arcaro, H. Zhou, Michael Backes, S. Coutiño de León, Ernesto Belmont-Moreno, M. de Bony de Lavergne, R. Brose, Petra Hüntemeyer, C. Levy, Francois Brun, R. J. Tuffs, B. Bi, Andreas Specovius, Joachim Hahn, K. P. Arunbabu, Riaan Steenkamp, Gavin Rowell, P. Reichherzer, James E. M. Watson, M. Bryan, E. de Oña Wilhelmi, Łukasz Stawarz, C. van Rensburg, Pierre Brun, Brenda Dingus, V. Marandon, J. A. Morales-Soto, M. Büchele, H. Prokoph, C. De León, A. Marcowith, V. Baghmanyan, J. Schäfer, Nu. Komin, Tim Holch, Q. Remy, H. M. Schutte, Isak Delberth Davids, A. Fiasson, Jean-Pierre Ernenwein, Hassan Abdalla, S. Hernandez, Jim Hinton, V. Sahakian, E. De la Fuente, F. Werner, Mischa Breuhaus, Luis Villaseñor, Yu Wun Wong, Hambeleleni Ndiyavala, D. Avila Rojas, G. Lamanna, K. S. Caballero-Mora, Roberta Zanin, G. Emery, Halim Ashkar, Fabian Leuschner, Heiko Salzmann, A. S. Seyffert, Kwok Lung Fan, M. Hörbe, T. Tavernier, Nissim Illich Fraija, P. T. O'Brien, Johannes Veh, S. Sailer, Dmitry Khangulyan, Gilles Maurin, S. J. Fegan, A. Djannati-Ataï, D. Jankowsky, J. Dyks, Celine Armand, M. Füßling, R. Marx, Dieter Horns, M. Tluczykont, F. Ait Benkhali, J. F. Glicenstein, M. U. Nisa, Marek Jamrozy, Clemens Hoischen, A. A. Zdziarski, A. Jardin-Blicq, E. O. Angüner, R. Diaz Hernandez, N. Shafi, Natalia Żywucka, M. de Naurois, Andrea Santangelo, K. Malone, Gwenael Giacinti, L. Sun, M.-H. Grondin, D. Garcia, M. Seglar-Arroyo, B. Khélifi, A. J. Smith, T. Capistrán, B. van Soelen, G. Hermann, Anna Barnacka, D. Gottschall, Anne Lemiere, B. Rudak, Markus Böttcher, K. Tollefson, Jhilik Majumdar, Helene Sol, T. Chand, C. Brisbois, Andreas Zmija, Tom Armstrong, Elijah Willox, Carlo Romoli, Alison Mitchell, R. Torres-Escobedo, Atreyee Sinha, Manuel Meyer, I. Martinez-Castellanos, Zorawar Wadiasingh, A. Priyana Noel, V. Barbosa Martins, C. van Eldik, M. Lemoine-Goumard, M. Tsirou, Michael Kreter, Anna Lia Longinotti, F. Schüssler, Dezhi Huang, Jose Andres Garcia-Gonzalez, Werner Hofmann, Monica Barnard, Juan Carlos Diaz-Velez, V. Poireau, Jimmy N.S. Shapopi, K. Nakashima, José Serna-Franco, G. Peron, Garret Cotter, Jacco Vink, A. Carraminana, Umberto Cotti, Jim Davies, M. A. Kastendieck, Thomas Lohse, K. Kosack, Paolo Marchegiani, Konrad Bernlöhr, Heinrich J. Völk, Sabrina Casanova, Catalina Espinoza, M. Renaud, D. Berge, G. Vasileiadis, F. Salesa Greus, I. Jung-Richardt, Kleopas Shiningayamwe, Gilles Fontaine, J. T. Linnemann, Lenka Tomankova, M. Mostafá, G. Fichet de Clairfontaine, R. Konno, Gianluca Giavitto, V. Joshi, B. Peyaud, G. Pühlhofer, J. A. Goodman, H. Odaka, A. Reimer, R. W. Ellsworth, R. W. Springer, M. Curyło, F. Hueyotl-Zahuantitla, E. G. Pérez-Pérez, Y. Pérez Araujo, A. Nayerhoda, Christian Stegmann, Stefan Wagner, Yasunobu Uchiyama, David Kieda, L. Mohrmann, Misao Sasaki, Markus Holler, Felix Jankowsky, Felix Aharonian, D. Glawion, Jesús Martínez-Castro, Segev BenZvi, Constantin Steppa, L. Giunti, D. A. Prokhorov, Ullrich Schwanke, L. Rinchiuso, J. A. Matthews, Ibrahim Torres, Rachel Simoni, A. Carosi, K. Egberts, S. Chandra, Ruben Alfaro, Sabrina Einecke, Iryna Lypova, Daniel Rosa-Gonzalez, Yvonne Becherini, M. Fernández Alonso, L. Dirson, G. Martí-Devesa, C. Trichard, Sylvia Zhu, P. J. Meintjes, J. H. E. Thiersen, Marion Spir-Jacob, Maria Haupt, C. D. Rho, Rafal Moderski, Centre de Physique des Particules de Marseille (CPPM), Aix Marseille Université (AMU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Annecy de Physique des Particules (LAPP), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE (UMR_7585)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Laboratoire Leprince-Ringuet (LLR), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Univers et Particules de Montpellier (LUPM), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Centre d'Etudes Nucléaires de Bordeaux Gradignan (CENBG), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Gravitation and Astroparticle Physics Amsterdam, High Energy Astrophys. & Astropart. Phys (API, FNWI), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Montpellier 2 - Sciences et Techniques (UM2), Université Sciences et Technologies - Bordeaux 1-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Collaboration, H.E.S.S., and Collaboration, HAWC
- Subjects
High-energy astronomy ,media_common.quotation_subject ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,IACT ,Field of view ,030226 pharmacology & pharmacy ,01 natural sciences ,03 medical and health sciences ,0302 clinical medicine ,Observatory ,0103 physical sciences ,High Energy Stereoscopic System ,010303 astronomy & astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Cherenkov radiation ,media_common ,Physics ,[PHYS]Physics [physics] ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy ,Astronomy and Astrophysics ,Galactic plane ,Space and Planetary Science ,Sky ,Astrophysics - Instrumentation and Methods for Astrophysics ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,High energy astrophysics - Abstract
International audience; The High Altitude Water Cherenkov (HAWC) observatory and the High Energy Stereoscopic System (H.E.S.S.) are two leading instruments in the ground-based very-high-energy γ-ray domain. HAWC employs the water Cherenkov detection (WCD) technique, while H.E.S.S. is an array of Imaging Atmospheric Cherenkov Telescopes (IACTs). The two facilities therefore differ in multiple aspects, including their observation strategy, the size of their field of view, and their angular resolution, leading to different analysis approaches. Until now, it has been unclear if the results of observations by both types of instruments are consistent: several of the recently discovered HAWC sources have been followed up by IACTs, resulting in a confirmed detection only in a minority of cases. With this paper, we go further and try to resolve the tensions between previous results by performing a new analysis of the H.E.S.S. Galactic plane survey data, applying an analysis technique comparable between H.E.S.S. and HAWC. Events above 1 TeV are selected for both data sets, the point-spread function of H.E.S.S. is broadened to approach that of HAWC, and a similar background estimation method is used. This is the first detailed comparison of the Galactic plane observed by both instruments. H.E.S.S. can confirm the γ-ray emission of four HAWC sources among seven previously undetected by IACTs, while the three others have measured fluxes below the sensitivity of the H.E.S.S. data set. Remaining differences in the overall γ-ray flux can be explained by the systematic uncertainties. Therefore, we confirm a consistent view of the γ-ray sky between WCD and IACT techniques.
- Published
- 2021
29. Radio Continuum Sources behind the Large Magellanic Cloud
- Author
-
Tim J. Galvin, Thomas G. Pannuti, Jordan D. Collier, Corrado Trigilio, A. Ingallinera, G. Umana, Jeffrey L Payne, J. Marvil, Evan J Crawford, Lister Staveley-Smith, Ivan S. Bojičić, Kevin Grieve, Craig S. Anderson, Miroslav Filipovic, B. S. Koribalski, Misao Sasaki, D. A. Leahy, Ray P. Norris, Devika Shobhana, Natasha Hurley-Walker, Nicholas F. H Tothill, Simone Riggi, Gavin Rowell, Heinz Andernach, R. Z. E. Alsaberi, Roland Kothes, Clara M. Pennock, P. Maggi, Bi-Qing For, Frank Haberl, Chandreyee Maitra, Isabella Prandoni, Laurence A. F. Park, Hidetoshi Sano, Lawrence Rudnick, Eleni Vardoulaki, Andrew M. Hopkins, H. Leverenz, J. Th. van Loon, Dejan Urošević, Patrick J. Kavanagh, Observatoire astronomique de Strasbourg (ObAS), and Université de Strasbourg (UNISTRA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Infrared ,galaxies: active ,Population ,radio continuum: general ,FOS: Physical sciences ,Astrophysics ,01 natural sciences ,0103 physical sciences ,Magellanic Clouds ,QD ,Continuum (set theory) ,education ,Large Magellanic Cloud ,010303 astronomy & astrophysics ,catalogues ,QC ,QB ,Physics ,education.field_of_study ,Spectral index ,010308 nuclear & particles physics ,Astronomy and Astrophysics ,Alpha (navigation) ,Astrophysics - Astrophysics of Galaxies ,Redshift ,[SDU]Sciences of the Universe [physics] ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,Radio frequency ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present a comprehensive multi-frequency catalogue of radio sources behind the Large Magellanic Cloud between 0.2 and 20 GHz, gathered from a combination of new and legacy radio continuum surveys. This catalogue covers an area of $\sim$144~deg$^2$ at angular resolutions from 45 arcsec to $\sim$3 arcmin. We find 6434 discrete radio sources in total, of which 3789 are detected at two or more radio frequencies. We estimate the median spectral index ($\alpha$; where $S_{v}\sim\nu^\alpha$) of $\alpha = -0.89 $ and mean of $-0.88 \pm 0.48$ for 3636 sources detected exclusively at two frequencies (0.843 and 1.384 GHz) with similar resolution (FWHM $\sim$40-45 arcsec). The large frequency range of the surveys makes it an effective tool to investigate Gigahertz Peak Spectrum (GPS), Compact Steep Spectrum (CSS) and Infrared Faint Radio sources populations within our sample. We find 10 GPS candidates with peak frequencies near 5 GHz, from which we estimate their linear size. 1866 sources from our catalogue are (CSS) candidates with $\alpha 0.5$. We found optical counterparts for 343 of the radio continuum sources, of which 128have a redshift measurement. Finally, we investigate the population of 123 Infrared Faint Radio Sources (IFRSs) found in this study., Comment: Accepted for publication in MNRAS
- Published
- 2021
30. On problems with cosmography in cosmic dark ages
- Author
-
Aritra Banerjee, Tao Yang, Mohammad M. Sheikh-Jabbari, Eoin Ó Colgáin, and Misao Sasaki
- Subjects
Physics ,Nuclear and High Energy Physics ,COSMOLOGICAL CONSTRAINTS ,COSMIC cancer database ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,010308 nuclear & particles physics ,QC1-999 ,Cosmic distance ladder ,FOS: Physical sciences ,HUBBLE DIAGRAM ,Quasar ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,Redshift ,Supernova ,0103 physical sciences ,Dark Ages ,010306 general physics ,Luminosity distance ,Polynomial expansion ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Quasars show considerable promise as standard candles in a high-redshift window beyond Type Ia supernovae. Recently, Risaliti, Lusso \& collaborators \cite{Risaliti:2018reu, Lusso:2019akb, Lusso:2020pdb} have succeeded in producing a high redshift Hubble diagram ($ z \lesssim 7$) that supports "a trend whereby the Hubble diagram of quasars is well reproduced by the standard flat $\Lambda$CDM model up to $z \sim 1.5-2$, but strong deviations emerge at higher redshifts". This conclusion hinges upon a log polynomial expansion for the luminosity distance. In this note, we demonstrate that this expansion (or "improvements" thereof) typically can only be trusted up to $z \sim 1.5-2$. As a result, a breakdown in the validity of the expansion may be misinterpreted as a (phantom) deviation from flat $\Lambda$CDM. We further illustrate the problem through mock data examples., Comment: 4 pages; v2 plots added, matches published version
- Published
- 2021
31. Beating the Lyth Bound by Parametric Resonance during Inflation
- Author
-
Yi-Fu Cai, Jie Jiang, Misao Sasaki, Valeri Vardanyan, and Zihan Zhou
- Subjects
High Energy Physics - Theory ,General Relativity and Quantum Cosmology ,High Energy Physics - Phenomenology ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,High Energy Physics - Phenomenology (hep-ph) ,High Energy Physics - Theory (hep-th) ,FOS: Physical sciences ,General Physics and Astronomy ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We propose a novel mechanism for enhancing the primordial gravitational waves without significantly affecting the curvature perturbations produced during inflation. This is achieved due to non-linear sourcing of resonantly amplified scalar field fluctuations. Our result is an explicit scale-dependent counter-example of the famous Lyth bound, which opens up a promising perspective of producing detectable inflationary tensor modes with low-scale inflation and a sub-Planckian field excursion. We explicitly demonstrate the testability of our mechanism with upcoming Cosmic Microwave Background B-mode observations., v1: 6 pages, 2 figures, comments are welcome. v2: 7 pages, 2 figures, updated references, minor modifications, accepted for publication in PRL
- Published
- 2021
32. Hawking radiation as instantons
- Author
-
Misao Sasaki, Pisin Chen, and Dong-han Yeom
- Subjects
Physics ,High Energy Physics - Theory ,Instanton ,Physics and Astronomy (miscellaneous) ,Black hole information paradox ,FOS: Physical sciences ,lcsh:Astrophysics ,General Relativity and Quantum Cosmology (gr-qc) ,General Relativity and Quantum Cosmology ,Gravitation ,Black hole ,Theoretical physics ,symbols.namesake ,High Energy Physics::Theory ,Hawking ,High Energy Physics - Theory (hep-th) ,lcsh:QB460-466 ,symbols ,lcsh:QC770-798 ,lcsh:Nuclear and particle physics. Atomic energy. Radioactivity ,Einstein ,Engineering (miscellaneous) ,Scalar field ,Hawking radiation - Abstract
There have been various interpretations of Hawking radiation proposed based on the perturbative approach, and all have confirmed Hawking's original finding. One major conceptual challenge of Hawking evaporation is the associated black hole information loss paradox, which remains unresolved. A key factor to the issue is the end-stage of the black hole evaporation. Unfortunately by then the evaporation process becomes non-perturbative. Aspired to provide a tool for the eventual solution to this problem, here we introduce a new interpretation of Hawking radiation as the tunneling of instantons. We study instantons of a massless scalar field in Einstein gravity. We consider a complex-valued instanton that connects an initial pure black hole state to a black hole with a scalar field that represents the Hawking radiation at future null infinity, where its action depends only on the areal entropy difference. By comparing it with several independent approaches to Hawking radiation in the perturbative limit, we conclude that Hawking radiation may indeed be described by a family of instantons. Since the instanton approach can describe non-perturbative processes, we hope that our new interpretation and holistic method may shed lights on the information loss problem., 17 pages, 7 figures
- Published
- 2019
33. Revealing x-ray and gamma ray temporal and spectral similarities in the GRB 190829A afterglow
- Author
-
K. Egberts, Davit Zargaryan, Axel Donath, A. W. Chen, G. Pühlhofer, M. de Bony de Lavergne, V. Poireau, P. T. O'Brien, P. A. Evans, Riaan Steenkamp, A. Lemiere, F. Eichhorn, Nu. Komin, J. Schäfer, Włodek Kluźniak, A. S. Seyffert, N. Shafi, Natalia Żywucka, Sebastian Panny, R. J. White, Domenico Tiziani, D. Malyshev, T. Chand, Jhilik Majumdar, V. Baghmanyan, Clemens Hoischen, A. A. Zdziarski, Jacco Vink, Alison Mitchell, Joachim Hahn, M. Füßling, C. van Eldik, J.F. Glicenstein, Lei Sun, P. Reichherzer, Jim Davies, A. Carosi, Zorawar Wadiasingh, Q. Remy, Anna Barnacka, A. Djannati-Ataï, A. Montanari, E. Moulin, M. de Naurois, Alexandre Marcowith, Arnaud Mares, Christoph Deil, Sabrina Casanova, Christo Venter, G. Peron, Garret Cotter, M. Hörbe, Dmitriy Kostunin, E. Ruiz-Velasco, Mohanraj Senniappan, Thomas Bylund, E. O. Angüner, S. Raab, Tadayuki Takahashi, F. Brun, R. J. Tuffs, B. Bi, H. Prokoph, C. van Rensburg, A. Zech, J. Muller, Monica Barnard, B. Peyaud, Kirsty Feijen, R. Rauth, Pierre Brun, Victor Doroshenko, Michael Punch, E. Kasai, Konrad Bernlöhr, M. Curyło, Stefano Gabici, Gianluca Giavitto, Frank M. Rieger, Michael Backes, Stefan Klepser, J.-P. Ernenwein, A. Dmytriiev, Mischa Breuhaus, J. Dyks, G. Emery, L. Olivera-Nieto, Tim Holch, S. Fegan, Samuel Zouari, M.-H. Grondin, L. Mohrmann, Stefan Ohm, I. Jung-Richardt, Markus Böttcher, K. Kosack, A. Reimer, G. Hermann, Marek Jamrozy, Regis Terrier, S. Pita, Markus Holler, Felix Jankowsky, Armelle Jardin-Blicq, E. de Ona Wilhelmi, A.M. Taylor, Carlo Romoli, J. Damascene Mbarubucyeye, Hester Schutte, Dieter Horns, Jonathan Mackey, Tom Armstrong, Helene Sol, Sylvia Zhu, P. J. Meintjes, Hambeleleni Ndiyavala, G. Fontaine, H. Odaka, Felix Aharonian, V. Barbosa Martins, Andreas Specovius, Michal Ostrowski, Johannes Veh, D. J. van der Walt, Yu Wun Wong, L. Oakes, C. Moore, J. Bolmont, D. Jankowsky, M. Seglar-Arroyo, Paolo Marchegiani, Rachel Simoni, R. Marx, S. Steinmassl, D. Glawion, Łukasz Stawarz, Manuel Meyer, Tomasz Bulik, Lente Dreyer, Andreas Quirrenbach, Sabrina Einecke, Iryna Lypova, Constantin Steppa, D. A. Prokhorov, M. Zacharias, Christopher J. Duffy, A. Wierzcholska, M. Tluczykont, Christian Stegmann, Stefan Wagner, Yasunobu Uchiyama, F. Schüssler, Yvonne Becherini, Jimmy N.S. Shapopi, C. Levy, Werner Hofmann, G. Lamanna, M. A. Kastendieck, James E. M. Watson, Ullrich Schwanke, G. Vasileiadis, Isak Delberth Davids, Misao Sasaki, Bruno Khelifi, M. Büchele, M. Lemoine-Goumard, J. Zorn, Elisabetta Bissaldi, Roberta Zanin, F. Ait Benkhali, L. Rinchiuso, M. Scalici, Y. A. Gallant, J. Devin, Jim Hinton, D. Berge, V. Sahakian, F. Werner, Andrea Santangelo, Stefan Funk, S. Sailer, Dmitry Khangulyan, Michael Kreter, Jacek Niemiec, D. A. Sanchez, A. Priyana Noel, C. Arcaro, Fabian Leuschner, J. H. E. Thiersen, M. Panter, U. Katz, K. Nakashima, Olaf Reimer, G. Martí-Devesa, H. Ashkar, Q. Piel, P. Morris, Gavin Rowell, M. Bryan, Kleopas Shiningayamwe, A. Yusafzai, Thomas Murach, G. Maurin, Maria Haupt, Heinrich J. Völk, M. Renaud, R. D. Parsons, Samuel Timothy Spencer, Lenka Tomankova, T. Tam, G. Fichet de Clairfontaine, A. Sinha, J.-P. Lenain, D. Huber, Rafal Moderski, S. Caroff, B. van Soelen, S. Chandra, R. Konno, L. Dirson, M. Tsirou, B. Rudak, V. Joshi, Thomas Lohse, L. Giunti, A. Nayerhoda, Hassan Abdalla, A. Fiasson, M. Spir-Jacob, V. Marandon, K. Katarzyński, P. Vincent, T. Tavernier, K. L. Page, Heiko Salzmann, Celine Armand, Catherine Boisson, Centre de Physique des Particules de Marseille (CPPM), Aix Marseille Université (AMU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Annecy de Physique des Particules (LAPP), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Laboratoire Univers et Théories (LUTH (UMR_8102)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE (UMR_7585)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Laboratoire Leprince-Ringuet (LLR), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Univers et Particules de Montpellier (LUPM), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Centre d'Etudes Nucléaires de Bordeaux Gradignan (CENBG), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), H.E.S.S., Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Université Montpellier 2 - Sciences et Techniques (UM2)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Université Sciences et Technologies - Bordeaux 1-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Gravitation and Astroparticle Physics Amsterdam, High Energy Astrophys. & Astropart. Phys (API, FNWI), H.E.S.S. Collaboration, and Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Montpellier 2 - Sciences et Techniques (UM2)
- Subjects
Photon ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,gamma ray: burst ,01 natural sciences ,Luminosity ,HESS ,0103 physical sciences ,High Energy Stereoscopic System ,010303 astronomy & astrophysics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Physics ,energy: high ,Multidisciplinary ,X-ray: energy spectrum ,010308 nuclear & particles physics ,photon ,Gamma ray ,trigger ,Light curve ,redshift ,Redshift ,Afterglow ,collapse ,gamma ray: VHE ,HESS - Abteilung Hinton ,spectral ,Astrophysics - High Energy Astrophysical Phenomena ,Gamma-ray burst ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,absorption - Abstract
An intrinsic gamma-ray burst afterglow Long gamma-ray bursts (GRBs) are emitted by relativistic jets generated during the collapse of a massive star in a distant galaxy. The GRB itself lasts only a few seconds but is followed by an afterglow that can persist for hours or days. The H.E.S.S. Collaboration observed the afterglow of GRB 190829A, a nearby long GRB. The proximity of this burst allowed it to be detected at tera–electron volt energies that would otherwise be absorbed in the intergalactic medium. By analyzing the spectrum and light curve at x-ray and gamma-ray wavelengths, the authors show that the afterglow cannot be explained by standard models. Science , abe8560, this issue p. 1081
- Published
- 2021
34. H.e.s.s. And magic observations of a sudden cessation of a very-high-energy γ -ray flare in PKS 1510-089 in May 2016
- Author
-
A. Yusafzai, J. van Scherpenberg, M. Büchele, B. Boccardi, S. Caroff, S. J. Fegan, Daniela Dorner, T. Schweizer, Mosè Mariotti, Gaia Vanzo, Tom Armstrong, Nu. Komin, Pratik Majumdar, M. V. Fonseca, Matteo Cerruti, A. Lemiere, F. Eichhorn, J. Devin, C. Trichard, Michael Punch, Stefano Gabici, M. Palatiello, V. A. Acciari, F. Schüssler, Sylvia Zhu, P. J. Meintjes, Werner Hofmann, Samuel Timothy Spencer, Y. Kajiwara, J. Zorn, D. Dominis Prester, S. Bonnefoy, Constantin Steppa, G. Maurin, Adrian Biland, J. M. Paredes, Antonio Stamerra, U. Barres de Almeida, Tadayuki Takahashi, Damir Lelas, Victor Doroshenko, Davide Depaoli, Dmitriy Kostunin, R. Mirzoyan, T. Surić, D. Gottschall, M. Füßling, Moritz Hütten, Lea Heckmann, M. Gaug, J. Herrera, Ullrich Schwanke, C. Arcaro, H. Abdalla, Lorenzo Bellizzi, Thomas P. Krichbaum, Francesco Dazzi, John Hoang, Martin Will, Dominik Baack, L. Maraschi, Elina Lindfors, M. A. Kastendieck, R. Rauth, V. Baghmanyan, D. Ninci, Koji Noda, Michael Backes, S. Raab, Sanae Inoue, Giacomo D'Amico, Manuel Meyer, Q. Remy, L. Olivera-Nieto, Dorota Sobczyńska, Elisa Bernardini, M. Filipovic, Riaan Steenkamp, Davit Zargaryan, Hambeleleni Ndiyavala, Stefan Klepser, G. Vasileiadis, G. Lamanna, S. G. Jorstad, Daniel Mazin, Jacek Niemiec, Kirsty Feijen, Alessandro Montanari, Tim Holch, Seiya Nozaki, Anna Barnacka, M. Hörbe, Giacomo Bonnoli, D. Strom, T. Tavernier, Takeshi Oka, Axel Donath, J. Rico, A. W. Chen, J. Dyks, T. Chand, Jim Hinton, F. Niederwanger, Olaf Reimer, Daniel Kerszberg, Manuel Delfino, Krzysztof Katarzynski, Ivica Puljak, S. Sailer, Dmitry Khangulyan, Christian Fruck, Gavin Rowell, D. A. Sanchez, Maria Haupt, Julian Sitarek, Alan P. Marscher, Stefano Truzzi, Pablo Peñil, E. O. Angüner, Catherine Boisson, S. Ventura, Dieter Horns, M. Bryan, V. Barbosa Martins, L. Sun, Rachel Simoni, Gerard Fontaine, Jacco Vink, P. Reichherzer, Jim Davies, G. Hermann, Regis Terrier, Clemens Hoischen, A. A. Zdziarski, G. Ferrara, Francois Brun, G. Emery, M. de Bony de Lavergne, P. Vincent, Kyoshi Nishijima, Alessandra Lamastra, G. Fichet de Clairfontaine, E. de Oña Wilhelmi, P. Munar-Adrover, Yoshiki Ohtani, Carlo Romoli, Jordi Delgado, Wrijupan Bhattacharyya, L. Di Venere, D. Zarić, Zorawar Wadiasingh, F. Di Pierro, Ž. Bošnjak, Hester Schutte, Isak Delberth Davids, Roberta Zanin, Karl Mannheim, M. Strzys, Łukasz Stawarz, R. J. Tuffs, V. Fallah Ramazani, B. Bi, Marc Ribó, Sabrina Casanova, H. Prokoph, A. Carosi, Stefano Covino, D. J. van der Walt, Thomas Murach, Yating Chai, Saša Mićanović, Jae-Young Kim, V. Vitale, Francesco Longo, R. Konno, Alicia Fattorini, Narek Sahakyan, Y. A. Gallant, R. J. García López, Junko Kushida, Jürgen Besenrieder, Dario Hrupec, P. Da Vela, S. Steinmassl, P. G. Prada Moroni, Jonathan Mackey, Rafal Moderski, Stefan Cikota, Hidetoshi Kubo, Armelle Jardin-Blicq, Monica Barnard, J. Otero-Santos, Mischa Breuhaus, J. Becerra González, Yu. W. Wong, V. Joshi, Samuel Zouari, N. Shafi, Natalia Żywucka, E. Prandini, M. A. Lopez, Gianluca Giavitto, Katsuaki Asano, Mitsunari Takahashi, T. Vuillaume, M. Curyło, P. Morris, K. Egberts, Stefano Ansoldi, M. de Naurois, Pawel Gliwny, L. Pavletić, C. Moore, Alessia Spolon, M. Vazquez Acosta, D. Elsaesser, Tomoki Saito, Giovanni Ceribella, Riccardo Paoletti, Celine Armand, Jhilik Majumdar, Stefan Ohm, G. Busetto, Léa Jouvin, Ana Babić, Frank M. Rieger, A. Dmytriiev, Dorit Glawion, Z. R. Weaver, Włodek Kluźniak, S. Chandra, V. Marandon, A. Djannati-Ataï, E. Moulin, Tomasz Bulik, Alessio Berti, M. Seglar-Arroyo, H. Odaka, Christian Stegmann, Stefan Wagner, C. Perennes, Pierre Brun, Yasunobu Uchiyama, A. Fiasson, U. Colin, David A. Green, Kazuma Ishio, A. Arbet Engels, A. De Angelis, Wlodek Bednarek, Nikola Godinovic, F. Ait Benkhali, Vassil Verguilov, Camilla Maggio, L. Mohrmann, Jean-Pierre Ernenwein, M. Spir-Jacob, M. Karjalainen, Vitaly Neustroev, P. deWilt, M. Scalici, Victoria Moreno, A. Priyana Noel, A. López-Oramas, M. Lemoine-Goumard, N. Torres-Albà, Martin Makariev, C. van Rensburg, Oscar Blanch, S. Pita, Alexander Hahn, V. Sahakian, Yusuke Suda, S. Schwemmer, Thomas Lohse, Misao Sasaki, Daniel Morcuende, Johannes Veh, D. Jankowsky, Michael Kreter, D. Berge, Luca Tosti, R. Marx, F. Werner, V. Poireau, Andrea Santangelo, C. Nigro, Andreas Quirrenbach, Jose Luis Contreras, E. Ruiz-Velasco, Thomas Bylund, M. Tluczykont, V. D'Elia, A. S. Seyffert, Jose Miguel Miranda, Massimo Persic, L. Dirson, Efthalia Traianou, Carlo Vigorito, Sargis Gasparyan, Y. Kobayashi, Jacques Muller, Jeffrey A. Hodgson, Marek Jamrozy, Christoph Deil, I. Jung-Richardt, Joachim Hahn, Mohanraj Senniappan, A. Rugliancich, Marina Manganaro, K. Nakashima, Kleopas Shiningayamwe, Alice Donini, Michelle Tsirou, Yuki Iwamura, G. Maneva, L. A. Antonelli, Juan Cortina, Markus Holler, Michal Ostrowski, Wolfgang Rhode, L. Rinchiuso, Felix Jankowsky, Sebastian Panny, M. I. Martínez, Michael Zacharias, Ferdinando Giordano, Felix Aharonian, Lluis Font, J.-P. Lenain, Merja Tornikoski, B. Machado de Oliveira Fraga, M.-H. Grondin, Lenka Tomankova, Markus Böttcher, Alison Mitchell, Chiara Righi, E. Do Souto Espiñeira, Tomislav Terzić, Alexandre Marcowith, P. Temnikov, Helene Sol, Sabrina Einecke, Iryna Lypova, Toshiaki Inada, Rodolfo Carosi, R. D. Parsons, Yvonne Becherini, Shunsuke Sakurai, L. Giunti, A. Nayerhoda, Arnaud Mares, Chaitanya Priyadarshi, Satoshi Fukami, Konstancja Satalecka, Stefan Funk, Johan Bregeon, Sidika Merve Colak, Alicja Wierzcholska, R. J. White, F. Leone, Michele Doro, D. Huber, Carolina Casadio, Anne Lähteenmäki, Masahiro Teshima, Domenico Tiziani, D. Malyshev, M. Panter, U. Katz, Heinrich J. Völk, G. Martí-Devesa, C. Levy, M. Renaud, J. A. Barrio, Kai Phillip Schmidt, L. Oakes, N. Giglietto, Simone Mender, Paolo Marchegiani, Ashot Chilingarian, Tjark Miener, James E. M. Watson, David Paneque, J. Bolmont, Manuela Mallamaci, Halim Ashkar, A. Sinha, Fabrizio Tavecchio, Kari Nilsson, B. van Soelen, B. Rudak, R. Adam, D. Miceli, M. Mohamed, Saverio Lombardi, E. Molina, P. T. O'Brien, E. Colombo, Lab Saha, Luca Foffano, C. van Eldik, G. Peron, Garret Cotter, D. Hadasch, D. A. Prokhorov, K. Kosack, Konrad Bernlöhr, B. Peyaud, I. Vovk, G. Pühlhofer, A. Reimer, J. F. Glicenstein, Bruno Khelifi, Serena Loporchio, I. Snidaric, Abelardo Moralejo, Andreas Specovius, E. Moretti, Bernd Schleicher, M. Minev, B. De Lotto, Andrés Baquero, A.M. Taylor, J. Damascene Mbarubucyeye, Christo Venter, Ciro Bigongiari, A. Zech, M. Garczarczyk, R. López-Coto, Q. Piel, Laboratoire Leprince-Ringuet (LLR), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Centre de Physique des Particules de Marseille (CPPM), Aix Marseille Université (AMU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Annecy de Physique des Particules (LAPP), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Laboratoire Univers et Théories (LUTH (UMR_8102)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7), Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE (UMR_7585)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Laboratoire Univers et Particules de Montpellier (LUPM), Université Montpellier 2 - Sciences et Techniques (UM2)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Centre d'Etudes Nucléaires de Bordeaux Gradignan (CENBG), Université Sciences et Technologies - Bordeaux 1-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), H.E.S.S., MAGIC, Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), German Research Foundation, Istituto Nazionale di Fisica Nucleare, Istituto Nazionale di Astrofisica, Swiss National Science Foundation, Ministerio de Economía y Competitividad (España), Department of Atomic Energy (India), Academy of Finland, University of Tokyo, La Caixa, Croatian Science Foundation, University of Rijeka, Polish National Agency for Academic Exchange, Abdalla, H., Adam, R., Aharonian, F., Ait Benkhali, F., Ang??ner, E. O., Arcaro, C., Armand, C., Armstrong, T., Ashkar, H., Backes, M., Baghmanyan, V., Barbosa Martins, V., Barnacka, A., Barnard, M., Becherini, Y., Berge, D., Bernl??hr, K., Bi, B., B??ttcher, M., Boisson, C., Bolmont, J., Bonnefoy, S., de Bony de Lavergne, M., Bregeon, J., Breuhaus, M., Brun, F., Brun, P., Bryan, M., B??chele, M., Bulik, T., Bylund, T., Caroff, S., Carosi, A., Casanova, S., Chand, T., Chandra, S., Chen, A., Cotter, G., Cury??o, M., Damascene Mbarubucyeye, J., Davids, I. D., Davies, J., Deil, C., Devin, J., Dewilt, P., Dirson, L., Djannati-Ata??, A., Dmytriiev, A., Donath, A., Doroshenko, V., Dyks, J., Egberts, K., Eichhorn, F., Einecke, S., Emery, G., Ernenwein, J. -P., Feijen, K., Fegan, S., Fiasson, A., Fichet de Clairfontaine, G., Filipovic, M., Fontaine, G., Funk, S., F????ling, M., Gabici, S., Gallant, Y. A., Giavitto, G., Giunti, L., Glawion, D., Glicenstein, J. F., Gottschall, D., Grondin, M. -H., Hahn, J., Haupt, M., Hermann, G., Hinton, J. A., Hofmann, W., Hoischen, C., Holch, T. L., Holler, M., H??rbe, M., Horns, D., Huber, D., Jamrozy, M., Jankowsky, D., Jankowsky, F., Jardin-Blicq, A., Joshi, V., Jung-Richardt, I., Kastendieck, M. A., Katarzy??ski, K., Katz, U., Khangulyan, D., Kh??lifi, B., Klepser, S., Klu??niak, W., Komin, Nu., Konno, R., Kosack, K., Kostunin, D., Kreter, M., Lamanna, G., Lemi??re, A., Lemoine-Goumard, M., Lenain, J. -P., Levy, C., Lohse, T., Lypova, I., Mackey, J., Majumdar, J., Malyshev, D., Marandon, V., Marchegiani, P., Marcowith, A., Mares, A., Mart??-Devesa, G., Marx, R., Maurin, G., Meintjes, P. J., Meyer, M., Mitchell, A. M. W., Moderski, R., Mohamed, M., Mohrmann, L., Montanari, A., Moore, C., Morris, P., Moulin, E., Muller, J., Murach, T., Nakashima, K., Nayerhoda, A., de Naurois, M., Ndiyavala, H., Niederwanger, F., Niemiec, J., Oakes, L., O???brien, P., Odaka, H., Ohm, S., Olivera-Nieto, L., de Ona Wilhelmi, E., Ostrowski, M., Panter, M., Panny, S., Parsons, R. D., Peron, G., Peyaud, B., Piel, Q., Pita, S., Poireau, V., Priyana Noel, A., Prokhorov, D. A., Prokoph, H., P??hlhofer, G., Punch, M., Quirrenbach, A., Raab, S., Rauth, R., Reichherzer, P., Reimer, A., Reimer, O., Remy, Q., Renaud, M., Rieger, F., Rinchiuso, L., Romoli, C., Rowell, G., Rudak, B., Ruiz-Velasco, E., Sahakian, V., Sailer, S., Sanchez, D. A., Santangelo, A., Sasaki, M., Scalici, M., Sch??ssler, F., Schutte, H. M., Schwanke, U., Schwemmer, S., Seglar-Arroyo, M., Senniappan, M., Seyffert, A. S., Shafi, N., Shiningayamwe, K., Simoni, R., Sinha, A., Sol, H., Specovius, A., Spencer, S., Spir-Jacob, M., Stawarz, ??., Sun, L., Steenkamp, R., Stegmann, C., Steinmassl, S., Steppa, C., Takahashi, T., Tavernier, T., Taylor, A. M., Terrier, R., Tiziani, D., Tluczykont, M., Tomankova, L., Trichard, C., Tsirou, M., Tuffs, R., Uchiyama, Y., van der Walt, D. J., van Eldik, C., van Rensburg, C., van Soelen, B., Vasileiadis, G., Veh, J., Venter, C., Vincent, P., Vink, J., V??lk, H. J., Vuillaume, T., Wadiasingh, Z., Wagner, S. J., Watson, J., Werner, F., White, R., Wierzcholska, A., Wong, Yu. W., Yusafzai, A., Zacharias, M., Zanin, R., Zargaryan, D., Zdziarski, A. A., Zech, A., Zhu, S. J., Zorn, J., Zouari, S., ywucka, N., Acciari, V. A., Ansoldi, S., Antonelli, L. A., Arbet Engels, A., Asano, K., Baack, D., Babi??, A., Baquero, A., Barres de Almeida, U., Barrio, J. A., Becerra Gonz??lez, J., Bednarek, W., Bellizzi, L., Bernardini, E., Berti, A., Besenrieder, J., Bhattacharyya, W., Bigongiari, C., Biland, A., Blanch, O., Bonnoli, G., Bo??njak, ??., Busetto, G., Carosi, R., Ceribella, G., Cerruti, M., Chai, Y., Chilingarian, A., Cikota, S., Colak, S. M., Colin, U., Colombo, E., Contreras, J. L., Cortina, J., Covino, S., D???amico, G., D???elia, V., Da Vela, P., Dazzi, F., De Angelis, A., De Lotto, B., Delfino, M., Delgado, J., Depaoli, D., Di Pierro, F., Di Venere, L., Do Souto Espi??eira, E., Dominis Prester, D., Donini, A., Dorner, D., Doro, M., Elsaesser, D., Fallah Ramazani, V., Fattorini, A., Ferrara, G., Foffano, L., Fonseca, M. V., Font, L., Fruck, C., Fukami, S., Garc??a L??pez, R. J., Garczarczyk, M., Gasparyan, S., Gaug, M., Giglietto, N., Giordano, F., Gliwny, P., Godinovi??, N., Green, D., Hadasch, D., Hahn, A., Heckmann, L., Herrera, J., Hoang, J., Hrupec, D., H??tten, M., Inada, T., Inoue, S., Ishio, K., Iwamura, Y., Jouvin, L., Kajiwara, Y., Karjalainen, M., Kerszberg, D., Kobayashi, Y., Kubo, H., Kushida, J., Lamastra, A., Lelas, D., Leone, F., Lindfors, E., Lombardi, S., Longo, F., L??pez, M., L??pez-Coto, R., L??pez-Oramas, A., Loporchio, S., Machado de Oliveira Fraga, B., Maggio, C., Majumdar, P., Makariev, M., Mallamaci, M., Maneva, G., Manganaro, M., Mannheim, K., Maraschi, L., Mariotti, M., Mart??nez, M., Mazin, D., Mender, S., Mi??anovi??, S., Miceli, D., Miener, T., Minev, M., Miranda, J. M., Mirzoyan, R., Molina, E., Moralejo, A., Morcuende, D., Moreno, V., Moretti, E., Munar-Adrover, P., Neustroev, V., Nigro, C., Nilsson, K., Ninci, D., Nishijima, K., Noda, K., Nozaki, S., Ohtani, Y., Oka, T., Otero-Santos, J., Palatiello, M., Paneque, D., Paoletti, R., Paredes, J. M., Pavleti??, L., Pe??il, P., Perennes, C., Persic, M., Prada Moroni, P. G., Prandini, E., Priyadarshi, C., Puljak, I., Rhode, W., Rib??, M., Rico, J., Righi, C., Rugliancich, A., Saha, L., Sahakyan, N., Saito, T., Sakurai, S., Satalecka, K., Schleicher, B., Schmidt, K., Schweizer, T., Sitarek, J., nidari??, I., Sobczynska, D., Spolon, A., Stamerra, A., Strom, D., Strzys, M., Suda, Y., Suri??, T., Takahashi, M., Tavecchio, F., Temnikov, P., Terzi??, T., Teshima, M., Torres-Alb??, N., Tosti, L., Truzzi, S., van Scherpenberg, J., Vanzo, G., Vazquez Acosta, M., Ventura, S., Verguilov, V., Vigorito, C. F., Vitale, V., Vovk, I., Will, M., Zari??, D., Jorstad, S. G., Marscher, A. P., Boccardi, B., Casadio, C., Hodgson, J., Kim, J. -Y., Krichbaum, T. P., L??hteenm??ki, A., Tornikoski, M., Traianou, E., Weaver, Z. R., Gravitation and Astroparticle Physics Amsterdam, High Energy Astrophys. & Astropart. Phys (API, FNWI), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Montpellier 2 - Sciences et Techniques (UM2), Department of Electronics and Nanoengineering, Aalto-yliopisto, and Aalto University
- Subjects
non-thermal ,quasars: individual: PKS 1510−089 ,galaxies: active ,relativistic processes ,Astrophysics - High Energy Astrophysical Phenomena ,Astrophysics - Astrophysics of Galaxies [radiation mechanisms] ,Photon ,individual: PKS 1510−089 [quasars] ,Astrophysics::High Energy Astrophysical Phenomena ,Flux ,radiation mechanisms: non-thermal / quasars: individual: PKS 1510−089 / galaxies: active / relativistic processes ,radiation mechanisms: non-thermal ,quasars: individual: PKS 1510-089 ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,law.invention ,law ,0103 physical sciences ,Galaxies: Active ,Quasars: Individual: Pks 1510-089 ,Radiation mechanisms: Non-thermal ,Relativistic processes ,individual: PKS 1510-089 [quasars] ,MAGIC (telescope) ,010303 astronomy & astrophysics ,Physics ,[PHYS]Physics [physics] ,010308 nuclear & particles physics ,Astronomy and Astrophysics ,Quasar ,Light curve ,non-thermal [radiation mechanisms] ,relativistic processes [radiation mechanisms] ,Extragalactic background light ,Space and Planetary Science ,active [galaxies] ,ddc:520 ,Física nuclear ,quasars: individual: PKS 1510���089 ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Fermi Gamma-ray Space Telescope ,Flare - Abstract
The flat spectrum radio quasar (FSRQ) PKS 1510−089 is known for its complex multiwavelength behaviour and it is one of only a few FSRQs detected in very-high-energy (VHE, E > 100 GeV) γ rays. The VHE γ-ray observations with H.E.S.S. and MAGIC in late May and early June 2016 resulted in the detection of an unprecedented flare, which revealed, for the first time, VHE γ-ray intranight variability for this source. While a common variability timescale of 1.5 h has been found, there is a significant deviation near the end of the flare, with a timescale of ∼20 min marking the cessation of the event. The peak flux is nearly two orders of magnitude above the low-level emission. For the first time, a curvature was detected in the VHE γ-ray spectrum of PKS 1510–089, which can be fully explained by the absorption on the part of the extragalactic background light. Optical R-band observations with ATOM revealed a counterpart of the γ-ray flare, even though the detailed flux evolution differs from the VHE γ-ray light curve. Interestingly, a steep flux decrease was observed at the same time as the cessation of the VHE γ-ray flare. In the high-energy (HE, E > 100 MeV) γ-ray band, only a moderate flux increase was observed with Fermi-LAT, while the HE γ-ray spectrum significantly hardens up to a photon index of 1.6. A search for broad-line region (BLR) absorption features in the γ-ray spectrum indicates that the emission region is located outside of the BLR. Radio very-long-baseline interferometry observations reveal a fast-moving knot interacting with a standing jet feature around the time of the flare. As the standing feature is located ∼50 pc from the black hole, the emission region of the flare may have been located at a significant distance from the black hole. If this is indeed a true correlation, the VHE γ rays must have been produced far down in the jet, where turbulent plasma crosses a standing shock., Astronomy & Astrophysics, 648, ISSN:0004-6361, ISSN:1432-0746
- Published
- 2021
35. Broadband Multi-wavelength Properties of M87 during the 2017 Event Horizon Telescope Campaign
- Author
-
Masanori Nakamura, R. Shang, Abelardo Moralejo, A. Rugliancich, Marina Manganaro, Jun Liu, Monika Moscibrodzka, Andreas Specovius, V. Ramakrishnan, S. O'Brien, Michal Ostrowski, Luis C. Ho, Sera Markoff, D. Depaoli, I. Jung-Richardt, Manel Errando, Chiara Righi, S. Panny, Toshiaki Inada, Alexandra J. Tetarenko, Daniela Dorner, Norbert Wex, Nimesh A. Patel, Olivier Hervet, C. Arcaro, Alasdair E. Gent, Yu Wun Wong, Gaia Vanzo, Pierre Brun, Konstancja Satalecka, Stefan Funk, Lorenzo Bellizzi, Michael Lindqvist, Michele Doro, Felix Jankowsky, P. Kaaret, Nicholas R. MacDonald, Lang Cui, P. Temnikov, S. Patel, Sabrina Einecke, Manuel Artero, E. Moretti, Hope Boyce, M. Gaug, Charles F. Gammie, Iryna Lypova, Gisela N. Ortiz-León, Felix Aharonian, Colin J. Lonsdale, Buell T. Jannuzi, Gavin Rowell, M. Bryan, Yvonne Becherini, Aleksandar Popstefanija, M. Pohl, A. Marcowith, Jean-Pierre Ernenwein, H. Alyson Ford, Wystan Benbow, Karen E. Williamson, Daryl Haggard, Hambeleleni Ndiyavala, Tod R. Lauer, Arnaud Mares, Chaitanya Priyadarshi, Michael Punch, Helge Rottmann, J. Zorn, D. Dominis Prester, Bernd Schleicher, M. Minev, Hector Olivares, Ciriaco Goddi, S. Pita, J. Herrera, Alessia Spolon, Léa Jouvin, Na Wang, G. Martí-Devesa, Tomohiko Oka, Kirsty Feijen, E. Do Souto Espiñeira, Ralph Eatough, Johannes Veh, Stefano Gabici, Tomislav Terzić, D. Glawion, Gilles Fontaine, Bradford Benson, C. B. Rulten, Jenni Jormanainen, Jason SooHoo, Michael Titus, Jose Miguel Delgado, Marcos López-Moya, Freek Roelofs, Wlodek Bednarek, M. Lundy, Richard Anantua, Alessandra Lamastra, P. T. Reynolds, Vassil Verguilov, M. Lemoine-Goumard, G. Fichet de Clairfontaine, L. Di Venere, Michael Kreter, Jose Miguel Miranda, Alan L. Roy, Yating Chai, A. López-Oramas, M. Tluczykont, Jacek Niemiec, R. Konno, Tyler Trent, Olaf Reimer, Heino Falcke, Amanpreet Kaur, M. Panter, Narek Sahakyan, Kasper B. Schmidt, A. Carosi, K. Egberts, L. Maraschi, Stefan Cikota, V. Joshi, Koji Noda, Elisa Bernardini, Ye-Fei Yuan, Garrett K. Keating, Fumie Tazaki, Pawel Gliwny, M. Vazquez Acosta, Nicola Giglietto, M. Capasso, Vincent Piétu, Satoshi Fukami, Roman Gold, Elina Lindfors, Satoki Matsushita, A. Lemiere, F. Eichhorn, U. Katz, Yoshinori Yonekura, N. Shafi, Natalia Żywucka, Michael Kramer, M. Palatiello, Daniel Mazin, Samuel Timothy Spencer, Victoria Moreno, Oliver Porth, Julian Sitarek, Kazi L.J. Rygl, Wen Ping Lo, Geoffrey C. Bower, Ilje Cho, S. Fegan, Samuel Zouari, J. M. Paredes, V. Fallah Ramazani, Thomas Murach, Jim Hinton, R. J. White, F. Leone, S. Loporchio, M. de Naurois, Ed Fomalont, Bart Ripperda, Dominique Broguiere, J. Becerra González, Joseph R. Farah, Q. Feng, Andreas Quirrenbach, Taehyun Jung, C. Trichard, Masahiro Teshima, Domenico Tiziani, D. Malyshev, Richard Plambeck, Lynn D. Matthews, Avery E. Broderick, S. Kumar, T. J. Williamson, M. K. Daniel, Sylvia Zhu, P. J. Meintjes, Tjark Miener, Jodi Christiansen, Roger Brissenden, S. Sailer, Dmitry Khangulyan, David Paneque, Thomas P. Krichbaum, Sergey S. Savchenko, Angelo Ricarte, Riaan Steenkamp, T. Chand, J. Dyks, Francesco Dazzi, V. Baghmanyan, Zorawar Wadiasingh, Kazunori Akiyama, Stefan Ohm, C. Levy, Giovanna Ferrara, Makoto Inoue, Jhilik Majumdar, Nobuyuki Sakai, Dieter Horns, Jorge A. Preciado-López, Cornelia Müller, G. Hermann, Regis Terrier, A. J. Chromey, Dominic W. Pesce, Felix M. Pötzl, Mark Gurwell, Alejandro Cruz-Osorio, Ivan Marti-Vidal, Ben Prather, Tom Armstrong, Jongho Park, Matteo Cerruti, Ziri Younsi, Amy Furniss, Chih-Wei Locutus Huang, Lijing Shao, A. Djannati-Ataï, Shoko Koyama, D. Gottschall, P. Vincent, A. Brill, Kenji Toma, Antonios Nathanail, M. Nievas-Rosillo, M. Seglar-Arroyo, C. Delgado Mendez, Mahito Sasada, G. Busetto, Maciek Wielgus, Marcos Santander, Doosoo Yoon, D. A. Sanchez, Hiroki Okino, Christo Venter, Christiaan D. Brinkerink, James Ryan, S. Mićanović, Raquel Fraga-Encinas, Mark G. Rawlings, G. H. Sembroski, G. Principe, Xiang Liu, Karl Friedrich Schuster, Ronald Hesper, L. Sun, Ciro Bigongiari, Ramesh Narayan, M. Strzys, L. Mohrmann, Daniel R. van Rossum, Y. Ohtani, Wu Jiang, Luciano Rezzolla, Nu. Komin, V. A. Acciari, Katherine L. Bouman, Jürgen Besenrieder, Clemens Hoischen, A. A. Zdziarski, Antonio Tutone, Hung Yi Pu, A. Arbet Engels, J.-P. Lenain, A. De Angelis, Tomoya Hirota, R. J. García López, Carlo Romoli, Werner Hofmann, Tuomas Savolainen, Neil M. Nagar, Minfeng Gu, M. Karjalainen, Vitaly Neustroev, A. N. Otte, John F. C. Wardle, Tomoaki Oyama, Jongsoo Kim, Monica Barnard, J. Otero-Santos, R. D. Parsons, Pierre Christian, A. Priyana Noel, A. S. Seyffert, Shami Chatterjee, E. O. Angüner, David A. Green, Ramesh Karuppusamy, Zhiyuan Li, J. Devin, Dominik Elsaesser, F. Giordano, Santiago Ubach, Michael A. Nowak, Y. Kobayashi, F. Di Pierro, Iniyan Natarajan, A. Zech, M. Garczarczyk, Dmitriy Kostunin, Michael Janssen, Giacomo Bonnoli, Mariafelicia De Laurentis, Kuo Liu, G. Emery, Yutaro Kofuji, Antxon Alberdi, Marco Toliman Lucchini, R. A. Ong, Catherine Boisson, Daniel C. M. Palumbo, Stefan Klepser, Stefano Covino, Motoki Kino, Daniel Kerszberg, C. Armand, Maria Haupt, D. Zarić, K. Pfrang, R. López-Coto, M. Zacharias, Jae-Young Kim, Sheperd S. Doeleman, U. Barres de Almeida, Pratik Majumdar, M. V. Fonseca, Mosè Mariotti, G. Lamanna, Alexander Hahn, Sidika Merve Colak, R. J. Tuffs, B. Bi, Juan-Carlos Algaba, L. Oakes, D. Jankowsky, Y. Kajiwara, R. Marx, Bošnjak, John E. Barrett, Kotaro Niinuma, F. D'Ammando, Qingwen Wu, A. Yusafzai, Christian M. Fromm, Chi-kwan Chan, B. De Lotto, M. Kertzman, Manuela Mallamaci, H. Prokoph, Tadayuki Takahashi, Damir Lelas, Victor Doroshenko, E. Kasai, Lea Heckmann, Bong Won Sohn, Francesco Gabriele Saturni, Shiro Ikeda, T. Vuillaume, Laurent Loinard, G. Maurin, M. Füßling, Martin Will, Yi Chen, Gianluca Giavitto, Remo P. J. Tilanus, M. Spir-Jacob, Alessandro Montanari, Thomas Lohse, Tihomir Surić, J. van Scherpenberg, Per Friberg, He Sun, Luca Tosti, Kiyoaki Wajima, E. Ruiz-Velasco, Thomas Bylund, M. Balokovic, Feng Yuan, S. Nozaki, Mischa Breuhaus, Peter Galison, Y. A. Gallant, L. Olivera-Nieto, Dorota Sobczyńska, Maria-Isabel Bernardos, R. Rauth, Izumi Mizuno, Vincent L. Fish, S. G. Jorstad, Tomoki Saito, Giovanni Ceribella, Jacques Muller, J. P. Finley, Stefano Ansoldi, Boris Georgiev, Marcello Giroletti, Arturo I. Gómez-Ruiz, Karl M. Menten, Aristeidis Noutsos, P. deWilt, Junhan Kim, Alejandro Mus Mejías, Q. Remy, Dong-Jin Kim, P. G. Prada Moroni, Robert Wharton, Riccardo Paoletti, R. R. Prado, Zhi-Qiang Shen, S. Paiano, S. Chandra, Andrés Baquero, Anna Barnacka, Lucy Fortson, Wrijupan Bhattacharyya, Marc Ribó, E. de Ona Wilhelmi, Paul T. P. Ho, Yan-Rong Li, Derek Ward-Thompson, M. Scalici, G. Maneva, Constantin Steppa, Dimitrios Psaltis, A.M. Taylor, J. Damascene Mbarubucyeye, Daniel P. Marrone, Karl Mannheim, W. Boland, P. Morris, D. A. Prokhorov, M. Mohamed, Katsuaki Asano, Gernot Maier, Kotaro Moriyama, H. Odaka, M. Büchele, E. Pueschel, Kazuyoshi Nishijima, Christopher J. Duffy, H. M. Schutte, Camilla Maggio, Mark Kettenis, V. D'Elia, Saverio Lombardi, Ramprasad Rao, Ivica Puljak, R. Mirzoyan, V. Sahakian, Guang Yao Zhao, Adrian Biland, F. Werner, Rafal Moderski, Olivier Gentaz, Ullrich Schwanke, James M. Moran, S. Komossa, Yuzhu Cui, A. Jiménez-Rosales, Arash Roshanineshat, S. Ventura, Lindy Blackburn, David J. James, G. Hughes, Hidetoshi Kubo, Mansour Karami, José L. Gómez, P. Reichherzer, Davit Zargaryan, Paul Tiede, Koushik Chatterjee, Chunchong Ni, Roger Deane, Axel Donath, J. Rico, A. W. Chen, A. Fiasson, Jun Yi Koay, T. B. Humensky, Satoko Sawada-Satoh, Isak Delberth Davids, Alan P. Marscher, Alan E. E. Rogers, Rebecca Azulay, Kazuma Ishio, Paul M. Chesler, D. M. Strom, Carlo Vigorito, Marek Jamrozy, G. Pühlhofer, M. de Bony de Lavergne, Roberta Zanin, T. Schweizer, Elisa Prandini, Helene Sol, Rodolfo Carosi, M. Hörbe, T. Tavernier, Mareki Honma, M. Holler, Gordon T. Richards, Armelle Jardin-Blicq, Paolo Marchegiani, Sang-Sung Lee, D. Huber, Ashot Chilingarian, Nikola Godinovic, F. Ait Benkhali, Jason Dexter, Do-Young Byun, Anton Dmytriiev, Massimo Persic, Alicia Fattorini, L. Dirson, Cosimo Nigro, E. Roache, Sargis Gasparyan, S. Schwemmer, Sara Issaoun, Jessica Dempsey, Andrea Santangelo, Włodek Kluźniak, Mel Rose, Huib Jan van Langevelde, D. J. van der Walt, Elisabetta Liuzzo, A. Stamerra, John Hoang, Michelle Tsirou, Wolfgang Rhode, Tomohisa Kawashima, L. A. Antonelli, Carolin Wunderlich, Keiichi Asada, David A. Williams, Joachim Hahn, P. Moriarty, T. M. Crawford, P. Da Vela, L. Rinchiuso, E. Molina, F. Peter Schloerb, Lovro Pavletić, S. Steinmassl, Des Small, Christoph Deil, Stefano Menchiari, Dan Bintley, K. Nakashima, Alice Donini, David H. Hughes, Heinrich J. Völk, Mohanraj Senniappan, K. A. Farrell, M. Renaud, J. A. Barrio, Miriam Lucio Martinez, Rachel Simoni, P. T. O'Brien, E. Colombo, V. Barbosa Martins, M. Orienti, Efthalia Traianou, Lluis Font, B. Machado de Oliveira Fraga, Y. Suda, J. Neilsen, John Conway, Eduardo Ros, Gibwa Musoke, Tarek M. Hassan, J. Bolmont, A. Sinha, Halim Ashkar, M.-H. Grondin, Daniel Nieto, Lab Saha, Fabrizio Tavecchio, Hyunwook Ro, Michael H. Hecht, Markus Böttcher, Antonio Fuentes, Simone Mender, Moritz Hütten, Ue-Li Pen, Yosuke Mizuno, Gopal Narayanan, Lei Huang, H. Abdalla, M. A. Kastendieck, Nicola Marchili, I. Snidaric, S. Sánchez, G. Vasileiadis, Kari Nilsson, Alexander W. Raymond, Greg Lindahl, Gregory Desvignes, Sascha Trippe, Sanae Inoue, Giacomo D'Amico, W. Jin, B. van Soelen, Andrew Chael, Anne Kathrin Baczko, Shunsuke Sakurai, L. Giunti, A. Nayerhoda, Walter Alef, Jamie Holder, Stefano Truzzi, Pablo Peñil, M. J. Lang, Francois Brun, Frank M. Rieger, V. Vitale, George N. Wong, Jirong Mao, S. Caroff, J. Kushida, André Young, Ru-Sen Lu, Daniel Morcuende, Jose Luis Contreras, Kazuhiro Hada, Juan Cortina, C. van Eldik, Pablo Torne, Raymond Blundell, Jarred Gershon Green, C. B. Adams, James M. Cordes, Jonathan Weintroub, Q. Piel, A. Berti, James E. M. Watson, G. Peron, Ken Young, Garret Cotter, Dario Hrupec, Jonathan Mackey, K. Ragan, John E. Carlstrom, Michael Backes, Tim Holch, D. Hadasch, Stawarz, F. Niederwanger, Feryal Özel, Lia Medeiros, A. Weinstein, Mitsunari Takahashi, Manuel Delfino, C. Y. Kuo, Aviad Levis, Francesco Longo, K. Kosack, Konrad Bernlöhr, Jacco Vink, C. Moore, Michael Bremer, Jim Davies, Jadyn Anczarski, Patrick M. Koch, Sabrina Casanova, Ming-Tang Chen, B. Peyaud, Christian Stegmann, Stefan Wagner, C. Perennes, Yasunobu Uchiyama, David Kieda, Chet Ruszczyk, Hiroshi Nagai, M. Curyło, Andrei Lobanov, Ana Babić, E. Moulin, Tomasz Bulik, Britton Jeter, I. Vovk, Martin Makariev, C. van Rensburg, Oscar Blanch, Rocco Lico, Silke Britzen, Misao Sasaki, A. Reimer, V. Poireau, R. Adam, David Ball, Mark Reynolds, D. Miceli, John L. Quinn, Roberto Garcia, J. F. Glicenstein, D. Ribeiro, A. Wierzcholska, Geoffrey B. Crew, Bruno Khelifi, David Sánchez-Arguelles, Ilse van Bemmel, Michael D. Johnson, J. Anton Zensus, Dominik Baack, Manuel Meyer, E. V. Kravchenko, I. Jiménez, Thomas Bronzwaer, Reshmi Mukherjee, D. Berge, C. Giuri, Kleopas Shiningayamwe, Shan Shan Zhao, Yuki Iwamura, A. D. Falcone, Lenka Tomankova, Carsten Kramer, Jan Wagner, Christian Fruck, B. Rudak, Jordy Davelaar, V. Marandon, K. Katarzyński, Roberto Neri, The EHT MWL Science Working Group, Institut de RadioAstronomie Millimétrique (IRAM), Centre National de la Recherche Scientifique (CNRS), Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Instituto de RadioAstronomía Milimétrica (IRAM), Laboratoire Leprince-Ringuet (LLR), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Centre de Physique des Particules de Marseille (CPPM), Aix Marseille Université (AMU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Annecy de Physique des Particules (LAPP), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Laboratoire Univers et Théories (LUTH (UMR_8102)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE (UMR_7585)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre d'Etudes Nucléaires de Bordeaux Gradignan (CENBG), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Laboratoire Univers et Particules de Montpellier (LUPM), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Groupe de Physique des Solides (GPS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL), Event Horizon Telescope, Fermi-LAT, H.E.S.S., MAGIC, VERITAS, EAVN, High Energy Astrophys. & Astropart. Phys (API, FNWI), API Other Research (FNWI), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Université Sciences et Technologies - Bordeaux 1-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Université Montpellier 2 - Sciences et Techniques (UM2)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Algaba, Jc, Anczarski, J, Asada, K, Balokovic, M, Chandra, S, Cui, Yz, Falcone, Ad, Giroletti, M, Goddi, C, Hada, K, Haggard, D, Jorstad, S, Kaur, A, Kawashima, T, Keating, G, Kim, Jy, Kino, M, Komossa, S, Kravchenko, Ev, Krichbaum, Tp, Lee, S, Lu, R, Lucchini, M, Markoff, S, Neilsen, J, Nowak, Ma, Park, J, Principe, G, Ramakrishnan, V, Reynolds, Mt, Sasada, M, Savchenko, S, Williamson, Ke, Longo, F, Et, Al., University of Michigan, Department of Electronics and Nanoengineering, Aalto-yliopisto, Aalto University, Algaba, J. C., Anczarski, J., Asada, K., Balokovic, M., Chandra, S., Cui, Y. -Z., Falcone, A. D., Giroletti, M., Goddi, C., Hada, K., Haggard, D., Jorstad, S., Kaur, A., Kawashima, T., Keating, G., Kim, J. -Y., Kino, M., Komossa, S., Kravchenko, E. V., Krichbaum, T. P., Lee, S. -S., Lu, R. -S., Lucchini, M., Markoff, S., Neilsen, J., Nowak, M. A., Park, J., Principe, G., Ramakrishnan, V., Reynolds, M. T., Sasada, M., Savchenko, S. S., Williamson, K. E., Akiyama, K., Alberdi, A., Alef, W., Anantua, R., Azulay, R., Baczko, A. -K., Ball, D., Barrett, J., Bintley, D., Benson, B. A., Blackburn, L., Blundell, R., Boland, W., Bouman, K. L., Bower, G. C., Boyce, H., Bremer, M., Brinkerink, C. D., Brissenden, R., Britzen, S., Broderick, A. E., Broguiere, D., Bronzwaer, T., Byun, D. -Y., Carlstrom, J. E., Chael, A., Chan, C. -K., Chatterjee, S., Chatterjee, K., Chen, M. -T., Chen, Y., Chesler, P. M., Cho, I., Christian, P., Conway, J. E., Cordes, J. M., Crawford, T. M., Crew, G. B., Cruz-Osorio, A., Davelaar, J., De Laurentis, M., Deane, R., Dempsey, J., Desvignes, G., Dexter, J., Doeleman, S. S., Eatough, R. P., Falcke, H., Farah, J., Fish, V. L., Fomalont, E., Ford, H. A., Fraga-Encinas, R., Friberg, P., Fromm, C. M., Fuentes, A., Galison, P., Gammie, C. F., Garcia, R., Gentaz, O., Georgiev, B., Gold, R., Gomez, J. L., Gomez-Ruiz, A. I., Gu, M., Gurwell, M., Hecht, M. H., Hesper, R., Ho, L. C., Ho, P., Honma, M., Huang, C. -W. L., Huang, L., Hughes, D. H., Ikeda, S., Inoue, M., Issaoun, S., James, D. J., Jannuzi, B. T., Janssen, M., Jeter, B., Jiang, W., Jimenez-Rosales, A., Johnson, M. D., Jung, T., Karami, M., Karuppusamy, R., Kettenis, M., Kim, D. -J., Kim, J., Koay, J. Y., Kofuji, Y., Koch, P. M., Koyama, S., Kramer, M., Kramer, C., Kuo, C. -Y., Lauer, T. R., Levis, A., Li, Y. -R., Li, Z., Lindqvist, M., Lico, R., Lindahl, G., Liu, J., Liu, K., Liuzzo, E., Lo, W. -P., Lobanov, A. P., Loinard, L., Lonsdale, C., Macdonald, N. R., Mao, J., Marchili, N., Marrone, D. P., Marscher, A. P., Marti-Vidal, I., Matsushita, S., Matthews, L. D., Medeiros, L., Menten, K. M., Mizuno, I., Mizuno, Y., Moran, J. M., Moriyama, K., Moscibrodzka, M., Muller, C., Musoke, G., Mejias, A. M., Nagai, H., Nagar, N. M., Nakamura, M., Narayan, R., Narayanan, G., Natarajan, I., Nathanail, A., Neri, R., Ni, C., Noutsos, A., Okino, H., Olivares, H., Ortiz-Leon, G. N., Oyama, T., Ozel, F., Palumbo, D. C. M., Patel, N., Pen, U. -L., Pesce, D. W., Pietu, V., Plambeck, R., Popstefanija, A., Porth, O., Potzl, F. M., Prather, B., Preciado-Lopez, J. A., Psaltis, D., Pu, H. -Y., Rao, R., Rawlings, M. G., Raymond, A. W., Rezzolla, L., Ricarte, A., Ripperda, B., Roelofs, F., Rogers, A., Ros, E., Rose, M., Roshanineshat, A., Rottmann, H., Roy, A. L., Ruszczyk, C., Rygl, K. L. J., Sanchez, S., Sanchez-Arguelles, D., Savolainen, T., Schloerb, F. P., Schuster, K. -F., Shao, L., Shen, Z., Small, D., Sohn, B. W., Soohoo, J., Sun, H., Tazaki, F., Tetarenko, A. J., Tiede, P., Tilanus, R. P. J., Titus, M., Toma, K., Torne, P., Trent, T., Traianou, E., Trippe, S., Van Bemmel, I., Van Langevelde, H. J., Van Rossum, D. R., Wagner, J., Ward-Thompson, D., Wardle, J., Weintroub, J., Wex, N., Wharton, R., Wielgus, M., Wong, G. N., Wu, Q., Yoon, D., Young, A., Young, K., Younsi, Z., Yuan, F., Yuan, Y. -F., Zensus, J. A., Zhao, G. -Y., Zhao, S. -S., D'Ammando, F., Orienti, M., Abdalla, H., Adam, R., Aharonian, F., Benkhali, F. A., Anguner, E. O., Arcaro, C., Armand, C., Armstrong, T., Ashkar, H., Backes, M., Baghmanyan, V., Barbosa Martins, V., Barnacka, A., Barnard, M., Becherini, Y., Berge, D., Bernlohr, K., Bi, B., Bottcher, M., Boisson, C., Bolmont, J., De Bony De Lavergne, M., Breuhaus, M., Brun, F., Brun, P., Bryan, M., Buchele, M., Bulik, T., Bylund, T., Caroff, S., Carosi, A., Casanova, S., Chand, T., Chen, A., Cotter, G., Curylo, M., Damascene Mbarubucyeye, J., Davids, I. D., Davies, J., Deil, C., Devin, J., Dewilt, P., Dirson, L., Djannati-Atai, A., Dmytriiev, A., Donath, A., Doroshenko, V., Duffy, C., Dyks, J., Egberts, K., Eichhorn, F., Einecke, S., Emery, G., Ernenwein, J. -P., Feijen, K., Fegan, S., Fiasson, A., De Clairfontaine, G. F., Fontaine, G., Funk, S., Fussling, M., Gabici, S., Gallant, Y. A., Giavitto, G., Giunti, L., Glawion, D., Glicenstein, J. F., Gottschall, D., Grondin, M. -H., Hahn, J., Haupt, M., Hermann, G., Hinton, J. A., Hofmann, W., Hoischen, C., Holch, T. L., Holler, M., Horbe, M., Horns, D., Huber, D., Jamrozy, M., Jankowsky, D., Jankowsky, F., Jardin-Blicq, A., Joshi, V., Jung-Richardt, I., Kasai, E., Kastendieck, M. A., Katarzynski, K., Katz, U., Khangulyan, D., Khelifi, B., Klepser, S., Kluzniak, W., Komin, N., Konno, R., Kosack, K., Kostunin, D., Kreter, M., Lamanna, G., Lemiere, A., Lemoine-Goumard, M., Lenain, J. -P., Levy, C., Lohse, T., Lypova, I., Mackey, J., Majumdar, J., Malyshev, D., Marandon, V., Marchegiani, P., Marcowith, A., Mares, A., Marti-Devesa, G., Marx, R., Maurin, G., Meintjes, P. J., Meyer, M., Moderski, R., Mohamed, M., Mohrmann, L., Montanari, A., Moore, C., Morris, P., Moulin, E., Muller, J., Murach, T., Nakashima, K., Nayerhoda, A., De Naurois, M., Ndiyavala, H., Niederwanger, F., Niemiec, J., Oakes, L., O'Brien, P., Odaka, H., Ohm, S., Olivera-Nieto, L., De Ona Wilhelmi, E., Ostrowski, M., Panter, M., Panny, S., Parsons, R. D., Peron, G., Peyaud, B., Piel, Q., Pita, S., Poireau, V., Noel, A. P., Prokhorov, D. A., Prokoph, H., Puhlhofer, G., Punch, M., Quirrenbach, A., Rauth, R., Reichherzer, P., Reimer, A., Reimer, O., Remy, Q., Renaud, M., Rieger, F., Rinchiuso, L., Romoli, C., Rowell, G., Rudak, B., Ruiz-Velasco, E., Sahakian, V., Sailer, S., Sanchez, D. A., Santangelo, A., Sasaki, M., Scalici, M., Schutte, H. M., Schwanke, U., Schwemmer, S., Seglar-Arroyo, M., Senniappan, M., Seyffert, A. S., Shafi, N., Shiningayamwe, K., Simoni, R., Sinha, A., Sol, H., Specovius, A., Spencer, S., Spir-Jacob, M., Stawarz, L., Sun, L., Steenkamp, R., Stegmann, C., Steinmassl, S., Steppa, C., Takahashi, T., Tavernier, T., Taylor, A. M., Terrier, R., Tiziani, D., Tluczykont, M., Tomankova, L., Trichard, C., Tsirou, M., Tuffs, R., Uchiyama, Y., Van Der Walt, D. J., Van Eldik, C., Van Rensburg, C., Van Soelen, B., Vasileiadis, G., Veh, J., Venter, C., Vincent, P., Vink, J., Volk, H. J., Vuillaume, T., Wadiasingh, Z., Wagner, S. J., Watson, J., Werner, F., White, R., Wierzcholska, A., Wong, Y. W., Yusafzai, A., Zacharias, M., Zanin, R., Zargaryan, D., Zdziarski, A. A., Zech, A., Zhu, S. J., Zorn, J., Zouari, S., Zywucka, N., Acciari, V. A., Ansoldi, S., Antonelli, L. A., Engels, A. A., Artero, M., Asano, K., Baack, D., Babic, A., Baquero, A., De Almeida, U. B., Barrio, J. A., Becerra Gonzalez, J., Bednarek, W., Bellizzi, L., Bernardini, E., Bernardos, M., Berti, A., Besenrieder, J., Bhattacharyya, W., Bigongiari, C., Biland, A., Blanch, O., Bonnoli, G., Bosnjak, Z., Busetto, G., Carosi, R., Ceribella, G., Cerruti, M., Chai, Y., Chilingarian, A., Cikota, S., Colak, S. M., Colombo, E., Contreras, J. L., Cortina, J., Covino, S., D'Amico, G., D'Elia, V., Da Vela, P., Dazzi, F., De Angelis, A., De Lotto, B., Delfino, M., Delgado, J., Delgado Mendez, C., Depaoli, D., Di Pierro, F., Di Venere, L., Do Souto Espineira, E., Dominis Prester, D., Donini, A., Dorner, D., Doro, M., Elsaesser, D., Fallah Ramazani, V., Fattorini, A., Ferrara, G., Fonseca, M. V., Font, L., Fruck, C., Fukami, S., Garcia Lopez, R. J., Garczarczyk, M., Gasparyan, S., Gaug, M., Giglietto, N., Giordano, F., Gliwny, P., Godinovic, N., Green, J. G., Green, D., Hadasch, D., Hahn, A., Heckmann, L., Herrera, J., Hoang, J., Hrupec, D., Hutten, M., Inada, T., Inoue, S., Ishio, K., Iwamura, Y., Jimenez, I., Jormanainen, J., Jouvin, L., Kajiwara, Y., Karjalainen, M., Kerszberg, D., Kobayashi, Y., Kubo, H., Kushida, J., Lamastra, A., Lelas, D., Leone, F., Lindfors, E., Lombardi, S., Longo, F., Lopez-Coto, R., Lopez-Moya, M., Lopez-Oramas, A., Loporchio, S., Machado De Oliveira Fraga, B., Maggio, C., Majumdar, P., Makariev, M., Mallamaci, M., Maneva, G., Manganaro, M., Mannheim, K., Maraschi, L., Mariotti, M., Martinez, M., Mazin, D., Menchiari, S., Mender, S., Micanovic, S., Miceli, D., Miener, T., Minev, M., Miranda, J. M., Mirzoyan, R., Molina, E., Moralejo, A., Morcuende, D., Moreno, V., Moretti, E., Neustroev, V., Nigro, C., Nilsson, K., Nishijima, K., Noda, K., Nozaki, S., Ohtani, Y., Oka, T., Otero-Santos, J., Paiano, S., Palatiello, M., Paneque, D., Paoletti, R., Paredes, J. M., Pavletic, L., Penil, P., Perennes, C., Persic, M., Moroni, P. G. P., Prandini, E., Priyadarshi, C., Puljak, I., Rhode, W., Ribo, M., Rico, J., Righi, C., Rugliancich, A., Saha, L., Sahakyan, N., Saito, T., Sakurai, S., Satalecka, K., Saturni, F. G., Schleicher, B., Schmidt, K., Schweizer, T., Sitarek, J., Snidaric, I., Sobczynska, D., Spolon, A., Stamerra, A., Strom, D., Strzys, M., Suda, Y., Suric, T., Takahashi, M., Tavecchio, F., Temnikov, P., Terzic, T., Teshima, M., Tosti, L., Truzzi, S., Tutone, A., Ubach, S., Van Scherpenberg, J., Vanzo, G., Vazquez Acosta, M., Ventura, S., Verguilov, V., Vigorito, C. F., Vitale, V., Vovk, I., Will, M., Wunderlich, C., Zaric, D., Adams, C. B., Benbow, W., Brill, A., Capasso, M., Christiansen, J. L., Chromey, A. J., Daniel, M. K., Errando, M., Farrell, K. A., Feng, Q., Finley, J. P., Fortson, L., Furniss, A., Gent, A., Giuri, C., Hassan, T., Hervet, O., Holder, J., Hughes, G., Humensky, T. B., Jin, W., Kaaret, P., Kertzman, M., Kieda, D., Kumar, S., Lang, M. J., Lundy, M., Maier, G., Moriarty, P., Mukherjee, R., Nieto, D., Nievas-Rosillo, M., O'Brien, S., Ong, R. A., Otte, A. N., Patel, S., Pfrang, K., Pohl, M., Prado, R. R., Pueschel, E., Quinn, J., Ragan, K., Reynolds, P. T., Ribeiro, D., Richards, G. T., Roache, E., Rulten, C., Ryan, J. L., Santander, M., Sembroski, G. H., Shang, R., Weinstein, A., Williams, D. A., Williamson, T. J., Hirota, T., Cui, L., Niinuma, K., Ro, H., Sakai, N., Sawada-Satoh, S., Wajima, K., Wang, N., Liu, X., Yonekura, Y., German Research Foundation, Istituto Nazionale di Fisica Nucleare, Swiss National Science Foundation, Ministerio de Ciencia, Innovación y Universidades (España), Department of Atomic Energy (India), University of Tokyo, Japan Society for the Promotion of Science, Ministry of Education and Scientific Research (Romania), Academy of Finland, La Caixa, Croatian Science Foundation, Generalitat de Catalunya, Polish National Agency for Academic Exchange, University of Rijeka, Department of Energy (US), Smithsonian Institution, Astronomy, and Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Montpellier 2 - Sciences et Techniques (UM2)
- Subjects
Accretion ,010504 meteorology & atmospheric sciences ,Astronomy ,Flux ,Astrophysics ,7. Clean energy ,01 natural sciences ,Active galactic nuclei ,Radio cores ,Low-luminosity active galactic nuclei ,High energy astrophysics ,Astrophysical black holes ,Astrophysics - High Energy Astrophysical Phenomena ,Astrophysics - Cosmology and Nongalactic Astrophysics ,Astrophysics - Astrophysics of Galaxies ,010303 astronomy & astrophysics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Physics ,astro-ph.HE ,Radio core ,Accretion (meteorology) ,520 Astronomie und zugeordnete Wissenschaften ,Low-luminosity ,active galactic nuclei ,Astrophysical black hole ,astro-ph.CO ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Active galactic nucleus ,High-energy astronomy ,astro-ph.GA ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,F500 ,Astrophysics::Cosmology and Extragalactic Astrophysics ,High energy astrophysic ,0103 physical sciences ,Very-long-baseline interferometry ,ddc:530 ,Astrophysics::Galaxy Astrophysics ,0105 earth and related environmental sciences ,Event Horizon Telescope ,Supermassive black hole ,Astronomy and Astrophysics ,530 Physik ,Galaxy ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,ddc:520 ,HESS - Abteilung Hinton ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
Full list of authors: EHT MWL Science Working Group; Algaba, J. C.; Anczarski, J.; Asada, K.; Baloković, M.; Chandra, S.; Cui, Y. -Z.; Falcone, A. D.; Giroletti, M.; Goddi, C.; Hada, K.; Haggard, D.; Jorstad, S.; Kaur, A.; Kawashima, T.; Keating, G.; Kim, J. -Y.; Kino, M.; Komossa, S.; Kravchenko, E. V.; Krichbaum, T. P.; Lee, S. -S.; Lu, R. -S.; Lucchini, M.; Markoff, S.; Neilsen, J.; Nowak, M. A.; Park, J.; Principe, G.; Ramakrishnan, V.; Reynolds, M. T.; Sasada, M.; Savchenko, S. S.; Williamson, K. E.; Event Horizon Telescope Collaboration; Akiyama, Kazunori; Alberdi, Antxon; Alef, Walter; Anantua, Richard; Azulay, Rebecca; Baczko, Anne-Kathrin; Ball, David; Barrett, John; Bintley, Dan; Benson, Bradford A.; Blackburn, Lindy; Blundell, Raymond; Boland, Wilfred; Bouman, Katherine L.; Bower, Geoffrey C.; Boyce, Hope; Bremer, Michael; Brinkerink, Christiaan D.; Brissenden, Roger; Britzen, Silke; Broderick, Avery E.; Broguiere, Dominique; Bronzwaer, Thomas; Byun, Do-Young; Carlstrom, John E.; Chael, Andrew; Chan, Chi-Kwan; Chatterjee, Shami; Chatterjee, Koushik; Chen, Ming-Tang; Chen, Yongjun; Chesler, Paul M.; Cho, Ilje; Christian, Pierre; Conway, John E.; Cordes, James M.; Crawford, Thomas M.; Crew, Geoffrey B.; Cruz-Osorio, Alejandro; Davelaar, Jordy; de Laurentis, Mariafelicia; Deane, Roger; Dempsey, Jessica; Desvignes, Gregory; Dexter, Jason; Doeleman, Sheperd S.; Eatough, Ralph P.; Falcke, Heino; Farah, Joseph; Fish, Vincent L.; Fomalont, Ed; Ford, H. Alyson; Fraga-Encinas, Raquel; Friberg, Per; Fromm, Christian M.; Fuentes, Antonio; Galison, Peter; Gammie, Charles F.; García, Roberto; Gentaz, Olivier; Georgiev, Boris; Gold, Roman; Gómez, José L.; Gómez-Ruiz, Arturo I.; Gu, Minfeng; Gurwell, Mark; Hecht, Michael H.; Hesper, Ronald; Ho, Luis C.; Ho, Paul; Honma, Mareki; Huang, Chih-Wei L.; Huang, Lei; Hughes, David H.; Ikeda, Shiro; Inoue, Makoto; Issaoun, Sara; James, David J.; Jannuzi, Buell T.; Janssen, Michael; Jeter, Britton; Jiang, Wu; Jiménez-Rosales, Alejandra; Johnson, Michael D.; Jung, Taehyun; Karami, Mansour; Karuppusamy, Ramesh; Kettenis, Mark; Kim, Dong-Jin; Kim, Jongsoo; Kim, Junhan; Koay, Jun Yi; Kofuji, Yutaro; Koch, Patrick M.; Koyama, Shoko; Kramer, Michael; Kramer, Carsten; Kuo, Cheng-Yu; Lauer, Tod R.; Levis, Aviad; Li, Yan-Rong; Li, Zhiyuan; Lindqvist, Michael; Lico, Rocco; Lindahl, Greg; Liu, Jun; Liu, Kuo; Liuzzo, Elisabetta; Lo, Wen-Ping; Lobanov, Andrei P.; Loinard, Laurent; Lonsdale, Colin; MacDonald, Nicholas R.; Mao, Jirong; Marchili, Nicola; Marrone, Daniel P.; Marscher, Alan P.; Martí-Vidal, Iván; Matsushita, Satoki; Matthews, Lynn D.; Medeiros, Lia; Menten, Karl M.; Mizuno, Izumi; Mizuno, Yosuke; Moran, James M.; Moriyama, Kotaro; Moscibrodzka, Monika; Müller, Cornelia; Musoke, Gibwa; Mejías, Alejandro Mus; Nagai, Hiroshi; Nagar, Neil M.; Nakamura, Masanori; Narayan, Ramesh; Narayanan, Gopal; Natarajan, Iniyan; Nathanail, Antonios; Neri, Roberto; Ni, Chunchong; Noutsos, Aristeidis; Okino, Hiroki; Olivares, Héctor; Ortiz-León, Gisela N.; Oyama, Tomoaki; Özel, Feryal; Palumbo, Daniel C. M.; Patel, Nimesh; Pen, Ue-Li; Pesce, Dominic W.; Piétu, Vincent; Plambeck, Richard; Popstefanija, Aleksandar; Porth, Oliver; Pötzl, Felix M.; Prather, Ben; Preciado-López, Jorge A.; Psaltis, Dimitrios; Pu, Hung-Yi; Rao, Ramprasad; Rawlings, Mark G.; Raymond, Alexander W.; Rezzolla, Luciano; Ricarte, Angelo; Ripperda, Bart; Roelofs, Freek; Rogers, Alan; Ros, Eduardo; Rose, Mel; Roshanineshat, Arash; Rottmann, Helge; Roy, Alan L.; Ruszczyk, Chet; Rygl, Kazi L. J.; Sánchez, Salvador; Sánchez-Arguelles, David; Savolainen, Tuomas; Schloerb, F. Peter; Schuster, Karl-Friedrich; Shao, Lijing; Shen, Zhiqiang; Small, Des; Sohn, Bong Won; Soohoo, Jason; Sun, He; Tazaki, Fumie; Tetarenko, Alexandra J.; Tiede, Paul; Tilanus, Remo P. J.; Titus, Michael; Toma, Kenji; Torne, Pablo; Trent, Tyler; Traianou, Efthalia; Trippe, Sascha; van Bemmel, Ilse; van Langevelde, Huib Jan; van Rossum, Daniel R.; Wagner, Jan; Ward-Thompson, Derek; Wardle, John; Weintroub, Jonathan; Wex, Norbert; Wharton, Robert; Wielgus, Maciek; Wong, George N.; Wu, Qingwen; Yoon, Doosoo; Young, André; Young, Ken; Younsi, Ziri; Yuan, Feng; Yuan, Ye-Fei; Zensus, J. Anton; Zhao, Guang-Yao; Zhao, Shan-Shan; Fermi Large Area Telescope Collaboration; Principe, G.; Giroletti, M.; D'Ammando, F.; Orienti, M.; H. E. S. S. Collaboration; Abdalla, H.; Adam, R.; Aharonian, F.; Benkhali, F. Ait; Angüner, E. O.; Arcaro, C.; Armand, C.; Armstrong, T.; Ashkar, H.; Backes, M.; Baghmanyan, V.; Barbosa Martins, V.; Barnacka, A.; Barnard, M.; Becherini, Y.; Berge, D.; Bernlöhr, K.; Bi, B.; Böttcher, M.; Boisson, C.; Bolmont, J.; de Lavergne, M. De Bony; Breuhaus, M.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Bylund, T.; Caroff, S.; Carosi, A.; Casanova, S.; Chand, T.; Chen, A.; Cotter, G.; Curyło, M.; Damascene Mbarubucyeye, J.; Davids, I. D.; Davies, J.; Deil, C.; Devin, J.; Dewilt, P.; Dirson, L.; Djannati-Ataï, A.; Dmytriiev, A.; Donath, A.; Doroshenko, V.; Duffy, C.; Dyks, J.; Egberts, K.; Eichhorn, F.; Einecke, S.; Emery, G.; Ernenwein, J. -P.; Feijen, K.; Fegan, S.; Fiasson, A.; de Clairfontaine, G. Fichet; Fontaine, G.; Funk, S.; Füßling, M.; Gabici, S.; Gallant, Y. A.; Giavitto, G.; Giunti, L.; Glawion, D.; Glicenstein, J. F.; Gottschall, D.; Grondin, M. -H.; Hahn, J.; Haupt, M.; Hermann, G.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holch, T. L.; Holler, M.; Hörbe, M.; Horns, D.; Huber, D.; Jamrozy, M.; Jankowsky, D.; Jankowsky, F.; Jardin-Blicq, A.; Joshi, V.; Jung-Richardt, I.; Kasai, E.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Khangulyan, D.; Khélifi, B.; Klepser, S.; Kluźniak, W.; Komin, Nu.; Konno, R.; Kosack, K.; Kostunin, D.; Kreter, M.; Lamanna, G.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J. -P.; Levy, C.; Lohse, T.; Lypova, I.; Mackey, J.; Majumdar, J.; Malyshev, D.; Malyshev, D.; Marandon, V.; Marchegiani, P.; Marcowith, A.; Mares, A.; Martí-Devesa, G.; Marx, R.; Maurin, G.; Meintjes, P. J.; Meyer, M.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Montanari, A.; Moore, C.; Morris, P.; Moulin, E.; Muller, J.; Murach, T.; Nakashima, K.; Nayerhoda, A.; de Naurois, M.; Ndiyavala, H.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Ohm, S.; Olivera-Nieto, L.; de Ona Wilhelmi, E.; Ostrowski, M.; Panter, M.; Panny, S.; Parsons, R. D.; Peron, G.; Peyaud, B.; Piel, Q.; Pita, S.; Poireau, V.; Noel, A. Priyana; Prokhorov, D. A.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Rauth, R.; Reichherzer, P.; Reimer, A.; Reimer, O.; Remy, Q.; Renaud, M.; Rieger, F.; Rinchiuso, L.; Romoli, C.; Rowell, G.; Rudak, B.; Ruiz-Velasco, E.; Sahakian, V.; Sailer, S.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Scalici, M.; Schutte, H. M.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Senniappan, M.; Seyffert, A. S.; Shafi, N.; Shiningayamwe, K.; Simoni, R.; Sinha, A.; Sol, H.; Specovius, A.; Spencer, S.; Spir-Jacob, M.; Stawarz, Ł.; Sun, L.; Steenkamp, R.; Stegmann, C.; Steinmassl, S.; Steppa, C.; Takahashi, T.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tiziani, D.; Tluczykont, M.; Tomankova, L.; Trichard, C.; Tsirou, M.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Vincent, P.; Vink, J.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Watson, J.; Werner, F.; White, R.; Wierzcholska, A.; Wong, Yu Wun; Yusafzai, A.; Zacharias, M.; Zanin, R.; Zargaryan, D.; Zdziarski, A. A.; Zech, A.; Zhu, S. J.; Zorn, J.; Zouari, S.; Żywucka, N.; MAGIC Collaboration; Acciari, V. A.; Ansoldi, S.; Antonelli, L. A.; Engels, A. Arbet; Artero, M.; Asano, K.; Baack, D.; Babić, A.; Baquero, A.; de Almeida, U. Barres; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bellizzi, L.; Bernardini, E.; Bernardos, M.; Berti, A.; Besenrieder, J.; Bhattacharyya, W.; Bigongiari, C.; Biland, A.; Blanch, O.; Bonnoli, G.; Bošnjak, Ž.; Busetto, G.; Carosi, R.; Ceribella, G.; Cerruti, M.; Chai, Y.; Chilingarian, A.; Cikota, S.; Colak, S. M.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; D'Amico, G.; D'Elia, V.; da Vela, P.; Dazzi, F.; de Angelis, A.; de Lotto, B.; Delfino, M.; Delgado, J.; Delgado Mendez, C.; Depaoli, D.; di Pierro, F.; di Venere, L.; Do Souto Espiñeira, E.; Dominis Prester, D.; Donini, A.; Dorner, D.; Doro, M.; Elsaesser, D.; Ramazani, V. Fallah; Fattorini, A.; Ferrara, G.; Fonseca, M. V.; Font, L.; Fruck, C.; Fukami, S.; García López, R. J.; Garczarczyk, M.; Gasparyan, S.; Gaug, M.; Giglietto, N.; Giordano, F.; Gliwny, P.; Godinović, N.; Green, J. G.; Green, D.; Hadasch, D.; Hahn, A.; Heckmann, L.; Herrera, J.; Hoang, J.; Hrupec, D.; Hütten, M.; Inada, T.; Inoue, S.; Ishio, K.; Iwamura, Y.; Jiménez, I.; Jormanainen, J.; Jouvin, L.; Kajiwara, Y.; Karjalainen, M.; Kerszberg, D.; Kobayashi, Y.; Kubo, H.; Kushida, J.; Lamastra, A.; Lelas, D.; Leone, F.; Lindfors, E.; Lombardi, S.; Longo, F.; López-Coto, R.; López-Moya, M.; López-Oramas, A.; Loporchio, S.; Machado de Oliveira Fraga, B.; Maggio, C.; Majumdar, P.; Makariev, M.; Mallamaci, M.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Mariotti, M.; Martínez, M.; Mazin, D.; Menchiari, S.; Mender, S.; Mićanović, S.; Miceli, D.; Miener, T.; Minev, M.; Miranda, J. M.; Mirzoyan, R.; Molina, E.; Moralejo, A.; Morcuende, D.; Moreno, V.; Moretti, E.; Neustroev, V.; Nigro, C.; Nilsson, K.; Nishijima, K.; Noda, K.; Nozaki, S.; Ohtani, Y.; Oka, T.; Otero-Santos, J.; Paiano, S.; Palatiello, M.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Pavletić, L.; Peñil, P.; Perennes, C.; Persic, M.; Moroni, P. G. Prada; Prandini, E.; Priyadarshi, C.; Puljak, I.; Rhode, W.; Ribó, M.; Rico, J.; Righi, C.; Rugliancich, A.; Saha, L.; Sahakyan, N.; Saito, T.; Sakurai, S.; Satalecka, K.; Saturni, F. G.; Schleicher, B.; Schmidt, K.; Schweizer, T.; Sitarek, J.; Šnidarić, I.; Sobczynska, D.; Spolon, A.; Stamerra, A.; Strom, D.; Strzys, M.; Suda, Y.; Surić, T.; Takahashi, M.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Teshima, M.; Tosti, L.; Truzzi, S.; Tutone, A.; Ubach, S.; van Scherpenberg, J.; Vanzo, G.; Vazquez Acosta, M.; Ventura, S.; Verguilov, V.; Vigorito, C. F.; Vitale, V.; Vovk, I.; Will, M.; Wunderlich, C.; Zarić, D.; VERITAS Collaboration; Adams, C. B.; Benbow, W.; Brill, A.; Capasso, M.; Christiansen, J. L.; Chromey, A. J.; Daniel, M. K.; Errando, M.; Farrell, K. A.; Feng, Q.; Finley, J. P.; Fortson, L.; Furniss, A.; Gent, A.; Giuri, C.; Hassan, T.; Hervet, O.; Holder, J.; Hughes, G.; Humensky, T. B.; Jin, W.; Kaaret, P.; Kertzman, M.; Kieda, D.; Kumar, S.; Lang, M. J.; Lundy, M.; Maier, G.; Moriarty, P.; Mukherjee, R.; Nieto, D.; Nievas-Rosillo, M.; O'Brien, S.; Ong, R. A.; Otte, A. N.; Patel, S.; Pfrang, K.; Pohl, M.; Prado, R. R.; Pueschel, E.; Quinn, J.; Ragan, K.; Reynolds, P. T.; Ribeiro, D.; Richards, G. T.; Roache, E.; Rulten, C.; Ryan, J. L.; Santander, M.; Sembroski, G. H.; Shang, R.; Weinstein, A.; Williams, D. A.; Williamson, T. J.; Eavn Collaboration; Hirota, Tomoya; Cui, Lang; Niinuma, Kotaro; Ro, Hyunwook; Sakai, Nobuyuki; Sawada-Satoh, Satoko; Wajima, Kiyoaki; Wang, Na; Liu, Xiang; Yonekura, Yoshinori, In 2017, the Event Horizon Telescope (EHT) Collaboration succeeded in capturing the first direct image of the center of the M87 galaxy. The asymmetric ring morphology and size are consistent with theoretical expectations for a weakly accreting supermassive black hole of mass ∼6.5 × 109 M o˙. The EHTC also partnered with several international facilities in space and on the ground, to arrange an extensive, quasi-simultaneous multi-wavelength campaign. This Letter presents the results and analysis of this campaign, as well as the multi-wavelength data as a legacy data repository. We captured M87 in a historically low state, and the core flux dominates over HST-1 at high energies, making it possible to combine core flux constraints with the more spatially precise very long baseline interferometry data. We present the most complete simultaneous multi-wavelength spectrum of the active nucleus to date, and discuss the complexity and caveats of combining data from different spatial scales into one broadband spectrum. We apply two heuristic, isotropic leptonic single-zone models to provide insight into the basic source properties, but conclude that a structured jet is necessary to explain M87's spectrum. We can exclude that the simultaneous γ-ray emission is produced via inverse Compton emission in the same region producing the EHT mm-band emission, and further conclude that the γ-rays can only be produced in the inner jets (inward of HST-1) if there are strongly particle-dominated regions. Direct synchrotron emission from accelerated protons and secondaries cannot yet be excluded., The financial support of the German BMBF, MPG and HGF; the Italian INFN and INAF; the Swiss National Fund SNF; the ERDF under the Spanish Ministerio de Ciencia e Innovacion (MICINN) (FPA2017-87859-P, FPA2017-85668-P, FPA2017- 82729-C6-5-R, FPA2017-90566-REDC, PID2019-104114RBC31, PID2019-104114RB-C32, PID2019-105510GB-C31,PID 2019-107847RB-C41, PID2019-107847RB-C42, PID2019- 107988GB-C22); the Indian Department of Atomic Energy; the Japanese ICRR, the University of Tokyo, JSPS, and MEXT; the Bulgarian Ministry of Education and Science, National RI Roadmap Project DO1-268/16.12.2019 and the Academy of Finland grant No. 320045 is gratefully acknowledged. This work was also supported by the Spanish Centro de Excelencia “Severo Ochoa” SEV-2016-0588 and CEX2019- 000920-S, and “Maria de Maeztu” CEX2019-000918-M, the Unidad de Excelencia “Maria de Maeztu” MDM-2015-0509- 18-2 and the “la Caixa” Foundation (fellowship LCF/BQ/ PI18/11630012) and by the CERCA program of the Generalitat de Catalunya; by the Croatian Science Foundation (HrZZ) Project IP-2016-06-9782 and the University of Rijeka Project 13.12.1.3.02; by the DFG Collaborative Research Centers SFB823/C4 and SFB876/C3; the Polish National Research Centre grant UMO-2016/22/M/ST9/00382; and by the Brazilian MCTIC, CNPq, and FAPERJ. This research is supported by grants from the U.S. Department of Energy Office of Science, the U.S. National Science Foundation and the Smithsonian Institution, by NSERC in Canada, and by the Helmholtz Association in Germany. This research used resources provided by the Open Science Grid, which is supported by the National Science Foundation and the U.S. Department of Energy’s Office of Science, and resources of the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility operated under Contract No. DE-AC02-05CH11231. We acknowledge the excellent work of the technical support staff at the Fred Lawrence Whipple Observatory and at the collaborating institutions in the construction and operation of the instrument.
- Published
- 2021
36. Gravitational wave constraints on the primordial black hole dominated early universe
- Author
-
Chunshan Lin, Misao Sasaki, and Guillem Domènech
- Subjects
High Energy Physics - Theory ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,media_common.quotation_subject ,Perturbation (astronomy) ,FOS: Physical sciences ,Primordial black hole ,Astrophysics ,General Relativity and Quantum Cosmology (gr-qc) ,01 natural sciences ,Upper and lower bounds ,General Relativity and Quantum Cosmology ,Nucleosynthesis ,0103 physical sciences ,Cluster (physics) ,physics of the early universe ,010303 astronomy & astrophysics ,media_common ,Physics ,010308 nuclear & particles physics ,Gravitational wave ,primordial black holes ,Astronomy and Astrophysics ,LIGO ,Universe ,High Energy Physics - Theory (hep-th) ,cosmological perturbation theory ,primordial gravitational waves (theory) ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We calculate the gravitational waves (GWs) induced by the density fluctuations due to inhomogeneous distribution of primordial black holes (PBHs) in the case where PBHs eventually dominate and reheat the universe by Hawking evaporation. The initial PBH density fluctuations are isocurvature in nature. We find that most of the induced GWs are generated right after evaporation, when the universe transits from the PBH dominated era to the radiation dominated era and the curvature perturbation starts to oscillate wildly. The strongest constraint on the amount of the produced GWs comes from the big bang nucleosynthesis (BBN). We improve previous constraints on the PBH fraction and find that it cannot exceed $10^{-3}$. Furthermore, this maximum fraction decreases as the mass increases and reaches $10^{-9}$ for $M_{\rm PBH}\sim 5\times10^8 {\rm g}$, which is the largest mass allowed by the BBN constraint on the reheating temperature. Considering that PBH may cluster above a given clustering scale, we also derive a lower bound on the scale of clustering. Interestingly, the GW spectrum for $M_{\rm PBH}\sim 10^4 -10^8 {\rm g}$ enters the observational window of LIGO and DECIGO and could be tested in the future. Although we focus on the PBH dominated early universe in this paper, our methodology is applicable to any model with early isocurvature perturbation., Revised version. Included suppression due to the finite duration of black hole evaporation
- Published
- 2020
37. Very high energy γ-ray emission from two blazars of unknown redshift and upper limits on their distance
- Author
-
Johan Bregeon, J. Devin, D. Gottschall, Zorawar Wadiasingh, Tadayuki Takahashi, R. J. White, Łukasz Stawarz, V. Barbosa Martins, H.M. Schutte, Maria Haupt, Thomas Lohse, Victor Doroshenko, Domenico Tiziani, M. Lemoine-Goumard, C. Arcaro, Michal Ostrowski, J.-P. Lenain, M. Panter, U. Katz, Michael Kreter, Jim Hinton, A. Lemiere, F. Eichhorn, M. de Naurois, R. Adam, Stefan Ohm, James Davies, Stefan Funk, Alicja Wierzcholska, Michael Punch, S. Sailer, Dmitry Khangulyan, D. A. Sanchez, H. Abdalla, M. Zacharias, M. A. Kastendieck, Stefano Gabici, T. Vuillaume, Rafal Moderski, R. J. Tuffs, N. Shafi, Natalia Żywucka, A. Fiasson, Samuel Timothy Spencer, M. Spir-Jacob, M. Seglar-Arroyo, Alexandre Marcowith, A. Santangelo, V. Baghmanyan, Nu. Komin, T. Chand, Jhilik Majumdar, J. Dyks, V. Joshi, P. deWilt, F. Ait Benkhali, L. Oakes, J. Bolmont, Mischa Breuhaus, Heike Prokoph, E. O. Angüner, G. Lamanna, Anton Dmytriiev, Davit Zargaryan, Ruizhi Yang, Q. Piel, Dmitriy Kostunin, Krzysztof Katarzynski, Catherine Boisson, Axel Donath, A. W. Chen, S. Caroff, V. Sahakian, F. Werner, G. Pühlhofer, Arnaud Mares, D. Jankowsky, R. Marx, M. Füßling, S. Schwemmer, Q. Remy, R. Rauth, Dieter Horns, G. Maurin, Y. A. Gallant, Marek Jamrozy, Clemens Hoischen, A. A. Zdziarski, A.S. Seyffert, R. Konno, M. Barnard, S. Nakashima, Anna Barnacka, Gavin Rowell, M. Mohamed, Riaan Steenkamp, M. Bryan, Helene Sol, A. Carosi, M. Hörbe, Sylvia Zhu, P. J. Meintjes, Michelle Tsirou, Christian Stegmann, Stefan Wagner, E. de Oña Wilhelmi, D. Malyshev, S. Raab, Yasunobu Uchiyama, J. Zorn, L. Rinchiuso, Isak Delberth Davids, Kirsty Feijen, Frank M. Rieger, Pierre Brun, R. D. Parsons, T. Tavernier, Jean-Pierre Ernenwein, I. Jung-Richardt, Jason John Watson, Roberta Zanin, L. Mohrmann, V. Poireau, Gianluca Giavitto, C. van Rensburg, S. Pita, Johannes Veh, K. Bernlöhr, H. Yoneda, Paolo Marchegiani, M. Tluczykont, D. J. van der Walt, A. Djannati-Ataï, Francois Brun, P. Vincent, Markus Holler, Misao Sasaki, Felix Jankowsky, Jacek Niemiec, V. Marandon, C. Trichard, H. Odaka, Felix Aharonian, Olaf Reimer, S. Bonnefoy, Constantin Steppa, Garret Cotter, Celine Armand, Michael Backes, E. Ruiz-Velasco, Thomas Bylund, D. Huber, M.-H. Grondin, Tim Holch, E. Leser, Thomas Murach, Joachim Hahn, J. Muller, G. Hermann, Regis Terrier, D. A. Prokhorov, K. Kosack, C. Levy, Ullrich Schwanke, Naomi Tsuji, Carlo Romoli, Angel Noel, Jonathan Mackey, D. Berge, Gerard Fontaine, B. Peyaud, Iryna Lypova, S. Chandra, L. Giunti, M. Katsuragawa, Yvonne Becherini, C. Moore, Dorit Glawion, K. Egberts, E. Moulin, A. Reimer, Tomasz Bulik, Halim Ashkar, Andreas Quirrenbach, M. Böttcher, Paul J. Morris, Kleopas Shiningayamwe, P. T. O'Brien, Lenka Tomankova, C. van Eldik, L. Dirson, J. F. Glicenstein, Tom Armstrong, Matteo Cerruti, H. Ndiyavala, B. van Soelen, B. Rudak, F. Schüssler, Werner Hofmann, M. Büchele, S. J. Fegan, F. Niederwanger, Bruno Khelifi, Jacco Vink, Sabrina Casanova, M. Curyło, Rachel Simoni, Masanori Arakawa, M. Scalici, G. Martí-Devesa, H. Iwasaki, G. Vasileiadis, Włodek Kluźniak, Christoph Deil, Mohanraj Senniappan, G. Emery, S. Saito, Armelle Jardin-Blicq, K. Nakashima, Heinrich J. Völk, M. Renaud, A. Sinha, Christo Venter, A. Zech, A.M. Taylor, Andreas Specovius, Stefan Klepser, Faculty of Science, High Energy Astrophys. & Astropart. Phys (API, FNWI), Gravitation and Astroparticle Physics Amsterdam, Laboratoire Leprince-Ringuet (LLR), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Centre de Physique des Particules de Marseille (CPPM), Aix Marseille Université (AMU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Annecy de Physique des Particules (LAPP), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Galaxies, Etoiles, Physique, Instrumentation (GEPI), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE (UMR_7585)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Univers et Particules de Montpellier (LUPM), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Montpellier 2 - Sciences et Techniques (UM2), Centre d'Etudes Nucléaires de Bordeaux Gradignan (CENBG), Université Sciences et Technologies - Bordeaux 1-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), H.E.S.S., German Research Foundation, Alexander von Humboldt Foundation, Centre National de la Recherche Scientifique (France), Japan Society for the Promotion of Science, Science and Technology Facilities Council (UK), Fundación 'la Caixa', National Aeronautics and Space Administration (US), H.E.S.S. Collaboration, Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Université Montpellier 2 - Sciences et Techniques (UM2)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), 26598973 - Abdalla, Hassan, 30588766 - Arcaro, Cornelia, 28644743 - Backes, Michael, 20574266 - Barnard, Monica, 24420530 - Böttcher, Markus, 30366755 - Chand, Tej B., 31125417 - Chandra, Sunil, 33379009 - Kreter, Michael, 26403366 - Ndiyavala, Hambeleleni, 22799133 - Schutte, Hester M., 20126999 - Seyffert, Albertus Stefanus, 10060499 - Van der Walt, Diederick Johannes, 21106266 - Van Rensburg, Carlo, 12006653 - Venter, Christo, 26594080 - Wadiasingh, Zorawar, 29092086 - Zacharias, Michael, and 34208968 - Zywucka-Hejzner, Natalia
- Subjects
individual [BL Lacertae objects] ,Swift Gamma-Ray Burst Mission ,VHE [gamma ray] ,satellite ,Resolved and unresolved sources as a function of wavelength ,Astrophysics ,01 natural sciences ,GLAST ,blazar ,high-redshift [Galaxies] ,galaxies: high-redshift ,5/3 ,HESS ,0103 physical sciences ,Atom ,High Energy Stereoscopic System ,Spectroscopy ,Blazar ,010303 astronomy & astrophysics ,BL Lacertae objects: individual ,Astroparticle physics ,Physics ,general [Gamma-rays] ,energy: high ,010308 nuclear & particles physics ,Astronomy and Astrophysics ,gamma-rays: general ,redshift ,Redshift ,gamma ray: VHE ,13. Climate action ,Space and Planetary Science ,ddc:520 ,high [energy] ,HESS - Abteilung Hinton ,Astrophysics - High Energy Astrophysical Phenomena ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Fermi Gamma-ray Space Telescope - Abstract
H.E.S.S. Collaboration: et al., We report on the detection of very high energy (VHE; E > 100 GeV) γ-ray emission from the BL Lac objects KUV 00311−1938 and PKS 1440−389 with the High Energy Stereoscopic System (H.E.S.S.). H.E.S.S. observations were accompanied or preceded by multiwavelength observations with Fermi/LAT, XRT and UVOT onboard the Swift satellite, and ATOM. Based on an extrapolation of the Fermi/LAT spectrum towards the VHE γ-ray regime, we deduce a 95 per cent confidence level upper limit on the unknown redshift of KUV 00311−1938 of z < 0.98 and of PKS 1440−389 of z < 0.53. When combined with previous spectroscopy results, the redshift of KUV 00311−1938 is constrained to 0.51 ≤ z < 0.98 and of PKS 1440−389 to 0.14 ⪅ z < 0.53., The support of the Namibian authorities and of the University of Namibia in facilitating the construction and operation of H.E.S.S. is gratefully acknowledged, as is the support by the German Ministry for Education and Research (BMBF), the Max Planck Society, the German Research Foundation (DFG), the Helmholtz Association, the Alexander von Humboldt Foundation, the French Ministry of Higher Education, Research and Innovation, the Centre National de la Recherche Scientifique (CNRS/IN2P3 and CNRS/INSU), the Commissariat a l'Energie Atomique et aux Energies Alternatives (CEA), the U.K. Science and Technology Facilities Council (STFC), the Knut and Alice Wallenberg Foundation, the National Science Centre, Poland grant no. 2016/22/M/ST9/00382, the South African Department of Science and Technology and National Research Foundation, the University of Namibia, the National Commission on Research, Science and Technology of Namibia (NCRST), the Austrian Federal Ministry of Education, Science and Research and the Austrian Science Fund (FWF), the Australian Research Council (ARC), the Japan Society for the Promotion of Science, and the University of Amsterdam. We appreciate the excellent work of the technical support staff in Berlin, Zeuthen, Heidelberg, Palaiseau, Paris, Saclay, Tubingen, and in Namibia in the construction and operation of the equipment. This work benefited from services provided by the H.E.S.S. Virtual Organisation, supported by the national resource providers of the EGI Federation. The H.E.S.S. and Fermi/LAT analysis computations were performed on resources provided by the Swedish National Infrastructure for Computing (SNIC) at Lunarc. Tomas Bylund and Yvonne Becherini wish to acknowledge the support of the Data Intensive Sciences and Applications (DISA) centre at Linnaeus University. Matteo Cerruti has received financial support through the Postdoctoral Junior Leader Fellowship Programme from “la Caixa” Foundation (LCF/BQ/PI18/11630012). This research made use of the NASA/IPAC Extragalactic Database (NED) and of the SIMBAD Astronomical Database, of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. We acknowledge the use of public data from the Swift data archive. This research made use of Gammapy, a community- developed core Python package for gamma-ray astronomy (Deil et al. 2017). This research has made use of data and software provided by the Fermi Science Support Center, managed by the HEASARC at the Goddard Space Flight Center. Part of this work is based on archival data, software or online services provided by the Space Science Data Center - ASI. This research has made use of the VizieR catalogue access tool, CDS, Strasbourg, France (doi:10.26093/cds/vizier). The original description of the VizieR service was published in A&AS 143, 23. This research has made use of the NASA/IPAC Infrared Science Archive, which is funded by the National Aeronautics and Space Administration and operated by the California Institute of Technology.
- Published
- 2020
38. Gravitational Waves Induced by Scalar Perturbations with a Lognormal Peak
- Author
-
Shi Pi and Misao Sasaki
- Subjects
Physics ,High Energy Physics - Theory ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,010308 nuclear & particles physics ,Infrared ,Gravitational wave ,Scalar (mathematics) ,Spectrum (functional analysis) ,Perturbation (astronomy) ,FOS: Physical sciences ,Astronomy and Astrophysics ,General Relativity and Quantum Cosmology (gr-qc) ,01 natural sciences ,Omega ,General Relativity and Quantum Cosmology ,High Energy Physics - Theory (hep-th) ,0103 physical sciences ,Log-normal distribution ,Mathematical physics ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We study the stochastic gravitational wave (GW) background induced by the primordial scalar perturbation with the spectrum having a lognormal peak of width $\Delta$ at $k=k_*$. We derive an analytical formula for the GW spectrum $\Omega_\text{GW}$ for both narrow ($\Delta\ll1$) and broad ($\Delta\gtrsim1$) peaks. In the narrow-peak case, the spectrum has a double peak feature with the sharper peak at $k= 2k_*/\sqrt{3}$. On the infrared (IR) side of the spectrum, we find power-law behavior with a break at $k=k_b$ in the power-law index where it chages from $k^3$ on the far IR side to $k^2$ on the near IR side. We find the ratio of the break frequency to the peak frequency is determined by $\Delta$ as $f_b/f_p\approx\sqrt{3}\Delta$, where $f_b$ and $f_p$ are the break and peak frequencies, respectively. In the broad-peak case, we find the GW spectrum also has a lognormal peak at $k=k_*$ but with a smaller width of $\Delta/\sqrt2$. Using these derived analytic formulae, we also present expressions for the maximum values of $\Omega_\text{GW}$ for both narrow and broad cases. Our results will provide a useful tool in searching for the induced GW signals in the coming decades., Comment: 15 pages, 3 figures. Some figures redrawn. References added and reorganized. Accepted for JCAP
- Published
- 2020
39. A path(-integral) toward non-perturbative effects in Hawking radiation
- Author
-
Pisin Chen, Misao Sasaki, and Dong-han Yeom
- Subjects
Physics ,High Energy Physics - Theory ,010308 nuclear & particles physics ,Black hole information paradox ,Evaporation ,FOS: Physical sciences ,Astronomy and Astrophysics ,General Relativity and Quantum Cosmology (gr-qc) ,01 natural sciences ,General Relativity and Quantum Cosmology ,Black hole ,Hawking ,High Energy Physics - Theory (hep-th) ,Space and Planetary Science ,Quantum electrodynamics ,0103 physical sciences ,Path integral formulation ,Non-perturbative ,010306 general physics ,Mathematical Physics ,Hawking radiation - Abstract
Hawking's seminal discovery of black hole evaporation was based on the semi-classical, perturbative method. Whether black hole evaporation may result in the loss of information remains undetermined. The solution to this paradox would most likely rely on the knowledge of the end-life of the evaporation, which evidently must be in the non-perturbative regime. Here we reinterpret the Hawking radiation as the tunneling of instantons, which is inherently non-perturbative. For definitiveness, we invoke the picture of shell-anti-shell pair production and show that it is equivalent to that of instanton tunneling. We find that such a shell pair production picture can help to elucidate firewalls and ER=EPR conjectures that attempt to solve the information paradox, and may be able to address the end-life issue toward an ultimate resolution., 5 pages, 2 figures
- Published
- 2020
40. Resolving a spacetime singularity with field transformations
- Author
-
Atsushi Naruko, Chul-Moon Yoo, and Misao Sasaki
- Subjects
Physics ,Theoretical physics ,Field (physics) ,010308 nuclear & particles physics ,0103 physical sciences ,General Physics and Astronomy ,Gravitational singularity ,010303 astronomy & astrophysics ,01 natural sciences - Abstract
It is widely believed that classical gravity breaks down and quantum gravity is needed to deal with a singularity. We show that there is a class of spacetime curvature singularities which can be resolved with metric and matter field transformations. As an example, we consider an anisotropic power-law inflation model with scalar and gauge fields in which a space-like curvature singularity exists at the beginning of time. First, we provide a transformation of the metric to the flat geometry, i.e. the Minkowski metric. The transformation removes the curvature singularity located at the origin of time. An essential difference from previous work in the literature is that the origin of time is not sent to past infinity by the transformation but it remains at a finite time in the past. Thus the geometry becomes extensible beyond the singularity. In general, matter fields are still singular in their original form after such a metric transformation. However, we explicitly show that there is a case in which the singular behavior of the matter fields can be completely removed by a redefinition of matter fields. Thus, for the first time, we have resolved a class of initial cosmic singularities and successfully extended the spacetime beyond the singularity in the framework of classical gravity.
- Published
- 2020
41. Exploring Primordial Black Holes from the Multiverse with Optical Telescopes
- Author
-
Edoardo Vitagliano, Misao Sasaki, Volodymyr Takhistov, Masahiro Takada, Sunao Sugiyama, and Alexander Kusenko
- Subjects
High Energy Physics - Theory ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Astrophysics::High Energy Astrophysical Phenomena ,Population ,Dark matter ,General Physics and Astronomy ,FOS: Physical sciences ,Primordial black hole ,Astrophysics ,General Relativity and Quantum Cosmology (gr-qc) ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,General Relativity and Quantum Cosmology ,0103 physical sciences ,010306 general physics ,education ,Physics ,Inflation (cosmology) ,Supermassive black hole ,education.field_of_study ,LIGO ,High Energy Physics - Theory (hep-th) ,13. Climate action ,Event (particle physics) ,False vacuum ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Primordial black holes (PBHs) are a viable candidate for dark matter if the PBH masses are in the currently unconstrained "sublunar" mass range. We revisit the possibility that PBHs were produced by nucleation of false vacuum bubbles during inflation. We show that this scenario can produce a population of PBHs that simultaneously accounts for all dark matter, explains the candidate event in Subaru Hyper Suprime-Cam (HSC) data, and contains both heavy black holes as observed by LIGO and very heavy seeds of supermassive black holes. We demonstrate with numerical studies that future observations of HSC, as well as other optical surveys, such as LSST, will be able to provide a definitive test for this generic PBH formation mechanism if it is the dominant source of dark matter., 7 pages, 3 figures; v2: published version
- Published
- 2020
42. New measures to test modified gravity cosmologies
- Author
-
Jiro Matsumoto, Teppei Okumura, and Misao Sasaki
- Subjects
Physics ,Expansion rate ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,010308 nuclear & particles physics ,General relativity ,Sigma ,Perturbation (astronomy) ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,General Relativity and Quantum Cosmology (gr-qc) ,01 natural sciences ,General Relativity and Quantum Cosmology ,Metric expansion of space ,Gravitational lens ,0103 physical sciences ,Dark energy ,Astrophysics - Cosmology and Nongalactic Astrophysics ,Mathematical physics ,Phase diagram - Abstract
The observed accelerated expansion of the Universe may be explained by dark energy or the breakdown of general relativity (GR) on cosmological scales. When the latter case, a modified gravity scenario, is considered, it is often assumed that the background evolution is the same as the $\Lambda$CDM model but the density perturbation evolves differently. In this paper, we investigate more general classes of modified gravity, where both the background and perturbation evolutions are deviated from those in the $\Lambda$CDM model. We introduce two phase diagrams, $\alpha{\rm-}f\sigma _8$ and $H{\rm-}f\sigma _8$ diagrams; $H$ is the expansion rate, $f\sigma_8$ is a combination of the growth rate of the Universe and the normalization of the density fluctuation which is directly constrained by redshift-space distortions, and $\alpha$ is a parameter which characterizes the deviation of gravity from GR and can be probed by gravitational lensing. We consider several specific examples of Horndeski's theory, which is a general scalar-tensor theory, and demonstrate how deviations from the $\Lambda$CDM model appears in the $\alpha{\rm-}f\sigma _8$ and $H{\rm-}f\sigma _8$ diagrams. The predicted deviations will be useful for future large-scale structure observations to exclude some of the modified gravity models., Comment: 18 pages, 8 figures, accepted to JCAP
- Published
- 2020
- Full Text
- View/download PDF
43. Primordial black holes and gravitational waves from resonant amplification during inflation
- Author
-
Zihan Zhou, Misao Sasaki, Jie Jiang, Yi-Fu Cai, and Shi Pi
- Subjects
Inflation (cosmology) ,Physics ,High Energy Physics - Theory ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Field (physics) ,010308 nuclear & particles physics ,Gravitational wave ,Spectral density ,FOS: Physical sciences ,Primordial black hole ,General Relativity and Quantum Cosmology (gr-qc) ,01 natural sciences ,General Relativity and Quantum Cosmology ,High Energy Physics - Phenomenology ,High Energy Physics - Phenomenology (hep-ph) ,High Energy Physics - Theory (hep-th) ,Hubble volume ,Quantum electrodynamics ,0103 physical sciences ,Parametric oscillator ,010306 general physics ,Scalar field ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present a new realization of the resonant production of primordial black holes as well as gravitational waves in a two-stage inflation model consisting of a scalar field \phi with an axion-monodromy-like periodic structure in the potential that governs the first stage and another field \chi with a hilltop-like potential that dominates the second stage. The parametric resonance seeded by the periodic structure at the first stage amplifies the perturbations of both fields inside the Hubble radius. While the evolution of the background trajectory experiences a turn as the oscillatory barrier height increases, the amplified perturbations of \chi remain as they are and contribute to the final curvature perturbation. It turns out that the primordial power spectrum displays a significant resonant peak on small scales, which can lead to an abundant production of primordial black holes. Furthermore, gravitational waves are also generated from the resonantly enhanced field perturbations during inflation, the amplitude of which may be constrained by future gravitational wave interferometers., Comment: 14 pages, 8 figures
- Published
- 2020
- Full Text
- View/download PDF
44. Multi-field dark energy: cosmic acceleration on a steep potential
- Author
-
Valeri Vardanyan, Misao Sasaki, Adam R. Solomon, Yashar Akrami, Astrophysique, Laboratoire de physique de l'ENS - ENS Paris (LPENS), Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Sorbonne Université (SU)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Sorbonne Université (SU)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA (UMR_8112)), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY), Kavli Institute for the Physics and Mathematics of the Universe [Tokyo] (Kavli IPMU), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo (UTokyo)-The University of Tokyo (UTokyo), Kyoto University [Kyoto], National Taiwan University [Taiwan] (NTU), Carnegie Mellon University [Pittsburgh] (CMU), Laboratoire de physique de l'ENS - ENS Paris (LPENS (UMR_8023)), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-École normale supérieure - Paris (ENS Paris), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
- Subjects
High Energy Physics - Theory ,cosmological model ,Nuclear and High Energy Physics ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Field (physics) ,constraint ,QC1-999 ,quintessence ,FOS: Physical sciences ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,General Relativity and Quantum Cosmology (gr-qc) ,Space (mathematics) ,01 natural sciences ,General Relativity and Quantum Cosmology ,Cosmology ,Large-scale structure ,Acceleration ,High Energy Physics - Phenomenology (hep-ph) ,Multi-field dark energy ,0103 physical sciences ,structure ,cluster ,010306 general physics ,Physics ,COSMIC cancer database ,background ,[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th] ,010308 nuclear & particles physics ,Swampland ,Clustering dark energy ,dark energy: perturbation ,field theory: scalar ,multiple field ,High Energy Physics - Phenomenology ,High Energy Physics - Theory (hep-th) ,trajectory ,[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph] ,[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc] ,Trajectory ,Dark energy ,expansion: acceleration ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,geodesic ,signature ,Astrophysics - Cosmology and Nongalactic Astrophysics ,Quintessence - Abstract
We argue that dark energy with multiple fields is theoretically well-motivated and predicts distinct observational signatures, in particular when cosmic acceleration takes place along a trajectory that is highly non-geodesic in field space. Such models provide novel physics compared to $\Lambda$CDM and quintessence by allowing cosmic acceleration on steep potentials. From the theoretical point of view, these theories can easily satisfy the conjectured swampland constraints and may in certain cases be technically natural, potential problems which are endemic to standard single-field dark energy. Observationally, we argue that while such multi-field models are likely to be largely indistinguishable from the concordance cosmology at the background level, dark energy perturbations can cluster, leading to an enhanced growth of large-scale structure that may be testable as early as the next generation of cosmological surveys., Comment: 9 pages, 1 figure. Extended discussion, added references, matches published version
- Published
- 2020
- Full Text
- View/download PDF
45. Concept design of low frequency telescope for CMB B-mode polarization satellite LiteBIRD
- Author
-
Mario G. Lattanzi, Carlo Baccigalupi, François Levrier, J. M. Duval, J. Austermann, M. Brilenkov, B. Thorne, Eiichiro Komatsu, D. Rambaud, T. Nagasaki, Peter Shirron, H. Imada, Nozomu Kogiso, Jeff Van Lanen, H. Takakura, T. Kawasaki, Lionel Duband, Ingunn Kathrine Wehus, Y. Hoshino, Tadayasu Dotani, Enrique Martinez-Gonzalez, Tucker Elleflot, S. Beckman, T. Kaga, Shogo Nakamura, A. Kato, Giorgio Savini, S. Bounissou, S. Mandelli, Peter Charles Hargrave, Francois Boulanger, Julien Grain, S. Realini, Reijo Keskitalo, Bruno Maffei, Y. Nagano, Davide Maino, D. Herman, Michael R. Vissers, B. Mot, R. Banerji, N. Katayama, James A. Beall, Johannes Hubmayr, Tomotake Matsumura, Shugo Oguri, G. Patanchon, S. Basak, S. Takakura, Créidhe O'Sullivan, Massimo Gervasi, Y. Takase, S. Stever, A. Carones, Raphael Flauger, F. J. Casas, T. de Haan, Yasuhiro Murata, T. Prouvé, Douglas Scott, P. Vielva, Toshiya Namikawa, Mayu Tominaga, Yuki Sakurai, Luca Lamagna, Eric Hivon, S. Nerval, Ken Ebisawa, Noriko Y. Yamasaki, Julian Borrill, Shingo Kashima, Hajime Sugai, M. De Petris, R. Nagata, Ted Kisner, D. W. Curtis, A. Mennella, P. de Bernardis, Alexandre E. Adler, Misao Sasaki, Jiansong Gao, Kam Arnold, K. Ganga, T. Ghigna, Kazunori Kohri, Ben Westbrook, R. Aurlien, T. Toda, Yasuhiro Takeda, U. Fuskeland, Alessandro Gruppuso, Giuseppe Puglisi, A. Ritacco, I. Kreykenbohm, C. Leloup, M. A. Dobbs, Jochen Weller, Joel N. Ullom, Chao-Lin Kuo, M. Migliaccio, Charles A. Hill, E. Allys, Nicola Vittorio, T. Yoshida, R. Takaku, Thomas Essinger-Hileman, Alessandro Paiella, J. Aumont, Berend Winter, Junji Yumoto, Yutaka Terao, Aritoki Suzuki, T. Hasebe, Toshiyuki Nishibori, A. Cukierman, P. Campeti, Y. Hirota, Alan J. Kogut, Josquin Errard, S. Sugiyama, L. P. L. Colombo, Anthony Challinor, Yohei Kobayashi, A. Kushino, Gemma Luzzi, Makoto Nagai, M. Sandri, Christopher Raum, Giuseppe D'Alessandro, Masashi Hazumi, Masaya Hasegawa, Renée Hlozek, Silvia Masi, Joseph Seibert, F. Piacentini, J. A. Murphy, Greg Jaehnig, Jose Alberto Rubino-Martin, Davide Poletti, Michael L. Brown, Blake D. Sherwin, Daniela Paoletti, Joshua Montgomery, F. Columbro, Gianluca Morgante, J. Bermejo, M. Tomasi, Haruki Nishino, P. Diego-Palazuelos, Hirokazu Ishino, T. Iida, Kazuhisa Mitsuda, Haruyuki Sakurai, Keith L. Thompson, Javier Cubas, Neil Trappe, Keisuke Shinozaki, Adrian T. Lee, Hiroyuki Ohsaki, Martina Gerbino, D. Herranz, M. Tsuji, Marco Bersanelli, Nadia Dachlythra, M. Russell, E. Gjerløw, Maresuke Shiraishi, E. de la Hoz, Eric V. Linder, Graeme Smecher, Eric R. Switzer, Erminia Calabrese, G. Roudil, Mario Zannoni, T. Maciaszek, L. Pagano, D. Auguste, Frank Grupp, Kosei Ishimura, Fabrizio Villa, Kuniaki Konishi, I. S. Ohta, G. Signorelli, J. Bonis, A. Tartari, Jun-ichi Suzuki, R. B. Barreiro, J. F. Cliche, M. Maki, Douglas H Beck, Ricardo Genova-Santos, A. J. Banday, M. Galloway, T. L. Svalheim, Fabio Finelli, L. A. Montier, H. K. Eriksen, Nicoletta Krachmalnicoff, Karen C. Cheung, Cristian Franceschet, Matthieu Tristram, V. Chan, G. Polenta, Clive Dickinson, N. W. Halverson, Kiyotomo Ichiki, Yuji Chinone, Mathieu Remazeilles, Giampaolo Pisano, Jon E. Gudmundsson, J. Peloton, M. Reinecke, Shannon M. Duff, Carole Tucker, Y. Minanmi, Gene C. Hilton, Martin Bucher, P. A. R. Ade, G. Vermeulen, K. Komatsu, Norio Okada, Thibaut Louis, Sophie Henrot-Versille, Edward J. Wollack, Paolo Natoli, Hideo Ogawa, Jörn Wilms, E. Taylor, Andrea Zonca, Makoto Hattori, Radek Stompor, Masahiro Tsujimoto, Yutaro Sekimoto, Marcin Gradziel, H. Thommesen, Zmuidzinas, Jonas, Sekimoto, Y, Ade, P, Adler, A, Allys, E, Arnold, K, Auguste, D, Aumont, J, Aurlien, R, Austermann, J, Baccigalupi, C, Banday, A, Banerji, R, Barreiro, R, Basak, S, Beall, J, Beck, D, Beckman, S, Bermejo, J, de Bernardis, P, Bersanelli, M, Bonis, J, Borrill, J, Boulanger, F, Bounissou, S, Brilenkov, M, Brown, M, Bucher, M, Calabrese, E, Campeti, P, Carones, A, Casas, F, Challinor, A, Chan, V, Cheung, K, Chinone, Y, Cliche, J, Colombo, L, Columbro, F, Cubas, J, Cukierman, A, Curtis, D, D'Alessandro, G, Dachlythra, N, De Petris, M, Dickinson, C, Diego-Palazuelos, P, Dobbs, M, Dotani, T, Duband, L, Duff, S, Duval, J, Ebisawa, K, Elleflot, T, Eriksen, H, Errard, J, Essinger-Hileman, T, Finelli, F, Flauger, R, Franceschet, C, Fuskeland, U, Galloway, M, Ganga, K, Gao, J, Genova-Santos, R, Gerbino, M, Gervasi, M, Ghigna, T, Gjerløw, E, Gradziel, M, Grain, J, Grupp, F, Gruppuso, A, Gudmundsson, J, de Haan, T, Halverson, N, Hargrave, P, Hasebe, T, Hasegawa, M, Hattori, M, Hazumi, M, Henrot-Versillé, S, Herman, D, Herranz, D, Hill, C, Hilton, G, Hirota, Y, Hivon, E, Hlozek, R, Hoshino, Y, de la Hoz, E, Hubmayr, J, Ichiki, K, Iida, T, Imada, H, Ishimura, K, Ishino, H, Jaehnig, G, Kaga, T, Kashima, S, Katayama, N, Kato, A, Kawasaki, T, Keskitalo, R, Kisner, T, Kobayashi, Y, Kogiso, N, Kogut, A, Kohri, K, Komatsu, E, Komatsu, K, Konishi, K, Krachmalnicoff, N, Kreykenbohm, I, Kuo, C, Kushino, A, Lamagna, L, Lanen, J, Lattanzi, M, Lee, A, Leloup, C, Levrier, F, Linder, E, Louis, T, Luzzi, G, Maciaszek, T, Maffei, B, Maino, D, Maki, M, Mandelli, S, Martinez-Gonzalez, E, Masi, S, Matsumura, T, Mennella, A, Migliaccio, M, Minanmi, Y, Mitsuda, K, Montgomery, J, Montier, L, Morgante, G, Mot, B, Murata, Y, Murphy, J, Nagai, M, Nagano, Y, Nagasaki, T, Nagata, R, Nakamura, S, Namikawa, T, Natoli, P, Nerval, S, Nishibori, T, Nishino, H, O'Sullivan, C, Ogawa, H, Oguri, S, Osaki, H, Ohta, I, Okada, N, Pagano, L, Paiella, A, Paoletti, D, Patanchon, G, Peloton, J, Piacentini, F, Pisano, G, Polenta, G, Poletti, D, Prouvé, T, Puglisi, G, Tambaud, D, Raum, C, Realini, S, Reinecke, M, Remazeilles, M, Ritacco, A, Roudil, G, Rubino-Martin, J, Russell, M, Sakurai, H, Sakurai, Y, Sandri, M, Sasaki, M, Savini, G, Scott, D, Seibert, J, Sherwin, B, Shinozaki, K, Shiraishi, M, Shirron, P, Signorelli, G, Smecher, G, Stever, S, Stompor, R, Sugai, H, Sugiyama, S, Suzuki, A, Suzuki, J, Svalheim, T, Switzer, E, Takaku, R, Takakura, H, Takakura, S, Takase, Y, Takeda, Y, Tartari, A, Taylor, E, Terao, Y, Thommesen, H, Thompson, K, Thorne, B, Toda, T, Tomasi, M, Tominaga, M, Trappe, N, Tristram, M, Tsuji, M, Tsujimoto, M, Tucker, C, Ullom, J, Vermeulen, G, Vielva, P, Villa, F, Vissers, M, Vittorio, N, Wehus, I, Weller, J, Westbrook, B, Wilms, J, Winter, B, Wollack, E, Yamasaki, N, Yoshida, T, Yumoto, J, Zannoni, M, Zonca, A, Astrophysique, Laboratoire de physique de l'ENS - ENS Paris (LPENS (UMR_8023)), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut de recherche en astrophysique et planétologie (IRAP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Théorique de l'ENS (LPTENS), Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Théorique et Hautes Energies (LPTHE), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS), Observatoire de Paris - Site de Paris (OP), Centre National de la Recherche Scientifique (CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Centre National d’Études Spatiales [Paris] (CNES), Centre National d'Études Spatiales [Toulouse] (CNES), Institut Néel (NEEL), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), LiteBIRD, Laboratoire de physique de l'ENS - ENS Paris (LPENS), Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Sorbonne Université (SU)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Sorbonne Université (SU)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Département de Physique de l'ENS-PSL, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Département de Physique de l'ENS-PSL, Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Département des Systèmes Basses Températures (DSBT ), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA), Laboratoire des Cryoréfrigérateurs et Cryogénie Spatiale (LCCS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Laboratoire de Physique Théorique de l'ENS [École Normale Supérieure] (LPTENS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Hélium : du fondamental aux applications (NEEL - HELFA), and Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Aperture ,FOS: Physical sciences ,7. Clean energy ,cryogenic telescope ,law.invention ,Cosmic microwave background ,Entrance pupil ,Telescope ,FIS/05 - ASTRONOMIA E ASTROFISICA ,Optics ,millimeter-wave polarization ,space program ,Settore FIS/05 - Astronomia e Astrofisica ,law ,Angular resolution ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Physics ,Stray light ,business.industry ,Astrophysics::Instrumentation and Methods for Astrophysics ,Polarization (waves) ,Lens (optics) ,Cardinal point ,Astrophysics - Instrumentation and Methods for Astrophysics ,business ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
LiteBIRD has been selected as JAXA's strategic large mission in the 2020s, to observe the cosmic microwave background (CMB) $B$-mode polarization over the full sky at large angular scales. The challenges of LiteBIRD are the wide field-of-view (FoV) and broadband capabilities of millimeter-wave polarization measurements, which are derived from the system requirements. The possible paths of stray light increase with a wider FoV and the far sidelobe knowledge of $-56$ dB is a challenging optical requirement. A crossed-Dragone configuration was chosen for the low frequency telescope (LFT : 34--161 GHz), one of LiteBIRD's onboard telescopes. It has a wide field-of-view ($18^\circ \times 9^\circ$) with an aperture of 400 mm in diameter, corresponding to an angular resolution of about 30 arcminutes around 100 GHz. The focal ratio f/3.0 and the crossing angle of the optical axes of 90$^\circ$ are chosen after an extensive study of the stray light. The primary and secondary reflectors have rectangular shapes with serrations to reduce the diffraction pattern from the edges of the mirrors. The reflectors and structure are made of aluminum to proportionally contract from warm down to the operating temperature at $5\,$K. A 1/4 scaled model of the LFT has been developed to validate the wide field-of-view design and to demonstrate the reduced far sidelobes. A polarization modulation unit (PMU), realized with a half-wave plate (HWP) is placed in front of the aperture stop, the entrance pupil of this system. A large focal plane with approximately 1000 AlMn TES detectors and frequency multiplexing SQUID amplifiers is cooled to 100 mK. The lens and sinuous antennas have broadband capability. Performance specifications of the LFT and an outline of the proposed verification plan are presented., Comment: 21 pages, 14 figures
- Published
- 2020
46. Approximate gauge independence of the induced gravitational wave spectrum
- Author
-
Guillem Domènech and Misao Sasaki
- Subjects
Physics ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,010308 nuclear & particles physics ,Gravitational wave ,High Energy Physics::Lattice ,FOS: Physical sciences ,Observable ,Primordial black hole ,Astrophysics::Cosmology and Extragalactic Astrophysics ,General Relativity and Quantum Cosmology (gr-qc) ,Invariant (physics) ,01 natural sciences ,General Relativity and Quantum Cosmology ,Method of undetermined coefficients ,Theoretical physics ,Hamiltonian formalism ,0103 physical sciences ,Cosmological perturbation theory ,010306 general physics ,Scalar curvature ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Gravitational waves (GWs) induced by scalar curvature fluctuations are an important source of the cosmological GW background and a crucial counterpart of the primordial black hole scenario. However, doubts have been cast on the theoretically predicted induced GW spectrum due to its seeming gauge dependence. In this paper, we shed light on the gauge dependence issue of the induced GW spectrum in general cosmological backgrounds. First, inspired by the Hamiltonian formalism we provide very simple formulas for the tensor modes at second order in cosmological perturbation theory. We also emphasize the difference between observable and gauge invariant variables. Second, we argue that the Newton (or shear-free) gauge is suitable for both the calculation of induced GWs and the physical interpretation. We then show that, most notably, the induced GW spectrum is invariant under a set of reasonable gauge transformations, i.e. physically well behaved on small scales, once the source term has become inactive. This includes the commonly used flat, constant Hubble and synchronous gauges but excludes the comoving slicing gauge. We also show that a particular solution of the GW equation in a dust dominated universe while the source term is active can be gauged away by a small change of gauge., Comment: Typos corrected, matches published version
- Published
- 2020
- Full Text
- View/download PDF
47. Detection of very-high-energy γ -ray emission from the colliding wind binary η Car with H.E.S.S
- Author
-
E. O. Angüner, Ramin Marx, M. Panter, U. Katz, G. Heinzelmann, Iryna Lypova, S. Nakashima, Yvonne Becherini, G. Martí-Devesa, Stefan Klepser, H. Yoneda, A. Fiasson, L. Giunti, P. deWilt, J. King, R. Adam, I. Jung-Richardt, James Davies, F. Eichhorn, Michael Punch, Maria Haupt, R. J. Tuffs, Michal Ostrowski, J.-P. Lenain, Stefan Ohm, Łukasz Stawarz, J. F. Glicenstein, Frank M. Rieger, Markus Holler, Michelle Tsirou, C. Levy, S. Pita, S. Colafrancesco, L. Rinchiuso, Q. Remy, Felix Jankowsky, J. Zorn, M.-H. Grondin, Mischa Breuhaus, C. Arcaro, Stefano Gabici, F. Niederwanger, Jacco Vink, Sabrina Casanova, Halim Ashkar, M. Curyło, Stefan Funk, Alicja Wierzcholska, Gavin Rowell, M. Bryan, Felix Aharonian, N. Shafi, R. D. Parsons, H. Ndiyavala, B. van Soelen, B. Rudak, Dmitriy Kostunin, K. Nakashima, Nu. Komin, Natalia Żywucka, M. de Naurois, T. Chand, Jhilik Majumdar, L. Oakes, A. Lemière, Heinrich J. Völk, M. Renaud, R. Rauth, Axel Donath, A. W. Chen, M. Büchele, S. Eschbach, M. Barnard, Marek Jamrozy, J. Bolmont, Gianluca Giavitto, K. Bernlöhr, Helene Sol, V. Poireau, H. Odaka, M. Füßling, Jacek Niemiec, Rafal Moderski, C. Perennes, K. Egberts, Dieter Horns, Olaf Reimer, M. Lemoine-Goumard, J. Dyks, Ruizhi Yang, Francois Brun, Reinhard Schlickeiser, Zorawar Wadiasingh, M. Böttcher, Michael Kreter, S. Chandra, Paolo Marchegiani, P. Vincent, S. J. Fegan, A. Djannati-Ataï, V. Barbosa Martins, S. Raab, L. Dirson, F. Gaté, Kirsty Feijen, S. Bonnefoy, Constantin Steppa, Alexandre Marcowith, M. Zacharias, Rachel Simoni, Masanori Arakawa, Celine Armand, Thomas Murach, Joachim Hahn, T. Vuillaume, A. Schulz, Clemens Hoischen, A. A. Zdziarski, Ullrich Schwanke, V. Joshi, V. Sahakian, A. Carosi, F. Werner, F. Ait Benkhali, E. de Oña Wilhelmi, Anton Dmytriiev, Isak Delberth Davids, S. Schwemmer, Arnaud Mares, Andrea Santangelo, Jim Hinton, Roberta Zanin, C. Trichard, S. Sailer, Dmitry Khangulyan, P. J. Meintjes, Tom Armstrong, Matteo Cerruti, D. A. Sanchez, M. Seglar-Arroyo, P.-O. Petrucci, Johan Bregeon, R. J. White, J. Devin, F. Schüssler, M. Scalici, A. Priyana Noel, Domenico Tiziani, D. Malyshev, Tadayuki Takahashi, A.M. Taylor, Werner Hofmann, Michael Backes, Jonathan Mackey, Victor Doroshenko, Gilles Henri, Heike Prokoph, C. Moore, Q. Piel, Dorit Glawion, Tim Holch, E. Moulin, Tomasz Bulik, S. Caroff, D. Huber, Marion Spir-Jacob, G. Maurin, H. Iwasaki, A.S. Seyffert, Naomi Tsuji, D. Jankowsky, Gerard Fontaine, M. Katsuragawa, Andreas Quirrenbach, Hester Schutte, Riaan Steenkamp, Andreas Specovius, Christian Stegmann, Stefan Wagner, Yasunobu Uchiyama, L. Mohrmann, C. van Rensburg, Misao Sasaki, D. J. van der Walt, M. Hörbe, T. Tavernier, E. Leser, P. T. O'Brien, B. Khélifi, G. Hermann, Regis Terrier, Carlo Romoli, Christo Venter, Y. A. Gallant, Atreyee Sinha, C. van Eldik, A. Zech, M. Mohamed, Garret Cotter, D. A. Prokhorov, K. Kosack, B. Peyaud, G. Pühlhofer, A. Reimer, Pierre Brun, Jean-Pierre Ernenwein, Johannes Veh, R. Blackwell, E. Ruiz-Velasco, G. Emery, S. Saito, Thomas Bylund, M. Tluczykont, Armelle Jardin-Blicq, Jacques Muller, Samuel Timothy Spencer, H. Abdalla, M. A. Kastendieck, G. Vasileiadis, Włodek Kluźniak, Krzysztof Katarzynski, Catherine Boisson, Christoph Deil, Mohanraj Senniappan, D. Berge, Paul J. Morris, Kleopas Shiningayamwe, Lenka Tomankova, Jason John Watson, V. Marandon, D. Gottschall, Thomas Lohse, G. Lamanna, Alexander von Humboldt Foundation, Southern California Earthquake Center, EGI Foundation, Science and Technology Facilities Council (UK), Australian Research Council, German Research Foundation, Japan Society for the Promotion of Science, University of Amsterdam, Federal Ministry of Education and Research (Germany), Austrian Science Fund, Knut and Alice Wallenberg Foundation, Max Planck Society, National Science Centre (Poland), Centre National de la Recherche Scientifique (France), Commissariat à l'Ènergie Atomique et aux Ènergies Alternatives (France), Helmholtz Association, National Commission on Research Science and Technology (Namibia), University of Namibia, Federal Ministry of Education, Science and Research (Austria), Laboratoire Leprince-Ringuet (LLR), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Centre de Physique des Particules de Marseille (CPPM), Aix Marseille Université (AMU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Annecy de Physique des Particules (LAPP), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Laboratoire Univers et Théories (LUTH (UMR_8102)), Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS), Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE (UMR_7585)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Univers et Particules de Montpellier (LUPM), Université Montpellier 2 - Sciences et Techniques (UM2)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Centre d'Etudes Nucléaires de Bordeaux Gradignan (CENBG), Université Sciences et Technologies - Bordeaux 1-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA), H.E.S.S., Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France, H.E.S.S. Collaboration, Faculty of Science, High Energy Astrophys. & Astropart. Phys (API, FNWI), Gravitation and Astroparticle Physics Amsterdam, and Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Montpellier 2 - Sciences et Techniques (UM2)
- Subjects
individual: η CarStars: Wolf-Rayet [Stars] ,Photon ,stars: individual: η Car ,Astrophysics::High Energy Astrophysical Phenomena ,Flux ,Cosmic ray ,Astrophysics ,01 natural sciences ,cosmic rays ,0103 physical sciences ,individual: η Car [stars] ,High Energy Stereoscopic System ,010303 astronomy & astrophysics ,Cosmic rays ,Colliding-wind binary ,Astroparticle physics ,Physics ,Spectral index ,non-thermal [Radiation mechanisms] ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,general [Binaries] ,010308 nuclear & particles physics ,Astronomy and Astrophysics ,radiation mechanisms: non-thermal ,Wolf-Rayet [stars] ,binaries: general ,13. Climate action ,Space and Planetary Science ,[SDU]Sciences of the Universe [physics] ,astroparticle physics ,ddc:520 ,HESS - Abteilung Hinton ,stars: Wolf-Rayet ,Astrophysics - High Energy Astrophysical Phenomena ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Stars: individual: η CarStars: Wolf-Rayet ,Noise (radio) - Abstract
Aims. Colliding wind binary systems have long been suspected to be high-energy (HE; 100 MeV < E < 100 GeV) {\gamma}-ray emitters. {\eta} Car is the most prominent member of this object class and is confirmed to emit phase-locked HE {\gamma} rays from hundreds of MeV to ~100 GeV energies. This work aims to search for and characterise the very-high-energy (VHE; E >100 GeV) {\gamma}-ray emission from {\eta} Car around the last periastron passage in 2014 with the ground-based High Energy Stereoscopic System (H.E.S.S.). Methods. The region around {\eta} Car was observed with H.E.S.S. between orbital phase p = 0.78 - 1.10, with a closer sampling at p {\approx} 0.95 and p {\approx} 1.10 (assuming a period of 2023 days). Optimised hardware settings as well as adjustments to the data reduction, reconstruction, and signal selection were needed to suppress and take into account the strong, extended, and inhomogeneous night sky background (NSB) in the {\eta} Car field of view. Tailored run-wise Monte-Carlo simulations (RWS) were required to accurately treat the additional noise from NSB photons in the instrument response functions. Results. H.E.S.S. detected VHE {\gamma}-ray emission from the direction of {\eta} Car shortly before and after the minimum in the X-ray light-curve close to periastron. Using the point spread function provided by RWS, the reconstructed signal is point-like and the spectrum is best described by a power law. The overall flux and spectral index in VHE {\gamma} rays agree within statistical and systematic errors before and after periastron. The {\gamma}-ray spectrum extends up to at least ~400 GeV. This implies a maximum magnetic field in a leptonic scenario in the emission region of 0.5 Gauss. No indication for phase-locked flux variations is detected in the H.E.S.S. data., Comment: 9 pages, 4 figures, 3 tables, in press with A&A
- Published
- 2020
48. Induced gravitational waves as a probe of thermal history of the universe
- Author
-
Misao Sasaki, Guillem Domènech, and Shi Pi
- Subjects
Big Bang ,High Energy Physics - Theory ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,media_common.quotation_subject ,Scalar (mathematics) ,FOS: Physical sciences ,General Relativity and Quantum Cosmology (gr-qc) ,7. Clean energy ,01 natural sciences ,General Relativity and Quantum Cosmology ,Gravitational wave background ,0103 physical sciences ,media_common ,Physics ,010308 nuclear & particles physics ,Gravitational wave ,Equation of state (cosmology) ,Spectral density ,Astronomy and Astrophysics ,16. Peace & justice ,Universe ,Cosmic string ,High Energy Physics - Theory (hep-th) ,Quantum electrodynamics ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
The scalar perturbation induced gravitational waves are a probe of the primordial density perturbation spectrum on small scales. In this paper, we show that they can also probe the thermal history of the universe. We assume the universe underwent a stage with a constant equation of state parameter $w$, followed by the radiation-dominated stage of the conventional big bang universe. We find that the infrared slope of the power spectrum of the induced stochastic gravitational wave background for decelerating cosmologies is related to the equation of state of the universe. Furthermore, the induced gravitational wave spectrum has in general a broken power-law shape around the scale of reheating. Interestingly, below the threshold $w=0$ of the equation of state parameter, the broken power-law presents a peak for a Dirac delta peak in the scalar spectrum. For a finite width peak, the threshold changes to $w=-1/15$ depending on the value of the width. In some cases, such a broken power-law gravitational wave spectrum may degenerate to the spectrum from other sources like phase transitions or global cosmic strings.
- Published
- 2020
- Full Text
- View/download PDF
49. Erratum: Gravitational wave constraints on the primordial black hole dominated early universe
- Author
-
Guillem Domènech, Chunshan Lin, and Misao Sasaki
- Subjects
Astronomy and Astrophysics - Published
- 2021
50. Cosmology of strongly interacting fermions in the early universe
- Author
-
Misao Sasaki and Guillem Domènech
- Subjects
High Energy Physics - Theory ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Astrophysics::High Energy Astrophysical Phenomena ,media_common.quotation_subject ,Scalar (mathematics) ,FOS: Physical sciences ,Primordial black hole ,General Relativity and Quantum Cosmology (gr-qc) ,01 natural sciences ,General Relativity and Quantum Cosmology ,High Energy Physics - Phenomenology (hep-ph) ,Effective mass (solid-state physics) ,0103 physical sciences ,media_common ,Physics ,010308 nuclear & particles physics ,Astronomy and Astrophysics ,Fermion ,Yukawa interaction ,Universe ,High Energy Physics - Phenomenology ,High Energy Physics - Theory (hep-th) ,Quantum electrodynamics ,Fermi gas ,Scalar field ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
In view of growing interest in long range scalar forces in the early universe to generate primordial black holes, we study in detail the general relativistic formulation of a Fermi gas interacting with a scalar field in cosmology. Motivated by long range forces, we mainly focus on the cosmological massless limit of the scalar field. In this limit, our main finding is that the Yukawa interaction leads to a solution where the scalar field oscillates around zero fermion mass and all energy densities decay as radiation. On one hand, we show that if the Fermi gas starts relativistic, it could stay relativistic. On the other hand, if the fermions are initially non-relativistic, they remain non-relativistic for all practical purposes. We find that in both cases the energy density of the fermions and the scalar field decays as radiation. In the non-relativistic case, this is due to an oscillating and decaying effective mass. Such background dynamics questions whether there is a substantial enhancement of the fermion density fluctuations in the non-relativistic case. Our work can be easily extended to more general field dependent fermion mass and to general scalar field potentials. The analysis of the cosmological perturbations will be presented in a follow-up work.
- Published
- 2021
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.