1. Measurement of Soy Contents in Ground Beef Using Near-Infrared Spectroscopy
- Author
-
Hongzhe Jiang, Hong Zhuang, Miryeong Sohn, and Wei Wang
- Subjects
PLS ,SVM ,quantification ,classification ,dispersive NIR ,FT-NIR ,Technology ,Engineering (General). Civil engineering (General) ,TA1-2040 ,Biology (General) ,QH301-705.5 ,Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
Models for determining contents of soy products in ground beef were developed using near-infrared (NIR) spectroscopy. Samples were prepared by mixing four kinds of soybean protein products (Arconet, toasted soy grits, Profam and textured vegetable protein (TVP)) with ground beef (content from 0%–100%). NIR spectra of meat mixtures were measured with dispersive (400–2500 nm) and Fourier transform NIR (FT-NIR) spectrometers (1000–2500 nm). Partial least squares (PLS) regression with full leave-one-out cross-validation was used to build prediction models. The results based on dispersive NIR spectra revealed that the coefficient of determination for cross-validation (Rcv2) ranged from 0.91 for toasted soy grits to 0.99 for Arconet. The results based on FT-NIR spectra exhibited the best prediction for toasted soy grits (Rcv2 = 0.99) and Rcv2 > 0.98 for the other three soy types. For identification of different types of soy products, support vector machine (SVM) classification was used and the total accuracy for dispersive NIR and FT-NIR was 95% and 83.33%, respectively. These results suggest that either dispersive NIR or FT-NIR spectroscopy could be used to predict the content and the discrimination of different soy products added in ground beef products. In application, FT-NIR spectroscopy methods would be recommended if time is a consideration in practice.
- Published
- 2017
- Full Text
- View/download PDF