1. Genotoxicity and mutagenicity of water contaminated with tannery effluents, as evaluated by the micronucleus test and comet assay using the fish Oreochromis niloticus and chromosome aberrations in onion root-tips
- Author
-
Silvia Tamie Matsumoto, Mário Sérgio Mantovani, Mirtis Irene Ariza Malaguttii, Ana Lúcia Dias, Inês Cristina Fonseca, and Maria Aparecida Marin-Morales
- Subjects
Allium cepa ,chromium ,chromosomes aberrations ,comet assay ,micronucleus ,Oreochromis niloticus ,Genetics ,QH426-470 - Abstract
Cytotoxicity of metals is important because some metals are potential mutagens able to induce tumors in humans and experimental animals. Chromium can damage DNA in several ways, including DNA double strand breaks (DSBs) which generate chromosomal aberrations, micronucleus formation, sister chromatid exchange, formation of DNA adducts and alterations in DNA replication and transcription. In our study, water samples from three sites in the Córrego dos Bagres stream in the Franca municipality of the Brazilian state of São Paulo were subjected to the comet assay and micronucleus test using erythrocytes from the fish Oreochromis niloticus. Nuclear abnormalities of the erythrocytes included blebbed, notched and lobed nuclei, probably due to genotoxic chromium compounds. The greatest comet assay damage occurred with water from a chromium-containing tannery effluent discharge site, supporting the hypothesis that chromium residues can be genotoxic. The mutagenicity of the water samples was assessed using the onion root-tip cell assay, the most frequent chromosomal abnormalities observed being: c-metaphases, stick chromosome, chromosome breaks and losses, bridged anaphases, multipolar anaphases, and micronucleated and binucleated cells. Onion root-tip cell mutagenicity was highest for water samples containing the highest levels of chromium.
- Published
- 2006
- Full Text
- View/download PDF