1. Space-Fluid Adaptive Sampling by Self-Organisation
- Author
-
Roberto Casadei, Stefano Mariani, Danilo Pianini, Mirko Viroli, and Franco Zambonelli
- Subjects
computer science - distributed, parallel, and cluster computing ,computer science - artificial intelligence ,computer science - multiagent systems ,electrical engineering and systems science - systems and control ,i.2.11 ,d.3.1 ,d.1.3 ,Logic ,BC1-199 ,Electronic computers. Computer science ,QA75.5-76.95 - Abstract
A recurrent task in coordinated systems is managing (estimating, predicting, or controlling) signals that vary in space, such as distributed sensed data or computation outcomes. Especially in large-scale settings, the problem can be addressed through decentralised and situated computing systems: nodes can locally sense, process, and act upon signals, and coordinate with neighbours to implement collective strategies. Accordingly, in this work we devise distributed coordination strategies for the estimation of a spatial phenomenon through collaborative adaptive sampling. Our design is based on the idea of dynamically partitioning space into regions that compete and grow/shrink to provide accurate aggregate sampling. Such regions hence define a sort of virtualised space that is "fluid", since its structure adapts in response to pressure forces exerted by the underlying phenomenon. We provide an adaptive sampling algorithm in the field-based coordination framework, and prove it is self-stabilising and locally optimal. Finally, we verify by simulation that the proposed algorithm effectively carries out a spatially adaptive sampling while maintaining a tuneable trade-off between accuracy and efficiency.
- Published
- 2023
- Full Text
- View/download PDF