Significance Membrane protein folding is a critical step that underlies proper cellular function as well as the design of technologies like vesicle-based biosensors and artificial cells. Membrane composition is known to play a role in membrane protein folding; however, the specific mechanical properties of membranes that govern protein folding remain unclear. Using a highly elastic nonnatural amphiphile, we highlight the importance of a membrane mechanical property, membrane elasticity, on the spontaneous insertion and folding of a model α-helical membrane protein. Through this study, we gain a deeper understanding of cellular membrane protein folding and offer a potential approach to improve the production of membrane proteins through optimizing the mechanical properties of synthetic scaffolds present in cell-free reactions., The expression and integration of membrane proteins into vesicle membranes is a critical step in the design of cell-mimetic biosensors, bioreactors, and artificial cells. While membrane proteins have been integrated into a variety of nonnatural membranes, the effects of the chemical and physical properties of these vesicle membranes on protein behavior remain largely unknown. Nonnatural amphiphiles, such as diblock copolymers, provide an interface that can be synthetically controlled to better investigate this relationship. Here, we focus on the initial step in a membrane protein’s life cycle: expression and folding. We observe improvements in both the folding and overall production of a model mechanosensitive channel protein, the mechanosensitive channel of large conductance, during cell-free reactions when vesicles containing diblock copolymers are present. By systematically tuning the membrane composition of vesicles through incorporation of a poly(ethylene oxide)-b-poly(butadiene) diblock copolymer, we show that membrane protein folding and production can be improved over that observed in traditional lipid vesicles. We then reproduce this effect with an alternate membrane-elasticizing molecule, C12E8. Our results suggest that global membrane physical properties, specifically available membrane surface area and the membrane area expansion modulus, significantly influence the folding and yield of a membrane protein. Furthermore, our results set the stage for explorations into how nonnatural membrane amphiphiles can be used to both study and enhance the production of biological membrane proteins.