1. Soil moisture controls over carbon sequestration and greenhouse gas emissions: a review
- Author
-
Yuefeng Hao, Jiafu Mao, Charles M. Bachmann, Forrest M. Hoffman, Gerbrand Koren, Haishan Chen, Hanqin Tian, Jiangong Liu, Jing Tao, Jinyun Tang, Lingcheng Li, Laibao Liu, Martha Apple, Mingjie Shi, Mingzhou Jin, Qing Zhu, Steve Kannenberg, Xiaoying Shi, Xi Zhang, Yaoping Wang, Yilin Fang, and Yongjiu Dai
- Subjects
Environmental sciences ,GE1-350 ,Meteorology. Climatology ,QC851-999 - Abstract
Abstract This literature review synthesizes the role of soil moisture in regulating carbon sequestration and greenhouse gas emissions (CS-GHG). Soil moisture directly affects photosynthesis, respiration, microbial activity, and soil organic matter dynamics, with optimal levels enhancing carbon storage while extremes, such as drought and flooding, disrupt these processes. A quantitative analysis is provided on the effects of soil moisture on CS-GHG across various ecosystems and climatic conditions, highlighting a “Peak and Decline” pattern for CO₂ emissions at 40% water-filled pore space (WFPS), while CH₄ and N₂O emissions peak at higher levels (60–80% and around 80% WFPS, respectively). The review also examines ecosystem models, discussing how soil moisture dynamics are incorporated to simulate photosynthesis, microbial activity, and nutrient cycling. Sustainable soil moisture management practices, including conservation agriculture, agroforestry, and optimized water management, prove effective in enhancing carbon sequestration and mitigating GHG emissions by maintaining ideal soil moisture levels. The review further emphasizes the importance of advancing multiscale observations and feedback modeling through high-resolution remote sensing and ground-based data integration, as well as hybrid modeling frameworks. The interactive model-experiment framework emerges as a promising approach for linking experimental data with model refinement, enabling continuous improvement of CS-GHG predictions. From a policy perspective, shifting focus from short-term agricultural productivity to long-term carbon sequestration is crucial. Achieving this shift will require financial incentives, robust monitoring systems, and collaboration among stakeholders to ensure sustainable practices effectively contribute to climate mitigation goals.
- Published
- 2025
- Full Text
- View/download PDF