9 results on '"Minamihisamatsu T"'
Search Results
2. A novel tauopathy model mimicking molecular and spatial aspects of human tau pathology.
- Author
-
Yanai R, Mitani TT, Susaki EA, Minamihisamatsu T, Shimojo M, Saito Y, Mizuma H, Nitta N, Kaneda D, Hashizume Y, Matsumoto G, Tanemura K, Zhang MR, Higuchi M, Ueda HR, and Sahara N
- Abstract
Creating a mouse model that recapitulates human tau pathology is essential for developing strategies to intervene in tau-induced neurodegeneration. However, mimicking the pathological features seen in human pathology often involves a trade-off with artificial effects such as unexpected gene insertion and neurotoxicity from the expression system. To overcome these issues, we developed the rTKhomo mouse model by combining a transgenic CaMKII-tTA system with a P301L mutated 1N4R human tau knock-in at the Rosa26 locus with a C57BL/6J background. This model closely mimics human tau pathology, particularly in the hippocampal CA1 region, showing age-dependent tau accumulation, neuronal loss and neuroinflammation. Notably, whole-brain 3D staining and light-sheet microscopy revealed a spatial gradient of tau deposition from the entorhinal cortex to the hippocampus, similar to the spatial distribution of Braak neurofibrillary tangle staging. Furthermore, [
18 F]PM-PBB3 positron emission tomography imaging enabled the quantification and live monitoring of tau deposition. The rTKhomo mouse model shows potential as a promising next-generation preclinical tool for exploring the mechanisms of tauopathy and for developing interventions targeting the spatial progression of tau pathology., Competing Interests: M.H. hold patents on compound related to the present report (JP5422782/EP12884742.3/CA2894994/HK1208672). H.R.U. is a founder of CUBICStars, Inc. that offers services based on CUBIC technology. E.A.S. is employed by the company. E.A.S. and H.R.U. are co-inventors on patents and patent applications owned by RIKEN and CUBICStars, Inc., covering the CUBIC reagents and CUBIC-HV kits, respectively., (© The Author(s) 2024. Published by Oxford University Press on behalf of the Guarantors of Brain.)- Published
- 2024
- Full Text
- View/download PDF
3. Central role for p62/SQSTM1 in the elimination of toxic tau species in a mouse model of tauopathy.
- Author
-
Ono M, Komatsu M, Ji B, Takado Y, Shimojo M, Minamihisamatsu T, Warabi E, Yanagawa T, Matsumoto G, Aoki I, Kanaan NM, Suhara T, Sahara N, and Higuchi M
- Subjects
- Animals, Disease Models, Animal, Mice, Mice, Transgenic, Neurofibrillary Tangles metabolism, Sequestosome-1 Protein genetics, Sequestosome-1 Protein metabolism, Tauopathies metabolism, Tauopathies pathology, tau Proteins genetics, tau Proteins metabolism
- Abstract
Intracellular accumulation of filamentous tau aggregates with progressive neuronal loss is a common characteristic of tauopathies. Although the neurodegenerative mechanism of tau-associated pathology remains unclear, molecular elements capable of degrading and/or sequestering neurotoxic tau species may suppress neurodegenerative progression. Here, we provide evidence that p62/SQSTM1, a ubiquitinated cargo receptor for selective autophagy, acts protectively against neuronal death and neuroinflammation provoked by abnormal tau accumulation. P301S mutant tau transgenic mice (line PS19) exhibited accumulation of neurofibrillary tangles with localization of p62 mostly in the brainstem, but neuronal loss with few neurofibrillary tangles in the hippocampus. In the hippocampus of PS19 mice, the p62 level was lower compared to the brainstem, and punctate accumulation of phosphorylated tau unaccompanied by co-localization of p62 was observed. In PS19 mice deficient in p62 (PS19/p62-KO), increased accumulation of phosphorylated tau, acceleration of neuronal loss, and exacerbation of neuroinflammation were observed in the hippocampus as compared with PS19 mice. In addition, increase of abnormal tau and neuroinflammation were observed in the brainstem of PS19/p62-KO. Immunostaining and dot-blot analysis with an antibody selectively recognizing tau dimers and higher-order oligomers revealed that oligomeric tau species in PS19/p62-KO mice were significantly accumulated as compared to PS19 mice, suggesting the requirement of p62 to eliminate disease-related oligomeric tau species. Our findings indicated that p62 exerts neuroprotection against tau pathologies by eliminating neurotoxic tau species, suggesting that the manipulative p62 and selective autophagy may provide an intrinsic therapy for the treatment of tauopathy., (© 2022 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.)
- Published
- 2022
- Full Text
- View/download PDF
4. A genetically targeted reporter for PET imaging of deep neuronal circuits in mammalian brains.
- Author
-
Shimojo M, Ono M, Takuwa H, Mimura K, Nagai Y, Fujinaga M, Kikuchi T, Okada M, Seki C, Tokunaga M, Maeda J, Takado Y, Takahashi M, Minamihisamatsu T, Zhang MR, Tomita Y, Suzuki N, Maximov A, Suhara T, Minamimoto T, Sahara N, and Higuchi M
- Subjects
- Animals, Brain cytology, Callithrix, Carbon Radioisotopes chemistry, Fluorine Radioisotopes chemistry, Genes, Reporter, HEK293 Cells, Humans, Male, Mice, Inbred C57BL, Molecular Imaging methods, Nerve Net diagnostic imaging, Proteins analysis, Proteins metabolism, Radiopharmaceuticals chemical synthesis, Tetrahydrofolate Dehydrogenase metabolism, Trimethoprim analogs & derivatives, Trimethoprim chemistry, Mice, Brain diagnostic imaging, Positron-Emission Tomography methods, Radiopharmaceuticals chemistry, Tetrahydrofolate Dehydrogenase genetics
- Abstract
Positron emission tomography (PET) allows biomolecular tracking but PET monitoring of brain networks has been hampered by a lack of suitable reporters. Here, we take advantage of bacterial dihydrofolate reductase, ecDHFR, and its unique antagonist, TMP, to facilitate in vivo imaging in the brain. Peripheral administration of radiofluorinated and fluorescent TMP analogs enabled PET and intravital microscopy, respectively, of neuronal ecDHFR expression in mice. This technique can be used to the visualize neuronal circuit activity elicited by chemogenetic manipulation in the mouse hippocampus. Notably, ecDHFR-PET allows mapping of neuronal projections in non-human primate brains, demonstrating the applicability of ecDHFR-based tracking technologies for network monitoring. Finally, we demonstrate the utility of TMP analogs for PET studies of turnover and self-assembly of proteins tagged with ecDHFR mutants. These results establish opportunities for a broad spectrum of previously unattainable PET analyses of mammalian brain circuits at the molecular level., (© 2021 The Authors. Published under the terms of the CC BY 4.0 license.)
- Published
- 2021
- Full Text
- View/download PDF
5. Distinct microglial response against Alzheimer's amyloid and tau pathologies characterized by P2Y12 receptor.
- Author
-
Maeda J, Minamihisamatsu T, Shimojo M, Zhou X, Ono M, Matsuba Y, Ji B, Ishii H, Ogawa M, Akatsu H, Kaneda D, Hashizume Y, Robinson JL, Lee VM, Saito T, Saido TC, Trojanowski JQ, Zhang MR, Suhara T, Higuchi M, and Sahara N
- Abstract
Microglia are the resident phagocytes of the central nervous system, and microglial activation is considered to play an important role in the pathogenesis of neurodegenerative diseases. Recent studies with single-cell RNA analysis of CNS cells in Alzheimer's disease and diverse other neurodegenerative conditions revealed that the transition from homeostatic microglia to disease-associated microglia was defined by changes of gene expression levels, including down-regulation of the P2Y12 receptor gene ( P2Y12R ). However, it is yet to be clarified in Alzheimer's disease brains whether and when this down-regulation occurs in response to amyloid-β and tau depositions, which are core pathological processes in the disease etiology. To further evaluate the significance of P2Y12 receptor alterations in the neurodegenerative pathway of Alzheimer's disease and allied disorders, we generated an anti-P2Y12 receptor antibody and examined P2Y12 receptor expressions in the brains of humans and model mice bearing amyloid-β and tau pathologies. We observed that the brains of both Alzheimer's disease and non-Alzheimer's disease tauopathy patients and tauopathy model mice (rTg4510 and PS19 mouse lines) displayed declined microglial P2Y12 receptor levels in regions enriched with tau inclusions, despite an increase in the total microglial population. Notably, diminution of microglial immunoreactivity with P2Y12 receptor was noticeable prior to massive accumulations of phosphorylated tau aggregates and neurodegeneration in rTg4510 mouse brains, despite a progressive increase of total microglial population. On the other hand, Iba1-positive microglia encompassing compact and dense-cored amyloid-β plaques expressed P2Y12 receptor at varying levels in amyloid precursor protein (APP) mouse models (APP23 and App
NL-F/NL-F mice). By contrast, neuritic plaques in Alzheimer's disease brains were associated with P2Y12 receptor-negative microglia. These data suggest that the down-regulation of microglia P2Y12 receptor, which is characteristic of disease-associated microglia, is intimately associated with tau rather than amyloid-β pathologies from an early stage and could be a sensitive index for neuroinflammatory responses to Alzheimer's disease-related neurodegenerative processes., (© The Author(s) (2021). Published by Oxford University Press on behalf of the Guarantors of Brain.)- Published
- 2021
- Full Text
- View/download PDF
6. Selective Disruption of Inhibitory Synapses Leading to Neuronal Hyperexcitability at an Early Stage of Tau Pathogenesis in a Mouse Model.
- Author
-
Shimojo M, Takuwa H, Takado Y, Tokunaga M, Tsukamoto S, Minatohara K, Ono M, Seki C, Maeda J, Urushihata T, Minamihisamatsu T, Aoki I, Kawamura K, Zhang MR, Suhara T, Sahara N, and Higuchi M
- Subjects
- Alzheimer Disease diagnostic imaging, Alzheimer Disease metabolism, Animals, Disease Models, Animal, Female, Hippocampus diagnostic imaging, Hippocampus metabolism, Magnetic Resonance Imaging, Male, Mice, Mice, Transgenic, Neocortex diagnostic imaging, Neocortex metabolism, Neural Inhibition physiology, Positron-Emission Tomography, Tauopathies diagnostic imaging, Tauopathies metabolism, Alzheimer Disease physiopathology, GABAergic Neurons physiology, Hippocampus physiopathology, Neocortex physiopathology, Synapses physiology, Tauopathies physiopathology, tau Proteins metabolism
- Abstract
Synaptic dysfunction provoking dysregulated cortical neural circuits is currently hypothesized as a key pathophysiological process underlying clinical manifestations in Alzheimer's disease and related neurodegenerative tauopathies. Here, we conducted PET along with postmortem assays to investigate time course changes of excitatory and inhibitory synaptic constituents in an rTg4510 mouse model of tauopathy, which develops tau pathologies leading to noticeable brain atrophy at 5-6 months of age. Both male and female mice were analyzed in this study. We observed that radiosignals derived from [
11 C]flumazenil, a tracer for benzodiazepine receptor, in rTg4510 mice were significantly lower than the levels in nontransgenic littermates at 2-3 months of age. In contrast, retentions of (E)-[11 C]ABP688, a tracer for mGluR5, were unaltered relative to controls at 2 months of age but then gradually declined with aging in parallel with progressive brain atrophy. Biochemical and immunohistochemical assessment of postmortem brain tissues demonstrated that inhibitory, but not excitatory, synaptic constituents selectively diminished without overt loss of somas of GABAergic interneurons in the neocortex and hippocampus of rTg4510 mice at 2 months of age, which was concurrent with enhanced immunoreactivity of cFos, a well-characterized immediate early gene, suggesting that impaired inhibitory neurotransmission may cause hyperexcitability of cortical circuits. Our findings indicate that tau-induced disruption of the inhibitory synapse may be a critical trigger of progressive neurodegeneration, resulting in massive neuronal loss, and PET assessments of inhibitory versus excitatory synapses potentially offer in vivo indices for hyperexcitability and excitotoxicity early in the etiologic pathway of neurodegenerative tauopathies. SIGNIFICANCE STATEMENT In this study, we examined the in vivo status of excitatory and inhibitory synapses in the brain of the rTg4510 tauopathy mouse model by PET imaging with (E)-[11 C]ABP688 and [11 C]flumazenil, respectively. We identified inhibitory synapse as being significantly dysregulated before brain atrophy at 2 months of age, while excitatory synapse stayed relatively intact at this stage. In line with this observation, postmortem assessment of brain tissues demonstrated selective attenuation of inhibitory synaptic constituents accompanied by the upregulation of cFos before the formation of tau pathology in the forebrain at young ages. Our findings indicate that selective degeneration of inhibitory synapse with hyperexcitability in the cortical circuit constitutes the critical early pathophysiology of tauopathy., (Copyright © 2020 the authors.)- Published
- 2020
- Full Text
- View/download PDF
7. In Vivo Visualization of Tau Accumulation, Microglial Activation, and Brain Atrophy in a Mouse Model of Tauopathy rTg4510.
- Author
-
Ishikawa A, Tokunaga M, Maeda J, Minamihisamatsu T, Shimojo M, Takuwa H, Ono M, Ni R, Hirano S, Kuwabara S, Ji B, Zhang MR, Aoki I, Suhara T, Higuchi M, and Sahara N
- Subjects
- Animals, Atrophy, Benzothiazoles, Female, Magnetic Resonance Imaging, Male, Mice, Mice, Transgenic, Positron-Emission Tomography, Receptors, GABA metabolism, Brain diagnostic imaging, Brain pathology, Disease Models, Animal, Microglia metabolism, Tauopathies diagnostic imaging, tau Proteins metabolism
- Abstract
Background: Tau imaging using PET is a promising tool for the diagnosis and evaluation of tau-related neurodegenerative disorders, but the relationship among PET-detectable tau, neuroinflammation, and neurodegeneration is not yet fully understood., Objective: We aimed to elucidate sequential changes in tau accumulation, neuroinflammation, and brain atrophy by PET and MRI in a tauopathy mouse model., Methods: rTg4510 transgenic (tg) mice expressing P301L mutated tau and non-tg mice were examined with brain MRI and PET imaging (analyzed numbers: tg = 17, non-tg = 13; age 2.5∼14 months). As PET probes, [11C]PBB3 (Pyridinyl-Butadienyl-Benzothiazole 3) and [11C]AC-5216 were used to visualize tau pathology and 18-kDa translocator protein (TSPO) neuroinflammation. Tau pathology and microglia activation were subsequently analyzed by histochemistry., Results: PET studies revealed age-dependent increases in [11C]PBB3 and [11C]AC-5216 signals, which were correlated with age-dependent volume reduction in the forebrain on MRI. However, the increase in [11C]PBB3 signals reached a plateau at age 7 months, and therefore its significant correlation with [11C]AC-5216 disappeared after age 7 months. In contrast, [11C]AC-5216 showed a strong correlation with both age and volume reduction until age 14 months. Histochemical analyses confirmed the relevance of pathological tau accumulation and elevated TSPO immunoreactivity in putative microglia., Conclusion: Our results showed that tau accumulation is associated with neuroinflammation and brain atrophy in a tauopathy mouse model. The time-course of the [11C]PBB3- and TSPO-PET finding suggests that tau deposition triggers progressive neuroinflammation, and the sequential changes can be evaluated in vivo in mouse brains.
- Published
- 2018
- Full Text
- View/download PDF
8. Multimodal Imaging for DREADD-Expressing Neurons in Living Brain and Their Application to Implantation of iPSC-Derived Neural Progenitors.
- Author
-
Ji B, Kaneko H, Minamimoto T, Inoue H, Takeuchi H, Kumata K, Zhang MR, Aoki I, Seki C, Ono M, Tokunaga M, Tsukamoto S, Tanabe K, Shin RM, Minamihisamatsu T, Kito S, Richmond BJ, Suhara T, and Higuchi M
- Subjects
- Animals, Brain diagnostic imaging, Brain metabolism, Cells, Cultured, Humans, Induced Pluripotent Stem Cells transplantation, Mice, Mice, Transgenic, Neural Stem Cells cytology, Positron-Emission Tomography methods, Reproducibility of Results, Sensitivity and Specificity, Stem Cell Transplantation methods, Brain cytology, Genes, Reporter, Induced Pluripotent Stem Cells cytology, Multimodal Imaging methods, Neural Stem Cells transplantation, Neurons cytology, Neurons metabolism
- Abstract
Chemogenetic manipulation of neuronal activities has been enabled by a designer receptor (designer receptor exclusively activated by designer drugs, DREADD) that is activated exclusively by clozapine-N-oxide (CNO). Here, we applied CNO as a functional reporter probe to positron emission tomography (PET) of DREADD in living brains. Mutant human M4 DREADD (hM4Di) expressed in transgenic (Tg) mouse neurons was visualized by PET with microdose [
11 C]CNO. Deactivation of DREADD-expressing neurons in these mice by nonradioactive CNO at a pharmacological dose could also be captured by arterial spin labeling MRI (ASL-MRI). Neural progenitors derived from hM4Di Tg-induced pluripotent stem cells were then implanted into WT mouse brains and neuronal differentiation of the grafts could be imaged by [11 C]CNO-PET. Finally, ASL-MRI captured chemogenetic functional manipulation of the graft neurons. Our data provide the first demonstration of multimodal molecular/functional imaging of cells expressing a functional gene reporter in the brain, which would be translatable to humans for therapeutic gene transfers and cell replacements., Significance Statement: The present work provides the first successful demonstration of in vivo positron emission tomographic (PET) visualization of a chemogenetic designer receptor (designer receptor exclusively activated by designer drugs, DREADD) expressed in living brains. This technology has been applied to longitudinal PET reporter imaging of neuronal grafts differentiated from induced pluripotent stem cells. Differentiated from currently used reporter genes for neuroimaging, DREADD has also been available for functional manipulation of target cells, which could be visualized by functional magnetic resonance imaging (fMRI) in a real-time manner. Multimodal imaging with PET/fMRI enables the visualization of the differentiation of iPSC-derived neural progenitors into mature neurons and DREADD-mediated functional manipulation along the time course of the graft and is accordingly capable of fortifying the utility of stem cells in cell replacement therapies., (Copyright © 2016 the authors 0270-6474/16/3611545-15$15.00/0.)- Published
- 2016
- Full Text
- View/download PDF
9. Assessment of radioligands for PET imaging of cyclooxygenase-2 in an ischemic neuronal injury model.
- Author
-
Ji B, Kumata K, Onoe H, Kaneko H, Zhang MR, Seki C, Ono M, Shukuri M, Tokunaga M, Minamihisamatsu T, Suhara T, and Higuchi M
- Subjects
- Animals, Antibodies, Brain enzymology, Brain Ischemia enzymology, Carbon Radioisotopes, Celecoxib, Cyclooxygenase 2 immunology, Disease Models, Animal, Male, Mice, Mice, Inbred C57BL, Positron-Emission Tomography methods, Brain diagnostic imaging, Brain Ischemia diagnostic imaging, Cyclooxygenase 2 metabolism, Lactones administration & dosage, Pyrazoles administration & dosage, Sulfonamides administration & dosage, Sulfones administration & dosage
- Abstract
Cyclooxygenase-2 (COX-2) plays crucial roles in progressive neuronal death in ischemic brain injury. In the present study, we evaluated two radiolabeled COX-2 selective inhibitors, [11C]celecoxib and [11C]rofecoxib, as positron emission tomography (PET) tracers for COX-2 imaging in normal and ischemic mouse brains. We also took advantage of our newly-generated antibody highly selective for mouse COX-2 to prove accumulation of the radioligands in regions enriched with COX-2. In vitro autoradiography demonstrated specific binding of high-concentration [11C]rofecoxib but not [11C]celecoxib to the cerebellum and brain stem of normal brains wherein COX-2 immunoreactivity in neurons was most abundantly observed. Meanwhile, both of these radioligands failed to detect COX-2 expression in PET assays despite their excellent brain permeability. Hypoperfusion-induced ischemia caused marked necrotic neuron death accompanied by gliosis and enhancement of neuronal COX-2 immunoreactivity in the hippocampus. Correspondingly, in vitro autoradiographic binding of [11C]rofecoxib was increased in the injured hippocampus compared to the uninjured contralateral region, but failed in living brains of ischemia model likewise. Our work provides the rationale for monitoring COX-2 as a biomarker reflecting ischemic brain injuries and demonstrates that [11C]rofecoxib, not [11C]celecoxib, is useful for in vitro assays of COX-2, but its affinity would be insufficient for in vivo PET visualization., (© 2013 Elsevier B.V. All rights reserved.)
- Published
- 2013
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.