12 results on '"Milroy SP"'
Search Results
2. Radiation interception, radiation use efficiency and growth of barley cultivars
- Author
-
Goyne, PJ, primary, Milroy, SP, additional, Lilley, JM, additional, and Hare, JM, additional
- Published
- 1993
- Full Text
- View/download PDF
3. Competition between lupin (Lupinus angustifolius L.) and great brome (Bromus diandrus Roth.): development of leaf area, light interception and yields
- Author
-
Suspasilapa, S, primary, Steer, BT, additional, and Milroy, SP, additional
- Published
- 1992
- Full Text
- View/download PDF
4. Corrigendum - Leaf area development in barley-model construction and response to soil moisture status
- Author
-
Milroy, SP and Goyne, PJ
- Abstract
A model to simulate leaf area development for barley at the whole plant level was constructed. Data for leaf area development in the absence of soil water stress were collected from irrigated field trials grown at Hermitage Research Station, near Warwick, Queensland, in 1990. The response of leaf area expansion to soil water status was measured in a glasshouse trial. In the model, green leaf area per plant (GPLA) is derived as the difference between total leaf area produced per plant (TPLA) and senesced leaf area (SPLA). TPLA and SPLA are described by logistic functions of thermal time. Two types of senescence are included: that due to ageing of the whole plant (ontogenetic senescence) and senescence associated with the development of large canopies (light-induced senescence). The onset of ontogenetic senescence is linked to anthesis, whereas light-induced senescence occurs if the leaf area index of the crop exceeds 5.5. Leaf expansion of plants in pots varying in the fraction of transpirable soil water available (FTSW) was compared with leaf expansion of those in well-watered pots three times per week. The relationship between relative leaf expansion (RLE) and FTSW was described by a logistic function (r2 = 0.96). A 50% reduction in RLE occurred when FTSW = 0.34. Similarly, a logistic function described the relationship between relative transpiration (RT) and FTSW (r2 = 0.96). A 50% reduction in RT occurred when FTSW = 0.17. Potential leaf expansion as predicted by the non-stressed model was reduced in response to moisture stress via a ramp function relating RLE to RT. The model gave an unbiased prediction of the leaf area dynamics for 21 rainfed and irrigated crops of barley grown in southern Queensland between 1986 and 1993 (RMSD = 1.09 m2 m-2, r2 = 0.75, n = 76). Precision may have been reduced by the lack of information available on parameters for soil water balance when barley is grown on a range of soil types.
- Published
- 1995
- Full Text
- View/download PDF
5. Leaf area development in barley-model construction and response to soil moisture status
- Author
-
Milroy, SP and Goyne, PJ
- Abstract
A model to simulate leaf area development for barley at the whole plant level was constructed. Data for leaf area development in the absence of soil water stress were collected from irrigated field trials grown at Hermitage Research Station, near Warwick, Queensland, in 1990. The response of leaf area expansion to soil water status was measured in a glasshouse trial. In the model, green leaf area per plant (GPLA) is derived as the difference between total leaf area produced per plant (TPLA) and senesced leaf area (SPLA). TPLA and SPLA are described by logistic functions of thermal time. Two types of senescence are included: that due to ageing of the whole plant (ontogenetic senescence) and senescence associated with the development of large canopies (light-induced senescence). The onset of ontogenetic senescence is linked to anthesis, whereas light-induced senescence occurs if the leaf area index of the crop exceeds 5.5. Leaf expansion of plants in pots varying in the fraction of transpirable soil water available (FTSW) was compared with leaf expansion of those in well-watered pots three times per week. The relationship between relative leaf expansion (RLE) and FTSW was described by a logistic function (r2 = 0.96). A 50% reduction in RLE occurred when FTSW = 0.34. Similarly, a logistic function described the relationship between relative transpiration (RT) and FTSW (r2 = 0.96). A 50% reduction in RT occurred when FTSW = 0.17. Potential leaf expansion as predicted by the non-stressed model was reduced in response to moisture stress via a ramp function relating RLE to RT. The model gave an unbiased prediction of the leaf area dynamics for 21 rainfed and irrigated crops of barley grown in southern Queensland between 1986 and 1993 (RMSD = 1.09 m2 m-2, r2 = 0.75, n = 76). Precision may have been reduced by the lack of information available on parameters for soil water balance when barley is grown on a range of soil types.
- Published
- 1995
- Full Text
- View/download PDF
6. Dietary experience alters predatory behavior of two ladybird species on tomato potato psyllid.
- Author
-
Sarkar SC, Milroy SP, and Xu W
- Subjects
- Animals, Diet, Pest Control, Biological, Hemiptera physiology, Predatory Behavior, Coleoptera physiology, Solanum lycopersicum, Introduced Species
- Abstract
The tomato potato psyllid, Bactericera cockerelli, is an invasive pest in Australia, which can cause severe economic loss in the production of Solanaceous crops. As an invasive pest, B. cockerelli may also modify biotic interactions in Australian agricultural and native ecosystems. Resident generalist predators in an area may have the ability to utilize invasive pest species as prey but this will depend on their specific predatory behavior. The extent to which generalist predators learn from their previous dietary experience (i.e., whether they have used a particular species as prey before) and how this impacts subsequent prey choice will influence predator and prey population dynamics after invasion. In this study, one nonnative resident ladybird, Hippodamia variegata, and one native ladybird, Coccinella transversalis, were investigated. Dietary experience with B. cockerelli as a prey species significantly increased preference for the psyllid in a short term (6 h) Petri dish study where a choice of prey was given. Greater suppression of B. cockerelli populations by experienced ladybirds was also observed on glasshouse grown tomato plants. This was presumably due to altered prey recognition by experience. The result of this study suggest the potential to improve the impact of biological control agents on invasive pests by providing early life experience consuming the target species. It may prove valuable for developing improved augmentative release strategies for ladybirds to manage specific insect pest species., (© 2024 The Authors. Insect Science published by John Wiley & Sons Australia, Ltd on behalf of Institute of Zoology, Chinese Academy of Sciences.)
- Published
- 2024
- Full Text
- View/download PDF
7. Tomato Potato Psyllid Bactericera cockerelli (Hemiptera: Triozidae) in Australia: Incursion, Potential Impact and Opportunities for Biological Control.
- Author
-
Sarkar SC, Hatt S, Philips A, Akter M, Milroy SP, and Xu W
- Abstract
Incursion and establishment of an exotic pest may threaten natural habitats and disrupt ecosystems. On the other hand, resident natural enemies may play an important role in invasive pest control. Bactericera cockerelli , commonly known as the tomato-potato psyllid, is an exotic pest, first detected on mainland Australia in Perth, Western Australia, in early 2017. B. cockerelli causes direct damage to crops by feeding and indirectly by acting as the vector of the pathogen that causes zebra chip disease in potatoes, although the latter is not present in mainland Australia. At present, Australian growers rely on the frequent use of insecticides to control B. cockerelli, which may lead to a series of negative economic and environmental consequences. The incursion of B. cockerelli also provides a unique opportunity to develop a conservation biological control strategy through strategically targeting existing natural enemy communities. In this review, we consider opportunities to develop biological control strategies for B. cockerelli to alleviate the dependence on synthetic insecticides. We highlight the potential of existing natural enemies to contribute toward regulating populations of B. cockerelli in the field and discuss the challenges ahead to strengthen the key role they can play through conservation biological control.
- Published
- 2023
- Full Text
- View/download PDF
8. Potential of variegated lady beetle Hippodamia variegata in management of invasive tomato potato psyllid Bactericera cockerelli.
- Author
-
Sarkar SC, Milroy SP, and Xu W
- Subjects
- Animals, Insecta, Reproduction, Solanum lycopersicum, Coleoptera, Hemiptera physiology, Solanum tuberosum
- Abstract
Background: The tomato potato psyllid, Bactericera cockerelli (Šulc) is a new invasive pest in Western Australia, which may disperse across the whole of Australia within a few years and cause significant economic losses. Chemical control is the most widely used approach to manage B. cockerelli, but insect resistance, chemical residue and effects on non-target species have become an increasing concerned. Therefore, in this study, the biocontrol potential of variegated lady beetle, Hippodamia variegata (Goeze) was investigated. The impact of utilizing B. cockerelli as a food source on the predator's development and reproduction was assessed by formulating age-stage, two sex life tables. The predatory potential of H. variegata on B. cockerelli nymphs was assessed in a closed arena and the effects of releasing H. variegata for the control of B. cockerelli were then evaluated., Results: H. variegata could successfully develop and oviposit when feeding on B. cockerelli. However, both survival and the rate of development were higher for H. variegata feeding on Myzus persicae (Sulzer) than B. cockerelli or a mixed population of B. cockerelli and M. persicae. A type II functional response was observed for H. variegata. In the greenhouse, the releases of H. variegata larvae reduced the number of B. cockerelli nymphs by up to 66% and adults by up to 59%, which positively influenced the plant chlorophyll content and biomass., Conclusions: This study demonstrated the potential of the resident generalist predator, H. variegata as a biocontrol agent for the invasive pest, B. cockerelli, which may help improving current management strategies. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry., (© 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.)
- Published
- 2023
- Full Text
- View/download PDF
9. The influence of shoot and root size on nitrogen uptake in wheat is affected by nitrate affinity in the roots during early growth.
- Author
-
Pang J, Milroy SP, Rebetzke GJ, and Palta JA
- Abstract
Shoot and root system size influences N uptake in wheat (Triticum aestivum L.). Previously, we showed that four wheat genotypes with different biomass had similar N uptake at tillering. In the present study, we determined whether the similarity in N uptake in these genotypes was associated with genotypic differences in the affinity of the root system for NO3- uptake. Kinetic parameters of NO3- uptake were measured in hydroponic seedlings of vigorous and nonvigorous early growth wheat genotypes by exposing them to solutions with differing concentrations of K15NO3 for 15min. In the low concentration range, the high-affinity transport system of the nonvigorous cultivar Janz showed a higher maximum influx rate than the three vigorous lines and a higher affinity than two of the three vigorous lines. At high NO3- concentrations, where the low-affinity transport system was functional, the responsiveness of NO3- uptake to external concentrations was greater in Janz than in the vigorous lines. Both the high- and low-affinity transport systems were inducible. The genotypic variation in the kinetic parameters of NO3- uptake was large enough to offset differences in morphological traits and should be considered in efforts to improve N uptake. In a field trial, the growth and N uptake performance of the four wheat genotypes was investigated over the winter-spring growing season (June-November of 2010). The field trial showed that although early N uptake was disproportionately large relative to biomass accumulation, the differences in uptake at tillering can be changed by subsequent patterns of uptake.
- Published
- 2015
- Full Text
- View/download PDF
10. Wheat genotypes with high early vigour accumulate more nitrogen and have higher photosynthetic nitrogen use efficiency during early growth.
- Author
-
Pang J, Palta JA, Rebetzke GJ, and Milroy SP
- Abstract
Genotypic differences in early growth and nitrogen (N) uptake among 24 wheat (Triticum aestivum L.) genotypes were assessed in a field trial. At late tillering, large genetic variation was observed for shoot biomass (23-56gm-2 ground area) and N uptake (1.1-1.8gm-2 ground area). A strong correlation between aboveground biomass and N uptake was observed. Variation around this relationship was also found, with some genotypes having similar N uptake but large differences in aboveground biomass. A controlled environment experiment was conducted to investigate the underlying mechanisms for this variation in aboveground biomass using three vigorous genotypes (38-19, 92-11 and CV97) and a non-vigorous commercial cultivar (Janz). Vigorous genotypes had lower specific leaf N in the youngest fully expanded leaf than Janz. However, there was no difference in chlorophyll content, maximum Rubisco activity or the rate of electron transport per unit area. This suggests that Janz invested more N in non-photosynthetic components than the vigorous lines, which could explain the higher photosynthetic N use efficiency of the vigorous genotypes. The results suggest that the utilisation of wheat genotypes with high early vigour could improve the efficiency of N use for biomass production in addition to improving N uptake during early growth.
- Published
- 2014
- Full Text
- View/download PDF
11. Large root systems: are they useful in adapting wheat to dry environments?
- Author
-
Palta JA, Chen X, Milroy SP, Rebetzke GJ, Dreccer MF, and Watt M
- Abstract
There is little consensus on whether having a large root system is the best strategy in adapting wheat (Triticum aestivum L.) to water-limited environments. We explore the reasons for the lack of consensus and aim to answer the question of whether a large root system is useful in adapting wheat to dry environments. We used unpublished data from glasshouse and field experiments examining the relationship between root system size and their functional implication for water capture. Individual root traits for water uptake do not describe a root system as being large or small. However, the recent invigoration of the root system in wheat by indirect selection for increased leaf vigour has enlarged the root system through increases in root biomass and length and root length density. This large root system contributes to increasing the capture of water and nitrogen early in the season, and facilitates the capture of additional water for grain filling. The usefulness of a vigorous root system in increasing wheat yields under water-limited conditions maybe greater in environments where crops rely largely on seasonal rainfall, such as the Mediterranean-type environments. In environments where crops are reliant on stored soil water, a vigorous root system increases the risk of depleting soil water before completion of grain filling.
- Published
- 2011
- Full Text
- View/download PDF
12. Red tides in the Gulf of Mexico: Where, when, and why?
- Author
-
Walsh JJ, Jolliff JK, Darrow BP, Lenes JM, Milroy SP, Remsen A, Dieterle DA, Carder KL, Chen FR, Vargo GA, Weisberg RH, Fanning KA, Muller-Karger FE, Shinn E, Steidinger KA, Heil CA, Tomas CR, Prospero JS, Lee TN, Kirkpatrick GJ, Whitledge TE, Stockwell DA, Villareal TA, Jochens AE, and Bontempi PS
- Abstract
[1] Independent data from the Gulf of Mexico are used to develop and test the hypothesis that the same sequence of physical and ecological events each year allows the toxic dinoflagellate Karenia brevis to become dominant. A phosphorus-rich nutrient supply initiates phytoplankton succession, once deposition events of Saharan iron-rich dust allow Trichodesmium blooms to utilize ubiquitous dissolved nitrogen gas within otherwise nitrogen-poor sea water. They and the co-occurring K. brevis are positioned within the bottom Ekman layers, as a consequence of their similar diel vertical migration patterns on the middle shelf. Upon onshore upwelling of these near-bottom seed populations to CDOM-rich surface waters of coastal regions, light-inhibition of the small red tide of ~1 ug chl l(-1) of ichthytoxic K. brevis is alleviated. Thence, dead fish serve as a supplementary nutrient source, yielding large, self-shaded red tides of ~10 ug chl l(-1). The source of phosphorus is mainly of fossil origin off west Florida, where past nutrient additions from the eutrophied Lake Okeechobee had minimal impact. In contrast, the P-sources are of mainly anthropogenic origin off Texas, since both the nutrient loadings of Mississippi River and the spatial extent of the downstream red tides have increased over the last 100 years. During the past century and particularly within the last decade, previously cryptic Karenia spp. have caused toxic red tides in similar coastal habitats of other western boundary currents off Japan, China, New Zealand, Australia, and South Africa, downstream of the Gobi, Simpson, Great Western, and Kalahari Deserts, in a global response to both desertification and eutrophication.
- Published
- 2006
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.