1. Topological surface states above the Fermi level in Hf2Te2 P
- Author
-
Boyle, TJ, Rossi, A, Walker, M, Carlson, P, Miller, MK, Zhao, J, Klavins, P, Jozwiak, C, Bostwick, A, Rotenberg, E, Taufour, V, Vishik, IM, and Da Silva Neto, EH
- Subjects
cond-mat.mes-hall ,cond-mat.mtrl-sci - Abstract
We report a detailed experimental study of the band structure of the recently discovered topological material Hf2Te2P. Using the combination of scanning tunneling spectroscopy and angle-resolved photoemission spectroscopy with surface K doping, we probe the band structure of Hf2Te2P with energy and momentum resolution above the Fermi level. Our experiments show the presence of multiple surface states with a linear Dirac-like dispersion, consistent with the predictions from previously reported band-structure calculations. In particular, scanning tunneling spectroscopy measurements provide experimental evidence for the strong topological surface state predicted at 460meV, which stems from the band inversion between Hf-d and Te-p orbitals. This band inversion comprised of more localized d states could result in a better surface-to-bulk conductance ratio relative to more traditional topological insulators.
- Published
- 2019