41 results on '"Milagre I"'
Search Results
2. MERVL/Zscan4 Network Activation Results in Transient Genome-wide DNA Demethylation of mESCs
- Author
-
Eckersley-Maslin, MA, Svensson, V, Krueger, C, Stubbs, TM, Giehr, P, Krueger, F, Miragaia, RJ, Kyriakopoulos, C, Berrens, RV, Milagre, I, Walter, J, Teichmann, SA, Reik, W, Eckersley-Maslin, MA, Svensson, V, Krueger, C, Stubbs, TM, Giehr, P, Krueger, F, Miragaia, RJ, Kyriakopoulos, C, Berrens, RV, Milagre, I, Walter, J, Teichmann, SA, and Reik, W
- Abstract
Mouse embryonic stem cells are dynamic and heterogeneous. For example, rare cells cycle through a state characterized by decondensed chromatin and expression of transcripts, including the Zscan4 cluster and MERVL endogenous retrovirus, which are usually restricted to preimplantation embryos. Here, we further characterize the dynamics and consequences of this transient cell state. Single-cell transcriptomics identified the earliest upregulated transcripts as cells enter the MERVL/Zscan4 state. The MERVL/Zscan4 transcriptional network was also upregulated during induced pluripotent stem cell reprogramming. Genome-wide DNA methylation and chromatin analyses revealed global DNA hypomethylation accompanying increased chromatin accessibility. This transient DNA demethylation was driven by a loss of DNA methyltransferase proteins in the cells and occurred genome-wide. While methylation levels were restored once cells exit this state, genomic imprints remained hypomethylated, demonstrating a potential global and enduring influence of endogenous retroviral activation on the epigenome.
- Published
- 2016
3. Repression of the human CYP46A1 gene by retinoic acid
- Author
-
Nunes, MJ, Milagre, I, Gama, MJ, Rodrigues, E, and Repositório da Universidade de Lisboa
- Abstract
Made available in DSpace on 2015-12-30T10:18:58Z (GMT). No. of bitstreams: 0 Previous issue date: 2009
- Published
- 2009
4. Unravelling the mechanisms of PDHA2 gene expression
- Author
-
PinheiroA, Milagre, I, Rodrigues, E, Silva, MJ, Tavares de Almeida, I, Rivera, I, and Repositório da Universidade de Lisboa
- Abstract
Made available in DSpace on 2015-12-30T10:18:58Z (GMT). No. of bitstreams: 0 Previous issue date: 2009
- Published
- 2009
5. Derepression of CYP46A1 expression by DNA demethylation and histone deacetylation inhibition
- Author
-
Milagre, I, Nunes, MJ, Gama, MJ, Rodrigues, E, and Repositório da Universidade de Lisboa
- Abstract
Made available in DSpace on 2015-12-30T10:18:58Z (GMT). No. of bitstreams: 0 Previous issue date: 2009
- Published
- 2009
6. Sp proteins have a critical role in histone deacetylase inhibitor-mediated derepression of CYP46A1 gene transcription
- Author
-
Nunes, MJ, Milagre, I, Gama, MJ, Rodrigues, E, and Repositório da Universidade de Lisboa
- Abstract
Made available in DSpace on 2015-12-30T10:18:58Z (GMT). No. of bitstreams: 0 Previous issue date: 2009
- Published
- 2009
7. Sp proteins play a critical role in histone deacetylase inhibitor-mediated derepression of CYP46A1 gene transcription
- Author
-
Nunes, MJ, Milagre, I, Schnekenburger, M, Gama, MJ, Diederich, M, Rodrigues, E, and Repositório da Universidade de Lisboa
- Abstract
Made available in DSpace on 2015-12-30T10:18:55Z (GMT). No. of bitstreams: 0 Previous issue date: 2009
- Published
- 2009
8. Reactivation of silenced CYP46A1 gene transcription by histone deacetylase inhibitors in neuroblastoma cells
- Author
-
Nunes, MJ, Milagre, I, Gama, MJ, Rodrigues, E, and Repositório da Universidade de Lisboa
- Abstract
Made available in DSpace on 2015-12-30T10:18:55Z (GMT). No. of bitstreams: 0 Previous issue date: 2008
- Published
- 2008
9. Derepression of the CYP46A1 gene transcription by histone deacetylase inhibition
- Author
-
Rodrigues, E, Nunes, MJ, Milagre, I, Gama, MJ, and Repositório da Universidade de Lisboa
- Abstract
Made available in DSpace on 2015-12-30T10:18:55Z (GMT). No. of bitstreams: 0 Previous issue date: 2008
- Published
- 2008
10. Role of CYP46A1 in brain cholesterol homeostasis
- Author
-
Rodrigues, E, Milagre, I, Nunes, MJ, Gama, MJ, Rodrigues, CMP, and Repositório da Universidade de Lisboa
- Abstract
Made available in DSpace on 2015-12-30T10:18:59Z (GMT). No. of bitstreams: 0 Previous issue date: 2008
- Published
- 2008
11. Role of Sp proteins in the transcriptional regulation of the brain specific CYP46A1 gene
- Author
-
Milagre, I, Nunes, MJ, Gama, MJ, Silva, RFM, Pascussi, JM, Lechner, MC, Rodrigues, E, and Repositório da Universidade de Lisboa
- Abstract
Made available in DSpace on 2015-12-30T10:18:54Z (GMT). No. of bitstreams: 0 Previous issue date: 2008
- Published
- 2008
12. Molecular and Cell Biology of Eukaryotic Systems
- Author
-
Rodrigues, CMP, Gama, MJ, Moreira da Silva, IB, Rodrigues, E, Solá, S, Castro-Caldas, M, Castro, RE, Ramalho, RM, Nunes, AF, Amaral, JD, Borralho, PM, Aranha, MM, Viana, RJS, Milagre, I, Santos, DM, Carvalho, ANeves, Nunes, MJ, and Repositório da Universidade de Lisboa
- Abstract
Made available in DSpace on 2015-12-30T10:18:59Z (GMT). No. of bitstreams: 0 Previous issue date: 2008
- Published
- 2008
13. The brain-specific Sp4 transcription factor is a major regulator of the CYP46A1 gene
- Author
-
Nunes, MJ, Milagre, I, Gama, MJ, Silva, RFM, Fernandes, A, Lechner, MC, Rodrigues, E, and Repositório da Universidade de Lisboa
- Abstract
Made available in DSpace on 2015-12-30T10:18:58Z (GMT). No. of bitstreams: 0 Previous issue date: 2007
- Published
- 2007
14. Repression of the human CYP46A1 promoter by retinoic acid
- Author
-
Milagre, I, Nunes, MJ, Gama, MJ, Pascussi, JM, Lechner, MC, Rodrigues, E, and Repositório da Universidade de Lisboa
- Abstract
Made available in DSpace on 2015-12-30T10:18:55Z (GMT). No. of bitstreams: 0 Previous issue date: 2007
- Published
- 2007
15. Identification of a CCAAT/enhancer binding protein (C/EBP) responsive region in the human CYP46A1 promoter
- Author
-
Milagre, I, Rodrigues, E, Gama, MJ, Lechner, MC, and Repositório da Universidade de Lisboa
- Abstract
Made available in DSpace on 2015-12-30T10:18:54Z (GMT). No. of bitstreams: 0 Previous issue date: 2006
- Published
- 2006
16. Combined effect of SP1/SP3 ratio and C/EBP transcription factors on the brain-specific expression of the CYP46A1 gene
- Author
-
Milagre, I, Gama, MJ, Pascussi, JM, Lechner, MC, Rodrigues, E, and Repositório da Universidade de Lisboa
- Abstract
Made available in DSpace on 2015-12-30T10:18:58Z (GMT). No. of bitstreams: 0 Previous issue date: 2006
- Published
- 2006
17. Functional significance of SP1 and SP3 transcription factors in the regulation of the human CYP46A1 promoter - cross-talk with CCAAT/enhancer binding proteins
- Author
-
Rodrigues, E, Milagre, I, Gama, MJ, Silva, RFM, Falcão, AS, Pascussi, JM, Lechner, MC, and Repositório da Universidade de Lisboa
- Abstract
Made available in DSpace on 2015-12-30T10:18:56Z (GMT). No. of bitstreams: 0 Previous issue date: 2006
- Published
- 2006
18. The brain-specific expression of the CYP46A1 gene is regulated by Sp1 and Sp3 transcription factors
- Author
-
Milagre, I, Gama, MJ, Lechner, MC, Rodrigues, E, and Repositório da Universidade de Lisboa
- Abstract
Made available in DSpace on 2015-12-30T10:18:59Z (GMT). No. of bitstreams: 0 Previous issue date: 2006
- Published
- 2006
19. REGULATION OF HUMAN CYP46A1 GENE EXPRESSION
- Author
-
Milagre, I, Gama, MJ, Lechner, MC, Rodrigues, E, and Repositório da Universidade de Lisboa
- Abstract
Made available in DSpace on 2015-12-30T10:19:00Z (GMT). No. of bitstreams: 0 Previous issue date: 2006
- Published
- 2006
20. Identification of a CCAAT/Enhancer binding protein (C/EBP) responsive region in the proximal promoter of the human CYP46 gene
- Author
-
Milagre, I, Rodrigues, E, Gama, MJ, Lechner, MC, and Repositório da Universidade de Lisboa
- Abstract
Made available in DSpace on 2015-12-30T10:18:57Z (GMT). No. of bitstreams: 0 Previous issue date: 2005
- Published
- 2005
21. UNVEILING THE REGULATORY MECHANISMS OF PDHA2 GENE
- Author
-
Pinheiro, A., Nunes, M., Milagre, I., Rodrigues, E., Maria Silva, Tavares Almeida, I., and Rivera, I.
22. Gender Differences in Global but Not Targeted Demethylation in iPSC Reprogramming
- Author
-
Milagre, I, Stubbs, TM, King, MR, Spindel, J, Santos, F, Krueger, F, Bachman, M, Segonds-Pichon, A, Balasubramanian, S, Andrews, Dean, W, and Reik, W
- Subjects
DNA methylation ,gender differences ,AID ,iPSCs ,reprogramming ,10. No inequality ,UHRF1 - Abstract
Global DNA demethylation is an integral part of reprogramming processes in vivo and in vitro, but whether it occurs in the derivation of induced pluripotent stem cells (iPSCs) is not known. Here, we show that iPSC reprogramming involves both global and targeted demethylation, which are separable mechanistically and by their biological outcomes. Cells at intermediate-late stages of reprogramming undergo transient genome-wide demethylation, which is more pronounced in female cells. Global demethylation requires activation-induced cytidine deaminase (AID)-mediated downregulation of UHRF1 protein, and abolishing demethylation leaves thousands of hypermethylated regions in the iPSC genome. Independently of AID and global demethylation, regulatory regions, particularly ESC enhancers and super-enhancers, are specifically targeted for hypomethylation in association with transcription of the pluripotency network. Our results show that global and targeted DNA demethylation are conserved and distinct reprogramming processes, presumably because of their respective roles in epigenetic memory erasure and in the establishment of cell identity.
23. DEMETHYLATION OF PDHA2 GENE LEADS TO ITS EXPRESSION IN SOMATIC TISSUES
- Author
-
Pinheiro, A., Milagre, I., Nunes, M. J., Rodrigues, E., Maria Silva, Almeida, I. T., and Rivera, I.
24. Compromised Mitotic Fidelity in Human Pluripotent Stem Cells.
- Author
-
Milagre I, Pereira C, and Oliveira RA
- Subjects
- Humans, Cell Differentiation, Mitosis, Pluripotent Stem Cells cytology, Pluripotent Stem Cells metabolism, Aneuploidy
- Abstract
Human pluripotent stem cells (PSCs), which include both embryonic and induced pluripotent stem cells, are widely used in fundamental and applied biomedical research. They have been instrumental for better understanding development and cell differentiation processes, disease origin and progression and can aid in the discovery of new drugs. PSCs also hold great potential in regenerative medicine to treat or diminish the effects of certain debilitating diseases, such as degenerative disorders. However, some concerns have recently been raised over their safety for use in regenerative medicine. One of the major concerns is the fact that PSCs are prone to errors in passing the correct number of chromosomes to daughter cells, resulting in aneuploid cells. Aneuploidy, characterised by an imbalance in chromosome number, elicits the upregulation of different stress pathways that are deleterious to cell homeostasis, impair proper embryo development and potentiate cancer development. In this review, we will summarize known molecular mechanisms recently revealed to impair mitotic fidelity in human PSCs and the consequences of the decreased mitotic fidelity of these cells. We will finish with speculative views on how the physiological characteristics of PSCs can affect the mitotic machinery and how their suboptimal mitotic fidelity may be circumvented.
- Published
- 2023
- Full Text
- View/download PDF
25. Voicing the need to consider sex-specific differences in research.
- Author
-
Miguel-Aliaga I, Vunjak-Novakovic G, Stephenson EJ, Gachon F, Milagre I, Mills E, Rubin JB, and Kelava I
- Subjects
- Male, Humans, Female, Sex Characteristics, Voice
- Abstract
Researchers are exploring sex differences in experimental models of both development and disease-but are we doing enough? In this collection of Voices, we celebrate researchers who are asking this question and starting to offer mechanistic clues on sexually dimorphic differences seen in interorgan communication, metabolic disease, neurological disorders, and more., Competing Interests: Declaration of interests The authors declare no competing interests., (Copyright © 2022 Elsevier Inc. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
26. Generation and characterization of induced pluripotent stem cell line (IBBISTi004-A) from an Angelman syndrome patient carrying a class II deletion of the maternal chromosome 15q11.2-q13.
- Author
-
Maranga C, Pereira C, Raposo AC, Vieira A, Duarte S, Bekman EP, Milagre I, and da Rocha ST
- Subjects
- Cell Differentiation, Child, Chromosome Deletion, Chromosomes, Chromosomes, Human, Pair 15, Female, Humans, Neurons, Angelman Syndrome genetics, Induced Pluripotent Stem Cells cytology
- Abstract
Angelman Syndrome is a rare neurodevelopmental disorder caused by several (epi)genetic alterations. The patients present strong neurological impairment due to the absence of a functional maternal UBE3A gene in neurons. Here, we generated and characterized a new induced pluripotent stem cell (iPSC) line from a female child with Angelman syndrome harbouring a class II deletion. iPSCs were reprogrammed from fibroblasts using Sendai viruses. The new iPSCs express pluripotency markers, are capable of trilineage in vitro differentiation and have the expected imprinting status of Angelman syndrome. These iPSCs are a valuable tool to elucidate the pathophysiological mechanisms associated with this disease., (Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
27. Multi-omic rejuvenation of human cells by maturation phase transient reprogramming.
- Author
-
Gill D, Parry A, Santos F, Okkenhaug H, Todd CD, Hernando-Herraez I, Stubbs TM, Milagre I, and Reik W
- Subjects
- Cellular Reprogramming genetics, DNA Methylation, Epigenome, Epigenomics methods, Fibroblasts, Humans, Middle Aged, Induced Pluripotent Stem Cells, Rejuvenation
- Abstract
Ageing is the gradual decline in organismal fitness that occurs over time leading to tissue dysfunction and disease. At the cellular level, ageing is associated with reduced function, altered gene expression and a perturbed epigenome. Recent work has demonstrated that the epigenome is already rejuvenated by the maturation phase of somatic cell reprogramming, which suggests full reprogramming is not required to reverse ageing of somatic cells. Here we have developed the first "maturation phase transient reprogramming" (MPTR) method, where reprogramming factors are selectively expressed until this rejuvenation point then withdrawn. Applying MPTR to dermal fibroblasts from middle-aged donors, we found that cells temporarily lose and then reacquire their fibroblast identity, possibly as a result of epigenetic memory at enhancers and/or persistent expression of some fibroblast genes. Excitingly, our method substantially rejuvenated multiple cellular attributes including the transcriptome, which was rejuvenated by around 30 years as measured by a novel transcriptome clock. The epigenome was rejuvenated to a similar extent, including H3K9me3 levels and the DNA methylation ageing clock. The magnitude of rejuvenation instigated by MPTR appears substantially greater than that achieved in previous transient reprogramming protocols. In addition, MPTR fibroblasts produced youthful levels of collagen proteins, and showed partial functional rejuvenation of their migration speed. Finally, our work suggests that optimal time windows exist for rejuvenating the transcriptome and the epigenome. Overall, we demonstrate that it is possible to separate rejuvenation from complete pluripotency reprogramming, which should facilitate the discovery of novel anti-ageing genes and therapies., Competing Interests: DG, AP, FS, HO, CT, IH, IM No competing interests declared, TS is CEO and shareholder of Chronomics, WR is a consultant and shareholder of Cambridge Epigenetix. Is employed by Altos Labs, (© 2022, Gill et al.)
- Published
- 2022
- Full Text
- View/download PDF
28. Generation and characterization of induced pluripotent stem cells heterozygous for the Portuguese BRCA2 founder mutation.
- Author
-
Silva TP, Pereira CA, Raposo AC, Oliveira AR, Arez M, Cabral JMS, Milagre I, Carmo-Fonseca M, and Rocha STD
- Subjects
- BRCA2 Protein genetics, Female, Founder Effect, Genes, BRCA2, Genetic Predisposition to Disease, Humans, Mutation, Portugal, Breast Neoplasms, Induced Pluripotent Stem Cells, Ovarian Neoplasms
- Abstract
Women who inherit heterozygous mutations in the BRCA2 gene have an increased risk of developing cancer, mainly breast and ovarian tumors. A particular BRCA2 mutation (c.156_157insAlu) is exclusively found in families of Portuguese ancestry and is present in approximately 30% of all Portuguese families with hereditary breast and ovarian cancers. We report the generation and characterization of the first iPSC line from a female donor harboring the Portuguese BRCA2 founder mutation. Skin fibroblasts were reprogrammed using a non-integrative Sendai virus. These iPSCs are a valuable tool to study the origin of BRCA2-associated cancer in its earliest phases., (Copyright © 2021 The Authors. Published by Elsevier B.V. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF
29. Generation and characterization of induced pluripotent stem cells from a family carrying the BRCA1 mutation c.3612delA.
- Author
-
Silva TP, Pereira CA, Oliveira AR, Raposo AC, Arez M, Cabral JMS, Milagre I, Carmo-Fonseca M, and da Rocha ST
- Subjects
- BRCA1 Protein genetics, Female, Fibroblasts, Heterozygote, Humans, Mutation, Induced Pluripotent Stem Cells
- Abstract
How BRCA1 germline mutations predispose to cancer remains poorly understood. Induced pluripotent stem cells (iPSCs) represent an emerging model to investigate the molecular mechanisms underlying malignant transformation in primary cells from individuals who are carriers of deleterious mutations in the BRCA1 gene. Here we report the generation and characterization of iPSC lines from a female donor harboring a germline c.3612delA mutation in the BRCA1 gene and her daughter who does not carry the mutation. Skin fibroblasts were reprogrammed using non-integrative Sendai virus and characterized for their pluripotent properties. These iPSCs are a valuable cellular model for personalized pre-clinical research in the context of BRCA1 mutant hereditary cancers., (Copyright © 2021 The Author(s). Published by Elsevier B.V. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF
30. Reprogramming of human cells to pluripotency induces CENP-A chromatin depletion.
- Author
-
Milagre I, Pereira C, Oliveira RA, and Jansen LET
- Subjects
- Cell Cycle genetics, Cell Differentiation genetics, Cell Line, Centromere genetics, Centromere metabolism, Chromatin metabolism, Fibroblasts metabolism, Humans, Kinetochores metabolism, Mitosis genetics, Models, Biological, Pluripotent Stem Cells cytology, Cellular Reprogramming genetics, Centromere Protein A metabolism, Chromatin genetics, Pluripotent Stem Cells metabolism
- Abstract
Pluripotent stem cells (PSCs) are central to development as they are the precursors of all cell types in the embryo. Therefore, maintaining a stable karyotype is essential, both for their physiological role as well as for their use in regenerative medicine. Karyotype abnormalities in PSCs in culture are common but the underlying causes remain unknown. To gain insight, we explore the composition of the centromere and kinetochore in human embryonic and induced PSCs. Centromere function depends on CENP-A nucleosome-defined chromatin. We show that while PSCs maintain abundant pools of CENP-A, CENP-C and CENP-T, these essential centromere components are strongly reduced at stem cell centromeres. Outer kinetochore recruitment is also impaired to a lesser extent, indicating an overall weaker kinetochore while the inner centromere protein Aurora B remains unaffected. We further show that, similar to differentiated human cells, CENP-A chromatin assembly in PSCs requires transition into G1 phase. Finally, reprogramming experiments indicate that reduction of centromeric CENP-A levels is an early event during dedifferentiation, coinciding with global chromatin remodelling. Our characterization of centromeres in human stem cells suggests a possible link between impaired centromere function and stem cell aneuploidies.
- Published
- 2020
- Full Text
- View/download PDF
31. Gender Differences in Global but Not Targeted Demethylation in iPSC Reprogramming.
- Author
-
Milagre I, Stubbs TM, King MR, Spindel J, Santos F, Krueger F, Bachman M, Segonds-Pichon A, Balasubramanian S, Andrews SR, Dean W, and Reik W
- Subjects
- Animals, CCAAT-Enhancer-Binding Proteins, Cells, Cultured, Cellular Reprogramming physiology, Cytidine Deaminase genetics, Embryonic Stem Cells physiology, Epigenesis, Genetic genetics, Epigenomics methods, Female, Fibroblasts, Gene Expression Regulation genetics, Genome genetics, Mice, Nuclear Proteins genetics, Sex Characteristics, Transcription, Genetic genetics, Ubiquitin-Protein Ligases, Cellular Reprogramming genetics, DNA Methylation genetics, Induced Pluripotent Stem Cells physiology
- Abstract
Global DNA demethylation is an integral part of reprogramming processes in vivo and in vitro, but whether it occurs in the derivation of induced pluripotent stem cells (iPSCs) is not known. Here, we show that iPSC reprogramming involves both global and targeted demethylation, which are separable mechanistically and by their biological outcomes. Cells at intermediate-late stages of reprogramming undergo transient genome-wide demethylation, which is more pronounced in female cells. Global demethylation requires activation-induced cytidine deaminase (AID)-mediated downregulation of UHRF1 protein, and abolishing demethylation leaves thousands of hypermethylated regions in the iPSC genome. Independently of AID and global demethylation, regulatory regions, particularly ESC enhancers and super-enhancers, are specifically targeted for hypomethylation in association with transcription of the pluripotency network. Our results show that global and targeted DNA demethylation are conserved and distinct reprogramming processes, presumably because of their respective roles in epigenetic memory erasure and in the establishment of cell identity., (Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.)
- Published
- 2017
- Full Text
- View/download PDF
32. MERVL/Zscan4 Network Activation Results in Transient Genome-wide DNA Demethylation of mESCs.
- Author
-
Eckersley-Maslin MA, Svensson V, Krueger C, Stubbs TM, Giehr P, Krueger F, Miragaia RJ, Kyriakopoulos C, Berrens RV, Milagre I, Walter J, Teichmann SA, and Reik W
- Subjects
- Animals, Cell Cycle genetics, Cellular Reprogramming, Chromatin chemistry, Chromatin metabolism, DNA Methylation, DNA Modification Methylases deficiency, DNA Modification Methylases genetics, Endogenous Retroviruses metabolism, Genomic Imprinting, Induced Pluripotent Stem Cells cytology, Induced Pluripotent Stem Cells metabolism, Mice, Mouse Embryonic Stem Cells cytology, Multigene Family, RNA, Messenger genetics, RNA, Messenger metabolism, Single-Cell Analysis, Transcription Factors metabolism, Transcriptional Activation, Endogenous Retroviruses genetics, Epigenesis, Genetic, Genome, Mouse Embryonic Stem Cells metabolism, Transcription Factors genetics, Transcriptome
- Abstract
Mouse embryonic stem cells are dynamic and heterogeneous. For example, rare cells cycle through a state characterized by decondensed chromatin and expression of transcripts, including the Zscan4 cluster and MERVL endogenous retrovirus, which are usually restricted to preimplantation embryos. Here, we further characterize the dynamics and consequences of this transient cell state. Single-cell transcriptomics identified the earliest upregulated transcripts as cells enter the MERVL/Zscan4 state. The MERVL/Zscan4 transcriptional network was also upregulated during induced pluripotent stem cell reprogramming. Genome-wide DNA methylation and chromatin analyses revealed global DNA hypomethylation accompanying increased chromatin accessibility. This transient DNA demethylation was driven by a loss of DNA methyltransferase proteins in the cells and occurred genome-wide. While methylation levels were restored once cells exit this state, genomic imprints remained hypomethylated, demonstrating a potential global and enduring influence of endogenous retroviral activation on the epigenome., (Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.)
- Published
- 2016
- Full Text
- View/download PDF
33. Impairment of DNA Methylation Maintenance Is the Main Cause of Global Demethylation in Naive Embryonic Stem Cells.
- Author
-
von Meyenn F, Iurlaro M, Habibi E, Liu NQ, Salehzadeh-Yazdi A, Santos F, Petrini E, Milagre I, Yu M, Xie Z, Kroeze LI, Nesterova TB, Jansen JH, Xie H, He C, Reik W, and Stunnenberg HG
- Published
- 2016
- Full Text
- View/download PDF
34. Okadaic acid inhibits the trichostatin A-mediated increase of human CYP46A1 neuronal expression in a ERK1/2-Sp3-dependent pathway.
- Author
-
Nunes MJ, Moutinho M, Milagre I, Gama MJ, and Rodrigues E
- Subjects
- Brain cytology, Cell Line, Tumor, Cholesterol metabolism, Cholesterol 24-Hydroxylase, Enzyme Induction drug effects, Homeostasis drug effects, Humans, MAP Kinase Kinase 1 metabolism, Mitogen-Activated Protein Kinase 1 metabolism, Mitogen-Activated Protein Kinase 3 metabolism, Neurons cytology, Neurons enzymology, Neurons metabolism, Organ Specificity, Phosphoproteins metabolism, Phosphorylation drug effects, Promoter Regions, Genetic drug effects, Sp3 Transcription Factor metabolism, Steroid Hydroxylases biosynthesis, Time Factors, Transcription, Genetic drug effects, Gene Expression Regulation, Enzymologic drug effects, Hydroxamic Acids antagonists & inhibitors, Hydroxamic Acids pharmacology, Neurons drug effects, Okadaic Acid pharmacology, Signal Transduction drug effects, Steroid Hydroxylases genetics
- Abstract
The CYP46A1 gene codes for the cholesterol 24-hydroxylase, a cytochrome P450 specifically expressed in neurons and responsible for the majority of cholesterol turnover in the central nervous system. Previously, we have demonstrated the critical participation of Sp transcription factors in the CYP46A1 response to histone deacetylase (HDAC) inhibitors, and in this study we investigated the involvement of intracellular signaling pathways in the trichostatin A (TSA) effect. Our results show that pretreatment of neuroblastoma cells with chemical inhibitors of mitogen-activated kinase kinase (MEK)1 significantly potentiates the TSA-dependent induction of cholesterol 24-hydroxylase, whereas inhibition of protein phosphatases by okadaic acid (OA) or overexpression of MEK1 partially impairs the TSA effect without affecting histone hyperacetylation at the promoter. Immunoblotting revealed that TSA treatment decreases ERK1/2 phosphorylation concomitantly with a decrease in Sp3 binding activity, which are both reversed by pretreatment with OA. Chromatin immunoprecipitation analysis demonstrated that TSA induces the release of p-ERK1/2 from the CYP46A1 proximal promoter, whereas pretreatment with OA restores the co-occupancy of Sp3-ERK1/2 in the same promoter fragments. We demonstrate for the first time the participation of MEK-ERK1/2 signaling pathway in HDAC inhibitor-dependent induction of cytochrome P450 gene expression, underlying the importance of this regulatory signaling mechanism in the control of brain cholesterol elimination.
- Published
- 2012
- Full Text
- View/download PDF
35. Marked change in the balance between CYP27A1 and CYP46A1 mediated elimination of cholesterol during differentiation of human neuronal cells.
- Author
-
Milagre I, Olin M, Nunes MJ, Moutinho M, Lövgren-Sandblom A, Gama MJ, Björkhem I, and Rodrigues E
- Subjects
- Cell Differentiation genetics, Cell Line, Tumor, Cholestanetriol 26-Monooxygenase biosynthesis, Cholestanetriol 26-Monooxygenase genetics, Cholesterol 24-Hydroxylase, Gene Expression Regulation, Developmental genetics, Gene Expression Regulation, Developmental physiology, Homeostasis genetics, Humans, Neurogenesis genetics, RNA, Messenger biosynthesis, Steroid Hydroxylases biosynthesis, Steroid Hydroxylases genetics, Cell Differentiation physiology, Cholestanetriol 26-Monooxygenase physiology, Neurogenesis physiology, Steroid Hydroxylases physiology
- Abstract
Cholesterol metabolism in the brain is distinct from that in other tissues due to the fact that cholesterol itself is unable to pass across the blood-brain barrier. Elimination of brain cholesterol is mainly dependent on a neuronal-specific cytochrome P450, CYP46A1, catalyzing the conversion of cholesterol into 24(S)-hydroxycholesterol (24OHC), which is able to pass the blood-brain barrier. A suitable model for studying this elimination from human neuronal cells has not been described previously. It is shown here that differentiated Ntera2/clone D1 (NT2) cells express the key genes involved in brain cholesterol homeostasis including CYP46A1, and that the expression profiles of the genes observed during neuronal differentiation are those expected to occur in vivo. Thus there was a decrease in the mRNA levels corresponding to cholesterol synthesis enzymes and a marked increase in the mRNA level of CYP46A1. The latter increase was associated with increased levels of CYP46A1 protein and increased production of 24OHC. The magnitude of the secretion of 24OHC from the differentiated NT2 cells into the medium was similar to that expected to occur under in vivo conditions. An alternative to elimination of cholesterol by the CYP46A1 mechanism is elimination by CYP27A1, and the product of this enzyme, 27-hydroxycholesterol (27OHC), is also known to pass the blood-brain barrier. The CYP27A1 protein level decreased during the differentiation of the NT2 cells in parallel with decreased production of 27OHC. The ratio between 24OHC and 27OHC in the medium from the cultured cells increased, by a factor of 13, during the differentiation process. The results suggest that progenitor cells eliminate cholesterol in the form of 27OHC while neurogenesis induces a change to the CYP46A1 dependent pathway. Furthermore this study demonstrates that differentiated NT2 cells are suitable for studies of cholesterol homeostasis in human neurons., (Copyright © 2011 Elsevier Ltd. All rights reserved.)
- Published
- 2012
- Full Text
- View/download PDF
36. Neuronal differentiation alters the ratio of Sp transcription factors recruited to the CYP46A1 promoter.
- Author
-
Milagre I, Nunes MJ, Castro-Caldas M, Moutinho M, Gama MJ, and Rodrigues E
- Subjects
- Carcinoma pathology, Carrier Proteins metabolism, Cell Differentiation drug effects, Cell Line, Tumor, Cholesterol 24-Hydroxylase, Chromatin Immunoprecipitation, Electrophoretic Mobility Shift Assay, Gene Expression Regulation drug effects, Humans, Nerve Tissue Proteins genetics, Nerve Tissue Proteins metabolism, RNA, Messenger metabolism, Receptors, N-Methyl-D-Aspartate metabolism, Reelin Protein, Sp Transcription Factors genetics, Statistics, Nonparametric, Transcriptional Activation drug effects, Tretinoin pharmacology, Cell Differentiation physiology, Gene Expression Regulation physiology, Neurons metabolism, Promoter Regions, Genetic physiology, Sp Transcription Factors metabolism, Steroid Hydroxylases genetics
- Abstract
CYP46A1 is a neuron-specific cytochrome P450 that plays a pivotal role in maintaining cholesterol homeostasis in the CNS. However, the molecular mechanisms underlying human CYP46A1 expression are still poorly understood, partly because of the lack of a cellular model that expresses high levels of CYP46A1. Our previous studies demonstrated that specificity protein (Sp) transcription factors control CYP46A1 expression, and are probably responsible for cell-type specificity. Herein, we have differentiated Ntera2/cloneD1 cells into post-mitotic neurons and identified for the first time a human cell model that expresses high levels of CYP46A1 mRNA. Our results show a decrease in Sp1 protein levels, concomitant with the increase in CYP46A1 mRNA levels. This decrease was correlated with changes in the ratio of Sp proteins associated to the CYP46A1 proximal promoter. To examine if the increase in (Sp3+Sp4)/Sp1 ratio was observed in other Sp-regulated promoters, we have selected four genes--reelin, glutamate receptor subunit zeta-1, glutamate receptor subunit epsilon-1 and μ-opioid receptor--known to be expressed in the human brain and analyzed the Sp proteins binding pattern to the promoter of these genes, in undifferentiated and differentiated Ntera2/cloneD1. Our data indicate that the dissociation of Sp1 from promoter regions is a common feature amongst Sp-regulated genes that are up-regulated after neuronal differentiation., (© 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.)
- Published
- 2012
- Full Text
- View/download PDF
37. Demethylation of the coding region triggers the activation of the human testis-specific PDHA2 gene in somatic tissues.
- Author
-
Pinheiro A, Nunes MJ, Milagre I, Rodrigues E, Silva MJ, de Almeida IT, and Rivera I
- Subjects
- Azacitidine analogs & derivatives, Azacitidine pharmacology, Base Sequence, Binding Sites, Cell Line, CpG Islands genetics, DNA Methylation drug effects, Decitabine, Epigenesis, Genetic drug effects, Humans, Male, Molecular Sequence Data, Organ Specificity drug effects, Organ Specificity genetics, Polymerase Chain Reaction, Promoter Regions, Genetic drug effects, Protein Binding drug effects, Pyruvate Dehydrogenase (Lipoamide) metabolism, RNA Polymerase II metabolism, RNA, Messenger genetics, RNA, Messenger metabolism, Sequence Analysis, DNA, Sequence Deletion genetics, Sp1 Transcription Factor metabolism, Testis drug effects, Transcription Initiation Site drug effects, DNA Methylation genetics, Gene Expression Regulation, Enzymologic drug effects, Open Reading Frames genetics, Pyruvate Dehydrogenase (Lipoamide) genetics, Testis enzymology
- Abstract
Human PDHA2 is a testis-specific gene that codes for the E(1)α subunit of Pyruvate Dehydrogenase Complex (PDC), a crucial enzyme system in cell energy metabolism. Since activation of the PDHA2 gene in somatic cells could be a new therapeutic approach for PDC deficiency, we aimed to identify the regulatory mechanisms underlying the human PDHA2 gene expression. Functional deletion studies revealed that the -122 to -6 promoter region is indispensable for basal expression of this TATA-less promoter, and suggested a role of an epigenetic program in the control of PDHA2 gene expression. Indeed, treatment of SH-SY5Y cells with the hypomethylating agent 5-Aza-2'-deoxycytidine (DAC) promoted the reactivation of the PDHA2 gene, by inducing the recruitment of the RNA polymerase II to the proximal promoter region and the consequent increase in PDHA2 mRNA levels. Bisulfite sequencing analysis revealed that DAC treatment induced a significant demethylation of the CpG island II (nucleotides +197 to +460) in PDHA2 coding region, while the promoter region remained highly methylated. Taken together with our previous results that show an in vivo correlation between PDHA2 expression and the demethylation of the CpG island II in testis germ cells, the present results show that internal methylation of the PDHA2 gene plays a part in its repression in somatic cells. In conclusion, our data support the novel finding that methylation of the PDHA2 coding region can inhibit gene transcription. This represents a key mechanism for absence of PDHA2 expression in somatic cells and a target for PDC therapy.
- Published
- 2012
- Full Text
- View/download PDF
38. Sp proteins play a critical role in histone deacetylase inhibitor-mediated derepression of CYP46A1 gene transcription.
- Author
-
Nunes MJ, Milagre I, Schnekenburger M, Gama MJ, Diederich M, and Rodrigues E
- Subjects
- Animals, Cell Line, Cholesterol 24-Hydroxylase, Chromatin Immunoprecipitation, Drosophila melanogaster, Electrophoretic Mobility Shift Assay methods, Gene Expression Regulation drug effects, Histone Deacetylase Inhibitors pharmacology, Humans, Hydroxamic Acids pharmacology, Promoter Regions, Genetic, Protein Binding drug effects, RNA, Small Interfering pharmacology, Statistics, Nonparametric, Steroid Hydroxylases genetics, Transcriptional Activation, Transfection methods, Gene Expression Regulation physiology, Histone Deacetylases metabolism, Sp Transcription Factors physiology, Steroid Hydroxylases metabolism
- Abstract
We investigated whether the CYP46A1 gene, a neuronal-specific cytochrome P450, responsible for the majority of brain cholesterol turnover, is subject to transcriptional modulation through modifications in histone acetylation. We demonstrated that inhibition of histone deacetylase activity by trichostatin A (TSA), valproic acid and sodium butyrate caused a potent induction of both CYP46A1 promoter activity and endogenous expression. Silencing of Sp transcription factors through specific small interfering RNAs, or impairing Sp binding to the proximal promoter, by site-directed mutagenesis, led to a significant decrease in TSA-mediated induction of CYP46A1 expression/promoter activity. Electrophoretic mobility shift assay, DNA affinity precipitation assays and chromatin immunoprecipitation assays were used to determine the multiprotein complex recruited to the CYP46A1 promoter, upon TSA treatment. Our data showed that a decrease in Sp3 binding at particular responsive elements, can shift the Sp1/Sp3/Sp4 ratio, and favor the detachment of histone deacetylase (HDAC) 1 and HDAC2 and the recruitment of p300/CBP. Moreover, we observed a dynamic change in the chromatin structure upon TSA treatment, characterized by an increase in the local recruitment of euchromatic markers and RNA polymerase II. Our results show the critical participation of an epigenetic program in the control of CYP46A1 gene transcription, and suggest that brain cholesterol catabolism may be affected upon treatment with HDAC inhibitors.
- Published
- 2010
- Full Text
- View/download PDF
39. Chromatin-modifying agents increase transcription of CYP46A1, a key player in brain cholesterol elimination.
- Author
-
Milagre I, Nunes MJ, Moutinho M, Rivera I, Fuso A, Scarpa S, Gama MJ, and Rodrigues E
- Subjects
- Analysis of Variance, Azacitidine pharmacology, Blotting, Western, Cholesterol 24-Hydroxylase, Decitabine, Dose-Response Relationship, Drug, Electrophoretic Mobility Shift Assay, HEK293 Cells, Histone Deacetylase Inhibitors pharmacology, Humans, Hydroxamic Acids pharmacology, Neurons metabolism, Promoter Regions, Genetic, Reverse Transcriptase Polymerase Chain Reaction, Sp1 Transcription Factor genetics, Sp1 Transcription Factor metabolism, Sp3 Transcription Factor genetics, Sp3 Transcription Factor metabolism, Steroid Hydroxylases metabolism, Azacitidine analogs & derivatives, Cholesterol metabolism, DNA Modification Methylases antagonists & inhibitors, Neurons drug effects, Steroid Hydroxylases genetics
- Abstract
The major mechanism of brain cholesterol elimination is the conversion of cholesterol into 24S-hydroxycholesterol by CYP46A1, a neuron-specific cytochrome P450. Since increasing evidence suggests that upregulation of CYP46A1 may be relevant for the treatment of Alzheimer's disease, we aim to identify the molecular mechanisms involved in CYP46A1 transcription. Our previous studies demonstrated the role of Sp transcription factors in basal expression and histone deacetylase (HDAC) inhibitor-dependent derepression of CYP46A1. Here, we show that the demethylating agent 5'-Aza-2'-deoxycytidine (DAC) is a CYP46A1 inducer and that pre-treatment with DAC causes a marked synergistic activation of CYP46A1 transcription by trichostatin A. Surprisingly, bisulfite sequencing analysis revealed that the CYP46A1 core promoter is completely unmethylated in both human brain and non-neuronal human tissues where CYP46A1 is not expressed. Therefore, we have investigated Sp expression levels by western blot and real-time PCR, and their binding patterns to the CYP46A1 promoter, by electrophoretic mobility shift assay and chromatin immunoprecipitation assays, after DAC treatment. Our results showed that DAC decreases not only Sp1 and Sp3 protein levels, but also the binding activity of Sp3 to the +1 region of the CYP46A1 locus. Concomitantly, HDAC1 and HDAC2 were also significantly dissociated from the promoter. In conclusion, DAC induces CYP46A1 gene expression, in a DNA methylation-independent mechanism, decreasing Sp3/HDAC binding to the proximal promoter. Furthermore, by affecting the expression of the Sp3 transcription factor in neuronal cells, DAC might affect not only brain cholesterol metabolism, but also the expression of many other neuronal genes.
- Published
- 2010
- Full Text
- View/download PDF
40. Glutathione S-transferase pi regulates UV-induced JNK signaling in SH-SY5Y neuroblastoma cells.
- Author
-
Castro-Caldas M, Milagre I, Rodrigues E, and Gama MJ
- Subjects
- Apoptosis radiation effects, Caspase 3 metabolism, Enzyme Activation physiology, Enzyme Activation radiation effects, Humans, Macromolecular Substances metabolism, Neurons radiation effects, Phosphorylation radiation effects, Proto-Oncogene Proteins c-jun metabolism, Signal Transduction physiology, Signal Transduction radiation effects, Stress, Physiological radiation effects, Tumor Cells, Cultured, Ultraviolet Rays, Up-Regulation physiology, Up-Regulation radiation effects, Apoptosis physiology, Glutathione S-Transferase pi metabolism, JNK Mitogen-Activated Protein Kinases metabolism, Neurons enzymology, Stress, Physiological physiology
- Abstract
Activation of c-Jun N-terminal kinase (JNK) signaling pathway is a key event in apoptosis. The cellular mechanisms underlying the control of JNK catalytic activity before and immediately after stress in neuronal cells are still not completely understood. Under resting conditions the basal activity of JNK is low, since JNK is kept inactive by the presence of one or more endogenous repressors, including glutathione S-transferase pi (GSTpi). The aim of this study was to investigate the control of JNK signaling by GSTpi. We examined the modifications of GSTpi protein expression and oligomerization after UV irradiation-induced stress in human SH-SY5Y neuroblastoma cells. In parallel, we investigated the effect of UV irradiation on JNK activation and c-Jun phosphorylation, and whether apoptosis represents a functional consequence triggered by this signaling pathway. We show that in SH-SY5Y cells JNK phosphorylation and activation precedes c-Jun phosphorylation and caspase-3 cleavage. Importantly, the increase of JNK enzymatic activity correlates with the dissociation of GSTpi-JNK complexes and the increased concentration of GSTpi multimer forms. Results presented herein show for the first time direct interaction between JNK and GSTpi in SH-SY5Y neuroblastoma cells, and suggest that in these cells GSTpi may serve as a regulator of JNK catalytic activity. This work contributes to further elucidate the mechanisms underlying the regulation of JNK activity under stress conditions.
- Published
- 2009
- Full Text
- View/download PDF
41. Transcriptional regulation of the human CYP46A1 brain-specific expression by Sp transcription factors.
- Author
-
Milagre I, Nunes MJ, Gama MJ, Silva RF, Pascussi JM, Lechner MC, and Rodrigues E
- Subjects
- Analysis of Variance, Animals, Cells, Cultured, Cholesterol 24-Hydroxylase, Dose-Response Relationship, Drug, Drosophila melanogaster, Electrophoretic Mobility Shift Assay methods, Embryo, Mammalian, Humans, Mutagenesis physiology, Neurons drug effects, Plicamycin analogs & derivatives, Plicamycin pharmacology, Promoter Regions, Genetic drug effects, Promoter Regions, Genetic physiology, Protein Binding, RNA, Messenger metabolism, Rats, Sp Transcription Factors metabolism, Steroid Hydroxylases genetics, Transfection methods, Neurons physiology, Steroid Hydroxylases metabolism, Transcription, Genetic physiology
- Abstract
Brain defective cholesterol homeostasis has been associated with neurologic diseases, such as Alzheimer's and Huntington's disease. The elimination of cholesterol from the brain involves its conversion into 24(S)-hydroxycholesterol by CYP46A1, and the efflux of this oxysterol across the blood-brain barrier. Herein, we identified the regulatory elements and factors involved the human CYP46A1 expression. Functional 5'deletion analysis mapped a region spanning from nucleotides -236/-64 that is indispensable for basal expression of this TATA-less gene. Treatment of SH-SY5Y cells with mithramycin A resulted in a significant reduction of promoter activity, suggesting a role of Sp family of transcription factors in CYP46A1 regulation. Combination of Sp1, Sp3, and Sp4 over-expression studies in Drosophila SL-2 cells, and systematic promoter mutagenesis identified Sp3 and Sp4 binding to four GC-boxes as required and sufficient for high levels of promoter activity. Moreover, Sp3 and Sp4 were demonstrated to be the major components of the protein-DNA complexes observed in primary rat cortical extracts. Our results suggest that the cell-type specific expression of Sp transcription factors - substitution of Sp1 by Sp4 in neurons - is responsible for the basal expression of the CYP46A1 gene. This study delineates for the first time the mechanisms underlying the human CYP46A1 transcription and thereby elucidates potential pathways underlying cholesterol homeostasis in the brain.
- Published
- 2008
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.