463 results on '"Mikrofluidik"'
Search Results
2. Elution von intakten Proteoformen von magnetischen Partikeln kombiniert mit digitaler Mikrofluidik für die quantitative Top‐down‐Nanoproteomik von einzelnen C. elegans‐Nematoden.
- Author
-
Leipert, Jan, Kaulich, Philipp T., Steinbach, Max K., Steer, Britta, Winkels, Konrad, Blurton, Christine, Leippe, Matthias, and Tholey, Andreas
- Abstract
Während die meisten Ansätze zur Analyse von geringen Probemengen durch Nanoproteomik auf der bottom‐up‐Strategie basieren, sind top‐down‐Ansätze zur Charakterisierung von Proteoformen nach wie vor unterrepräsentiert. An Proteomen von Säugerzellen haben wir eine einfache Probenvorbereitungsmethode etabliert, welche auf Proteinaggregation an magnetischen Partikeln und anschließender Elution intakter Proteoformen durch 40 %ige Ameisensäure basiert. Die Implementierung der Methode auf einer Plattform für digitale Mikrofluidik ermöglichte die sensitive Analyse von einzelnen Individuen des Nematoden Caenorhabditis elegans. Die Anzahl identifizierter Proteoformen konnte dabei im Vergleich zu herkömmlicher Probenvorbereitung in einem Reaktionsgefäß um 46 % erhöht werden. Ferner erlaubte die markierungsfreie (label‐free) Quantifizierung von Proteomen einzelner Nematoden, welche unter verschiedenen Bedingungen kultiviert wurden, Änderungen der Abundanz von Proteoformen zu erkennen, welche in bottom‐up‐Experimenten nicht festgestellt wurden. Die hier präsentierte Methode wird die Proteoform‐zentrische Analytik in Proben mit limitierter Verfügbarkeit vereinfachen. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
3. Grenzflächen mit fluorierten Amphiphilen: Überstrukturen und Mikrofluidik.
- Author
-
Junge, Florian, Lee, Pin‐Wei, Kumar Singh, Abhishek, Wasternack, Janos, Pachnicz, Michał P., Haag, Rainer, and Schalley, Christoph A.
- Subjects
- *
ADSORPTION (Chemistry) - Abstract
Der vorliegende Aufsatz diskutiert die jüngsten Entwicklungen in der Forschung zu Grenzflächenphänomenen fluorierter Amphiphile und konzentriert sich auf Anwendungen, die die einzigartigen und vielfältigen Grenzflächeneigenschaften dieser Amphiphile ausnutzen. Vor allem bilden fluorierte Amphiphile stabile Aggregate mit oft deutlich anderer Morphologie als ihre nicht fluorierten Analoga. Folglich finden fluorierte Tenside vielfältigen Einsatz in Hochleistungsanwendungen wie dem Mikrofluidik‐unterstützten Screening. Darüber hinaus wird ihr fluorspezifisches Verhalten an der Fest/Flüssig‐Grenzfläche thematisiert, wie zum Beispiel die Bildung superhydrophober Beschichtungen nach der Abscheidung auf Oberflächen. Da fluorierte Tenside und perfluorierte Materialien im Allgemeinen potenzielle Umweltbedrohungen darstellen, werden auch die jüngsten Entwicklungen der Schadstoffsanierung durch ihre Adsorption an fluorierte Oberflächen bewertet. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
4. Kontinuierliche Elektrochemische Synthese von Gold‐Nanopartikeln in Nanoliter‐Reaktoren.
- Author
-
Saucedo‐Espinosa, Mario Alberto, Breitfeld, Maximilian, and Dittrich, Petra Stephanie
- Subjects
- *
HATS , *ADDITIVES - Abstract
Gold‐Nanopartikel (AuNP) werden in zahlreichen Gebieten wie Optik, Biosensorik und Katalyse eingesetzt. In der vorliegenden Studie wird gezeigt, dass AuNP in kleinen Nanoliter‐Reaktoren elektrochemisch ohne Einsatz von Stabilisatoren hergestellt werden können. Dazu werden zuerst Wassertropfen, die den Gold(III)‐Präkursor enthalten, in einem mikrofluidischen System erzeugt und dann kontinuierlich durch ein Elektrodenpaar geleitet. Das in diesem Bereich angelegte elektrische Feld führt zur Bildung von AuNP. Dabei verhindern interne Ströme innerhalb der Tröpfchen, die während des Durchfließens durch die Mikrokanäle entstehen, die Aggregation der Nanopartikel nach der Nukleation. Auf dieser Weise können AuNP in einem Größenbereich von 30 bis 100 nm hergestellt werden, ohne dass weitere Additive notwendig sind. Die durchschnittliche Teilchengröße wird durch die Konzentration des Präkursors und der Flussgeschwindigkeit der Tröpfchen beeinflusst. Die Ladungsmenge, die durch die Stärke des elektrischen Feldes bestimmt wird, hat dagegen nur einen geringen Einfluss auf die resultierende Partikelgröße. Das Verfahren ermöglicht nicht nur eine gezielte Steuerung der resultierenden Partikelgröße, sondern könnte in Zukunft auch für die Herstellung anderer Metall‐Nanopartikel eingesetzt werden. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
5. 3D‐Druck miniaturisierter und mikrofluidischer Systeme: Von der Zellkultur zur Biosensorik.
- Author
-
Enders, Anton and Bahnemann, Janina
- Abstract
Summary 3D printing technology can be used to develop a wide variety of prototypes within a very short time, which are applied in the field of biotechnology. Due to the high precision and highly automated printing technology, miniaturized and microfluidic systems can nowadays be produced using 3D printing. This simplifies the development and integration of various microfluidic units (such as micromixers), which promotes the construction of functional microfluidic platforms and lab‐on‐a‐chip systems. By using biocompatible printing materials, it is also possible to manufacture individual cultivation systems and flow cells that are suitable for the cultivation of mammalian cells or the analysis of biological samples. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
6. Spezielle labortechnische Reaktoren: 3D-gedruckte Reaktoren
- Author
-
Hübner, Eike G., Lederle, Felix, and Reschetilowski, Wladimir, editor
- Published
- 2020
- Full Text
- View/download PDF
7. Spezielle labortechnische Reaktoren: Hochdurchsatz-Reaktionstechnik
- Author
-
Stöwe, Klaus and Reschetilowski, Wladimir, editor
- Published
- 2020
- Full Text
- View/download PDF
8. Reaktoren für spezielle technisch-chemische Prozesse: Mikrostrukturreaktoren
- Author
-
Bošković, Dušan and Reschetilowski, Wladimir, editor
- Published
- 2020
- Full Text
- View/download PDF
9. Silicon-Based Optical Sensors for Fungal Pathogen Diagnostics
- Author
-
Christopher, Heuer and Christopher, Heuer
- Abstract
The last years have witnessed a link between the COVID-19 pandemic with increasing numbers of vulnerable patients and globally emerging incidences of severe drug-resistant fungal infections, thus, calling for rapid, reliable, and sensitive diagnostic tools for fungal infections. However, despite strong warnings from health authorities, such as the World Health Organization, concerning the fatal consequences of the global spread of drug-resistant pathogenic fungi, progress in fungal infection diagnosis and therapy is still limited. Today, gold standard methods for revealing resistance and susceptibility in pathogenic fungi, namely antifungal susceptibility testing (AFST), require several days for completion, and thus this lengthy process can adversely affect antifungal therapy and further promote the spread of resistance. In this work, the use of photonic silicon chips consisting of micropatterned diffraction gratings as sensitive sensors for rapid AFST of clinically relevant fungal pathogens is investigated. These photonic chips provide a surface for the colonization of microbial pathogens at a liquid-solid interface and serve as the optical transducer element for label-free monitoring of fungal growth by detecting real-time changes in the white light reflectance. These sensor elements are used to track morphological changes of fungi in the presence of clinically relevant antifungals at varying concentrations to rapidly determine the minimum inhibitory concentration (MIC) values that help to classify pathogens as resistant or susceptible. We show that by careful design of the chip dimensions, this optical method can extend from bacteria, through yeasts, to filamentous fungi for accelerated AFST, which is at least three times faster than current gold standard methods and can provide same-day results. Moreover, a 3D-printed microfluidic gradient generator was designed to complement the assay and provide an integrated system, which can potentially be employed in point
- Published
- 2024
10. In Vitro Organoid Electrophysiology Recording Platform : Integrating Hydrodynamic Trapping Microfluidics, Microelectrode Arrays, Front-end Electronics, and Offline Signal Processing for Dynamic Monitoring of Extracellular Activities in Pancreatic Islets
- Author
-
Jessika, Jessika and Jessika, Jessika
- Abstract
Type I diabetes (T1D) is an autoimmune disorder affecting the insulin-producing beta cells of the islets of Langerhans, disrupting the glucose homeostasis regulatory system. Nowadays, islet transplantation is one of the anticipated treatments to revive the endocrinal function by injecting isolated pancreatic islets from a deceased donor into the patient’s liver’s portal vein. Regardless of the promising aspect, the main issue prior to transplantation is the inconsistent quality and low percentage of functioning islets post-transplantation. Therefore, a rapid islet functionality test with minimal complicated operation becomes necessary to tackle the pre-transplantation issue. This project revolves around the end-to-end development of an electrophysiology recording platform to monitor extracellular activities in murine pancreatic islets. A microfluidic perfusion system with hydrodynamic trapping is integrated with planar gold microelectrode arrays (MEA) as the preliminary device directly interfacing the islets. The design and fabrication of both the microfluidics and electrode devices, as well as in-house front-end electronics with analog filters and amplifiers tailored to capture the microvolt-scale signals, covered most of the project. Offline digital processing was performed in Python to analyse the recorded signals further. As a result, the complete platform and recording setup have been fully integrated, with successful islet trapping on top of electrodes and front-end electronics with 220x voltage gain and 0.1-3000 Hz bandwidth to record extracellular electrophysiology signals from intact pancreatic islets. While the current preliminary electrophysiology recordings are still quite inconclusive and require further validation, the project serves as a starting point in developing devices for extracellular electrophysiology measurement, which has not commonly been investigated specifically in pancreatic islets, and enables further exploration in the field., Typ I-diabetes (T1D) är en autoimmun sjukdom som påverkar de insulinproducerande betacellerna på de Langerhanska öarna och stör det reglerande systemet för glukoshomeostas. Nuförtiden är ötransplantation en av de förväntade behandlingarna för att återuppliva den endokrina funktionen genom att injicera isolerade pankreasöar från en avliden donator i patientens levers portven. Oavsett den lovande aspekten är huvudfrågan före transplantation den inkonsekventa kvaliteten och låga andelen fungerande öar efter transplantationen. Därför blir ett snabbt funktionstest av öar med minimalt komplicerad operation nödvändigt för att ta itu med problemet före transplantation. Detta projekt kretsar kring end-to-end utveckling av en elektrofysiologisk inspelningsplattform för att övervaka extracellulära aktiviteter i murina pankreatiska öar. Ett mikrofluidiskt perfusionssystem med hydrodynamisk infångning är integrerat med plana guldmikroelektrodarrayer (MEA) som den preliminära enheten som direkt gränsar till öarna. Designen och tillverkningen av både mikrofluidik och elektrodenheter, såväl som intern front-end-elektronik med analoga filter och förstärkare skräddarsydda för att fånga signalerna i mikrovoltskala, täckte större delen av projektet. Offline digital bearbetning utfördes i Python för att analysera de inspelade signalerna ytterligare. Som ett resultat har den kompletta plattformen och inspelningsuppsättningen integrerats helt, med lyckad ö-infångning ovanpå elektroder och front-end-elektronik med 220x spänningsförstärkning och 0,1-3000 Hz för att registrera extracellulära elektrofysiologiska signaler från intakta pankreatiska öar. Medan de nuvarande preliminära elektrofysiologiska inspelningarna fortfarande är ganska ofullständiga och kräver ytterligare validering, fungerar projektet som en utgångspunkt för att utveckla enheter för extracellulär elektrofysiologisk mätning, som inte vanligtvis har undersökts specifikt i pankreasöar, och möjliggör ytterligare utforskning in
- Published
- 2024
11. Comparative Analysis of Zymot versus Gradient Centrifugation in Intracytoplasmic Sperm Injection Samples : A Study on Fertilization Efficiency and Embryo Quality
- Author
-
Sörensen Larsson, Mimmi and Sörensen Larsson, Mimmi
- Abstract
Infertility is a global challenge, often remedied with In vitro fertilization (IVF) and Intra cytoplasmic sperm injection (ICSI). Sperm quality is crucial, prompting ICSI when compromised. Routine sperm preparation via gradient centrifugation raises concerns about sperm stress and DNA fragmentation. Zymot, a new device that utilizes microfluidic technology, emerges as a promising alternative. It minimizes sperm stress and DNA damage, potentially enhancing fertilization rates and embryo quality. The aim of this study was to compare the outcome of ICSI samples treated with Zymot against gradient centrifuged samples. Focus was on fertilization rates, embryo quality, and pregnancy outcomes. The results of 104 Zymot treated samples from men with compromised sperm quality were compared with 144 gradient centrifugations retrospective. Results revealed a significant difference between methods in the number of pronulear (PN), specifically in the Good Quality Embryo (GQE) where 62% with Zymot were 2PN compared to 59% with gradient (p=0.017). No significant difference in pregnancy rates or embryo utilization rate were observed. A tendency towards higher proportion (54.6%) of Zymot-treated embryos were cryopreserved compared to gradient (49.4%, p=0,27). In conclusion, a significant difference between methods in the GQE proportion of 2PN embryos favored Zymot. Closer examination revealed a higher proportion of embryos cryopreserved with Zymot, suggesting a potential for increased treatment success in future cycles. Zymot, requiring less time, yielded equivalent results to gradient centrifugation, with higher GQE proportions and more embryos cryopreserved. This merits consideration as a high-quality alternative to sperm preparation for ICSI in cases of poor sperm quality.
- Published
- 2024
12. Entwicklung einer Plattform zur Generierung von Stop‐Flow‐Gradienten zur Untersuchung von Chemotaxis.
- Author
-
Xiao, Zuyao, Nsamela, Audrey, Garlan, Benjamin, and Simmchen, Juliane
- Abstract
Die Fähigkeit künstlicher Mikroschwimmer, auf äußere Reize zu reagieren und deren mechanistische Ursprünge, gehören zu den umstrittensten Fragen der interdisziplinären Wissenschaft. Die Erzeugung chemischer Gradienten ist dabei eine technische Herausforderung, da sie aufgrund von Diffusion schnell abflachen. Inspiriert von 'Stop‐flow' Experimenten aus der chemischen Kinetik zeigen wir, dass die Erzeugung eines mikrofluidischen Gradienten durch Kombination mit einer Druckrückkopplungsschleife zur präzisen Kontrolle des Stoppens erfolgen kann. Das ermöglicht es uns, die mechanistischen Details der Chemotaxis von künstlichen katalytischen Janus‐Mikromotoren zu untersuchen. Wir stellen fest, dass diese Kupfer‐Janus‐Partikel eine chemotaktische Bewegung entlang des Konzentrationsgradienten sowohl in positiver als auch in negativer Richtung zeigen, und wir demonstrieren die mechanische Reaktion der Partikel auf unausgewogene Widerstandskräfte, die dieses Verhalten erklären. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
13. Mikrofluidisches Microarray für die Einzelzellanalyse.
- Author
-
Rothbauer, Mario, Schuller, Patrick, Afkhami, Reza, Wanzenboeck, Heinz D., Ertl, Peter, and Zirath, Helene
- Abstract
Copyright of e & i Elektrotechnik und Informationstechnik is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
- Published
- 2020
- Full Text
- View/download PDF
14. Spatially Controlled Supramolecular Polymerization of Peptide Nanotubes by Microfluidics.
- Author
-
Méndez‐Ardoy, Alejandro, Bayón‐Fernández, Alfonso, Yu, Ziyi, Abell, Chris, Granja, Juan R., and Montenegro, Javier
- Subjects
- *
NANOTUBES , *MOLECULAR self-assembly , *MICROFLUIDICS , *POLYMERIZATION , *CIRCULAR dichroism , *SUPRAMOLECULES - Abstract
Despite the importance of spatially resolved self‐assembly for molecular machines, the spatial control of supramolecular polymerization with synthetic monomers had not been experimentally established. Now, a microfluidic‐regulated tandem process of supramolecular polymerization and droplet encapsulation is used to control the position of self‐assembled microfibrillar bundles of cyclic peptide nanotubes in water droplets. This method allows the precise preferential localization of fibers either at the interface or into the core of the droplets. UV absorbance, circular dichroism and fluorescence microscopy indicated that the microfluidic control of the stimuli (changes in pH or ionic strength) can be employed to adjust the packing degree and the spatial position of microfibrillar bundles of cyclic peptide nanotubes. Additionally, this spatially organized supramolecular polymerization of peptide nanotubes was applied in the assembly of highly ordered two‐dimensional droplet networks. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
15. Reversible pH‐Responsive Coacervate Formation in Lipid Vesicles Activates Dormant Enzymatic Reactions.
- Author
-
Love, Celina, Steinkühler, Jan, Gonzales, David T., Yandrapalli, Naresh, Robinson, Tom, Dimova, Rumiana, and Tang, T.‐Y. Dora
- Subjects
- *
LIPIDS , *PHASE separation , *COACERVATION , *SYNTHETIC biology , *DROPLETS - Abstract
In situ, reversible coacervate formation within lipid vesicles represents a key step in the development of responsive synthetic cellular models. Herein, we exploit the pH responsiveness of a polycation above and below its pKa, to drive liquid–liquid phase separation, to form single coacervate droplets within lipid vesicles. The process is completely reversible as coacervate droplets can be disassembled by increasing the pH above the pKa. We further show that pH‐triggered coacervation in the presence of low concentrations of enzymes activates dormant enzyme reactions by increasing the local concentration within the coacervate droplets and changing the local environment around the enzyme. In conclusion, this work establishes a tunable, pH responsive, enzymatically active multi‐compartment synthetic cell. The system is readily transferred into microfluidics, making it a robust model for addressing general questions in biology, such as the role of phase separation and its effect on enzymatic reactions using a bottom‐up synthetic biology approach. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
16. Mechanically Strong Globular‐Protein‐Based Fibers Obtained Using a Microfluidic Spinning Technique.
- Author
-
He, Haonan, Yang, Chenjing, Wang, Fan, Wei, Zheng, Shen, Jianlei, Chen, Dong, Fan, Chunhai, Zhang, Hongjie, and Liu, Kai
- Subjects
- *
SPIDER silk , *FIBERS , *SERUM albumin , *GLOBULAR proteins , *DENATURATION of proteins , *PLANT fibers , *SILKWORMS - Abstract
Proteins used for the formation of light weight and mechanically strong biological fibers are typically composed of folded rigid and unfolded flexible units. In contrast to fibrous proteins, globular proteins are generally not regarded as a good candidate for fiber production due to their intrinsic structural defects. Thus, it is challenging to develop an efficient strategy for the construction of mechanically strong fibers using spherical proteins. Herein, we demonstrate the production of robust protein fibers from bovine serum albumin (BSA) using a microfluidic technique. Remarkably, the toughness of the fibers was up to 143 MJ m−3, and after post‐stretching treatment, their breaking strength increased to almost 300 MPa due to the induced long‐range ordered structure in the fibers. The performance is comparable to or even higher than that of many recombinant spider silks or regenerated silkworm fibers. Thus, this work opens a new way for making biological fibers with high performance. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
17. Development of a microfluidic device to study simultaneous crystallization in the LIBs recycling process
- Author
-
Solanki, Shefali Paresh and Solanki, Shefali Paresh
- Abstract
Återvinning av litiumjonbatterier (LIB) är avgörande på grund av kritiska råmaterialreserver och miljöhänsyn vid kassering. Hydrometallurgisk LIB-återvinning, en framstående industriell teknik, står inför kostnadseffektivitets- och komplexitetsutmaningar. Samtidig kristallisering visar lovande för effektivisering av återvinning genom att extrahera föreningar från förbrukad batterilut med flera komponenter, vilket kräver hög renhet och effektiv kristallseparation. Detta innebär emellertid att man förhindrar oönskade polykristallina partiklar och samkristaller.Kristallisering är vanligt vid LIB-återvinning, men vanligtvis från enkomponentlösningar för att undvika föroreningar. Kärnbildningskontroll, särskilt i flerkomponentlösningar, är fortfarande utmanande, vilket påverkar industriell effektivitet. Sådd, en vanlig kontrollmetod, inducerar ofta oavsiktliga polykristallina partiklar och vätskeinneslutningar, som understuderas på grund av experimentella begränsningar. Microfluidics erbjuder ett värdefullt verktyg för att studera kristallisationskinetik, växla från utrustningsbaserad till prediktiv fysikalisk-kemisk design. Förbättrad blandning och värmeväxling gör den idealisk för kärnbildningsforskning under kristallisation. Denna avhandling fokuserar på avgörande aspekter av samtidig kristallisation. Huvudsyftet är att utveckla en optimerad mikrofluidisk design och simulera mikrofluidikkanalen för att bestämma initiala processparametrar för experiment samt att få det mest förutsägbara området för kristallbildning inom mikrofluidik. Utmaningar i de mikrofluidiska kristallisationssystemen, såsom kanalblockering, som lätt kan uppstå på grund av kristallbildning eller agglomerationer, har tyvärr begränsat de experimentella resultaten. Icke desto mindre kommer denna avhandling att stödja ytterligare experiment med mikrofluidikanordningen under mikroskopi som kommer att hjälpa till att övervinna dessa utmaningar. Arbete med att minska begränsningarna i denna avhandling kan, Recycling lithium-ion batteries (LIB) is essential due to critical raw material reserves and environmental concerns during disposal. Hydrometallurgical LIB recycling, a prominent industrial technology, faces cost-efficiency and complexity challenges. Simultaneous crystallization shows promise for streamlining recycling by extracting compounds from multicomponent spent battery liquor, demanding high purity and effective crystal separation. However, this entails preventing unwanted polycrystalline particles and cocrystals. Crystallization is common in LIB recycling, but usually from single-component solutions to avoid impurities. Nucleation control, especially in multicomponent solutions, remains challenging, affecting industrial efficiency. Seeding, a common control method, often induces unintended polycrystalline particles and fluid inclusions, which are understudied due to experimental limitations. Microfluidics offers a valuable tool for studying crystallization kinetics, shifting from equipment-based to predictive physical-chemical design. Enhanced mixing and heat exchange make it ideal for nucleation research during crystallization. This thesis focuses on crucial aspects of simultaneous crystallization. The main objective is to develop an optimized microfluidic design and simulate the microfluidic channel to determine initial process parameters for experimentation as well as to get the most predictable region of crystal formation within microfluidics. Challenges in the microfluidic crystallization systems, such as channel blockage, which can easily occur due to crystal formation or agglomerations, have unfortunately limited the experimental results. Nonetheless, this thesis will support the further experimentation of the microfluidics device under microscopy which will help to overcome these challenges. Work on reducing the limitations of this thesis can assist in understanding the multicomponent crystallization in real-time and indeed, the necessary setup and i
- Published
- 2023
18. Robust and Biocompatible Bonding of Hybrid Microfluidic Devices Using Off-Stoichiometric Thiol-ene Thermosets
- Author
-
Harris, Peter and Harris, Peter
- Abstract
Some of the major obstacles the microfluidics industry has yet to overcome in order to facilitate large scale manufacturing of devices are costly back-end processes. Among these, bonding presents some of the most obvious difficulties and is often associated with structural deformation and surface modification. Off-stoichiometric thiol-ene (OSTE) is a relatively new material and hasn’t yet achieved the same level of adoption as Polydimethylsiloxane (PDMS) which has been the go-to material in the field of microfluidics for over two decades. OSTE offers an alternative to PDMS and promises bonding without surface treatment as well as a hydrophilic surface, removing a step in the manufacturing process. In this work, the property of OSTE to bond with a variety of commonly used thermoplastic materials were tested as well as its suitability for use in pharmaceutical devices such as Lab-on-a-chip. In addition to untreated OSTE, a surface modifier was used to examine the potential for surface modification when using OSTE as a microfluidics material. From the testing performed, we demonstrated OSTE’s capacity to form robust bonds with a range of thermoplastic materials as well as comparable biocompatibility to PDMS., Bland de största hindren som industrin ännu ej löst när det kommer till storskalig produktion av mikrofluidiska produkter är kostsamma ”back-end” processer. Av dessa presenterar bindingsprocesser några av de mest uppenbara svårigheterna och medför ofta deformationer av finstrukturer samt ändringar i ytkemi. Off-stoichiometric thiolene (OSTE) är ett relativt nytt material och har ännu inte blivit lika utbrett i sin använding som Polydimethylsiloxane (PDMS) vilket har varit standardmaterialet i mikrofluidik i över två årtionden. OSTE erbjuder ett alternativ till PDMS, med bindingsprocesser som ej kräver ytterligare ytmodifikationer och en hydrofil yta, vilket eliminerar ett steg i tillverkningsprocessen. I detta arbete undersöktes egenskapen av OSTE att binda till en rad ofta använda thermoplaster samt dess lämplighet i medicinskt bruk, i system som ”Lab-on-a-chip”. Förutom obehandlad OSTE, så användes en ytmodifierare för att undersöka möjligheten för ytmodifiering vid användingen av OSTE i mikrofluidik. Resultaten av våra tester visade OSTE’s förmåga att forma robusta bindingar till en rad thermoplaster så väl som en jämförbar biokompatibilitet till PDMS.
- Published
- 2023
19. Entwicklung miniaturisierter Systeme mittels additiver Fertigung für biosensorische und biotechnologische Anwendungen
- Author
-
Preuß, John-Alexander and Preuß, John-Alexander
- Abstract
Ein dreidimensionales Objekt als eine Summe von zweidimensionalen Schichten zu begreifen, ist die zentrale Idee der additiven Fertigungstechniken, die auch unter dem Ausdruck 3D-Druck bekannt sind. Besondere Bedeutung hat der 3D-Druck hierbei zur Fertigung von individuellen Einzelstücken als auch zum schnellen Prototyping erlangt, denn Modelle werden auf Knopfdruck plastische Realität. Auch dank immer besserer Druckauflösungen in Kombination mit einem hohen Grad an Designfreiheit bietet der 3D-Druck den Fachbereichen der Biotechnologie und Biosensorik Chancen, neue Ansätze der Miniaturisierung mithilfe schneller Iterationszyklen maßgeschneidert in den experimentellen Ablauf zu integrieren. In der vorliegenden Dissertation wurden ausgewählte Anwendungen für das biotechnologische Labor miniaturisiert und mit einem hochauflösenden 3D-Drucker gefertigt. Dazu gehören Anwendungen zur Separation von Biomolekülen, Sensorintegration sowie die automatische Erstellung von Verdünnungsreihen. Mittels der Flexibilität des 3D-Drucks konnten Konzepte umgesetzt werden, die die Anpassung an variierende experimentelle Aufbauten erleichtern sollen. 3D-Druck erlaubte eine schnelle Optimierung der Systeme, während die Miniaturisierung den Platzbedarf und den Verbrauch an Reagenzien verringerte. Im ersten Teil der Arbeit wurde eine kontinuierliche Separationseinheit in Form einer miniaturisierten Frei-Fluss Elektrophorese mittels eines modularen Ansatzes umgesetzt. Externe Komponenten wie Elektroden und nanoporöse Membranen konnten so zuverlässig mittels eines additiv gefertigten Stecksystems integriert werden. Die resultierenden stabilen elektrischen Felder erlaubten es, Farbstoffe und Aminosäuren in einem kontinuierlichen Ansatz zu separieren. Im zweiten Teil wurden kommerzielle, elektrochemische Sensoren in additiv gefertigte, statische und dynamische Durchflusszellen integriert, mit dem Ziel, eine kontrollierte Umgebung für biosensorische Experimente zu schaffen. Dieser Aufbau wurde v, Understanding a three-dimensional object as a sum of two-dimensional layers is the central idea of additive manufacturing techniques, also known as 3D printing. 3D printing has become particularly important for the production of customized applications as well as for rapid prototyping, since models become plastic reality at the touch of a button. Thanks to ever-improving printing resolutions – together with the high degree of design freedom – 3D printing offers the fields of biotechnology and biosensors opportunities to integrate new approaches of miniaturization into the experimental process in a tailored manner with the aid of rapid iteration cycles. In this dissertation, selected applications for the biotechnological laboratory were miniaturized and fabricated using a high-resolution 3D printer. These applications include the separation of biomolecules, the integration of sensor technology, and the automatic creation of dilution series. Using the flexibility of 3D printing, adaptation concepts for varying experimental setups could be successfully implemented. 3D printing allowed for rapid optimization of the systems, while miniaturization reduced space requirements and reagent consumption. In the first part of this work, a continuous separation unit in the form of a miniaturized free-flow electrophoresis was implemented using a modular approach. External components such as electrodes and nanoporous membranes were reliably integrated by means of an additively manufactured plug-in system. The resulting stable electric fields allowed for the separation of dyes and amino acids in a continuous approach. In the second part, commercial electrochemical sensors were integrated into additively manufactured static and dynamic flow cells with the aim of creating a controlled environment for experiments. This setup was used to specifically quantify the bacterium Escherichia coli Crooks by combining aptasensing and electrochemical impedance spectroscopy. In the third part, a m
- Published
- 2023
20. Design und Herstellung von 3D-gedruckten Microfluidics für den Einsatz in der Zellkulturtechnik
- Author
-
Enders, Anton and Enders, Anton
- Abstract
Die transiente Transfektion wird genutzt, um genetisches Material in Säugerzellen zu transportieren. Die Besonderheit liegt darin, dass die genetische Information nicht in das Genom der Wirtszellen integriert wird. Dadurch können mit diesem Transfektionsverfahren innerhalb weniger Tage kleine Proteinmengen produziert werden. Allerdings wird die eingebrachte genetische Information bei der Zellteilung nicht kopiert und auf die Tochterzellen verteilt, sodass sie mit der Zeit verloren geht. Diese Transfektionsmethode wird daher eingesetzt, wenn nur geringe Proteinmengen schnell hergestellt werden müssen, beispielsweise in vorklinischen Untersuchungen der Biopharmazeutikaentwicklung oder im akademischen Umfeld. In dieser Arbeit wurde ein mikrofluidisches System entwickelt, das die Schritte der transienten Transfektion automatisiert. Dafür wurden die unterschiedlichen Elemente des Gesamtsystems – ein Mikromischer, eine Inkubationseinheit und ein Spiralseparator zur Zellseparation – einzeln entwickelt, mittels hochauflösendem 3D-Druck hergestellt und charakterisiert. Im ersten Teil dieser Arbeit wurden verschiedene Mikromischerdesigns aus der Literatur mittels 3D- Druck hergestellt und miteinander verglichen. Hierbei wurde die Effektivität der Mischer in Bezug auf ihre Länge bzw. ihr Volumen bei unterschiedlichen Flussraten bewertet und untersucht, ob die Mischer einen Einfluss auf die Viabilität der CHO-Zellen (chinesische Hamsterovarienzellen) haben. Im zweiten Teil der Arbeit wurde ein mikrofluidischer Spiralseparator entwickelt und charakterisiert, um die Zellen nach der Transfektion von den toxischen Transfektionschemikalien zu trennen. Das entwickelte System erlaubt durch eine Pumpe an einem der zwei Ausgänge der Separationsspirale das Einstellen der Separationseffizienz von über 95 % bei Zellkonzentrationen von bis zu 20 · 106 Zellen mL-1. Im dritten Teil der Arbeit wurde zunächst ein kleineres mikrofluidisches Transfektionssystem entwickelt, in dem ca. 5 mL Zellsus, Transient Transfection is used to transport genetic material into mammalian cells. The distinguishing feature of transient transfection is that the genetic material does not integrate into the genome of the host cell line. Therefore, this transfection method can be used to produce small quantities of proteins in a matter of days. However, the imported genetic information does not get copied during cell proliferation and gets lost over time. Consequently, this transfection method is used to quickly produce small quantities of protein, for instance, in pre-clinical studies in biopharmaceutical development or academic research. In this work, a microfluidic system was developed to automate the steps of transient transfection. The single modules of the system – micromixer, incubation platform and cell separator – were designed and manufactured using 3D printing technology and characterized. In the first part of this work, different micromixer designs were adapted for 3D printing from literature and compared to one another. The effectivity of the mixers was evaluated for different flow rates with regard to the length and volume of the mixers. Moreover, the influence of the micromixer on cell viability was determined. In the second part of this work, a microfluidic spiral separator was developed to separate the cells from the toxic transfection detergent PEI (polyethylenimine) after transfection. By using a second pump at the spiral outlet, the separation efficiency could be controlled at cell concentrations of up to 20 · 106 cells mL-1. In the third part of this work, a smaller transfection system was developed for transfection of approximately 5 mL of cell suspension for optimization of the incubation time. In this system, cells were mixed with DNA and the transfection detergent PEI using an integrated micromixer and then incubated for a specified time until the transfected cells were transferred to fresh medium. Secondly, a continuous transfection system was developed c
- Published
- 2023
21. Experimental and numerical investigations of hydrodynamic focusing of colloidal dispersions
- Author
-
Gowda, V. Krishne and Gowda, V. Krishne
- Abstract
Dispersed non-spherical particles are the fundamental constituent of many complex fluids. Such fluids are studied both for their industrial and scientific importance, and for their peculiar functional properties (mechanical, optical, thermal, fluidic). One exemplar is cellulose nanofibrils (CNF), a biopolymer made of nanoscale particles with remarkable mechanical properties that has been found to be the potential candidate for the fabrication of sustainable and bio-compatible materials. To synthesize and characterise the behaviour of such non-spherical particles in flowing dispersions, microfluidic platforms have emerged as powerful tools. However, the scientific understanding of the fundamental role of the fluid dispersion properties and flow parameters on the microflow dynamics is still inadequate. In this thesis work, a combined numerical and experimental investigation with diverse set of microfluidic flow focusing devices are adopted to measure, analyse, and understand the micro- and macro-scale morphologies of flowing dispersions. A high-viscosity colloidal dispersion liquid made of cellulose nanofibrils suspended in water (the solvent) is hydrodynamically focused with the low-viscosity solvent liquid. A 3D colloidal viscous thread structure is formed, which is characterized using optical coherence tomography (OCT) measurements and computational fluid dynamics (CFD) simulations. The studies show that if the Péclet number is large (diffusion of the particles is slower than the convective time scale of the flow), the concentration gradient between two in-homogeneous miscible fluids (colloidal dispersion and its own solvent) gives rise to Korteweg stresses, emulating the effect of interfacial tension in the form of effective interfacial tension (EIT). In addition, scaling laws describing the complex interplay between viscous, inertial and capillary effects in microchannels have been identified, and are in turn used to estimate the fluid properties. Further, the, Icke-sfäriska nanopartiklar är den grundläggande byggstenen i många komplexa vätskor. Sådana vätskor studeras både på grund av deras industriella och vetenskapliga betydelse och på grund av deras intressanta egenskaper (mekaniska, optiska, termiska och fluidiska). Ett exempel på sådana partiklar är cellulosanofibriller (CNF), en biopolymer med anmärkningsvärda mekaniska egenskaper som har stor potential för tillverkning av hållbara och biokompatibla material. Ett kraftfullt verktyg för syntes och karakterisering av sådana icke-sfäriska partiklar i strömmande dispersioner är mikrofluidik, men den vetenskapliga förståelsen av partiklarnas och dispersionernas beteende i mikrofluidiksystem är fortfarande otillräcklig. I denna avhandling kombineras numeriska och experimentella metoder för att mäta, analysera och förstå flödande dispersioners makroskopiska och de ingående partiklarnas mikroskopiska beteende i olika strömningssituationer. Det specifika strömningsfall som studeras är strömningsfokusering: en högviskös kolloidal dispersion bestående av cellulosanofibriller i vatten fokuseras hydrodynamiskt av ett yttre flöde med rent vatten med låg viskositet i en kanal. Det kan då skapas högviskös "tråd" i kanalen. Detta flöde karakteriseras med hjälp av optisk koherenstomografi (OCT) och CFD-simuleringar (Computational Fluid Dynamics). Om Péclet-talet här stort (vilket betyder att partiklarnas diffusionshastighet är lägre än strömningshastigheten) ger koncentrationsgradienten mellan två homogena, blandbara vätskor (kolloidal dispersion och dess eget lösningsmedel) upphov till Korteweg-spänningar, vilka kan modelleras med en effektiv ytspänning (EIT). Skalningslagar som beskriver de komplexa kopplingarna mellan effekter av viskositet, tröghet och ytspänning i mikrokanalen system har tagits fram, och skalningslagarna används i sin tur för att uppskatta vätskeegenskaperna. Även det kollektiva beteendet hos nanofibrillerna själva har studerats. Numeriskt modellerade, QC 230918
- Published
- 2023
22. High‐Performance Nucleic Acid Sensors for Liquid Biopsy Applications.
- Author
-
Das, Jagotamoy and Kelley, Shana O.
- Subjects
- *
CIRCULATING tumor DNA , *NUCLEIC acids , *SURFACE plasmon resonance , *BIOPSY , *DETECTORS , *RAMAN spectroscopy , *LEUKAPHERESIS - Abstract
Circulating tumour nucleic acids (ctNAs) are released from tumours cells and can be detected in blood samples, providing a way to track tumors without requiring a tissue sample. This "liquid biopsy" approach has the potential to replace invasive, painful, and costly tissue biopsies in cancer diagnosis and management. However, a very sensitive and specific approach is required to detect relatively low amounts of mutant sequences linked to cancer because they are masked by the high levels of wild‐type sequences. This review discusses high‐performance nucleic acid biosensors for ctNA analysis in patient samples. We compare sequencing‐ and amplification‐based methods to next‐generation sensors for ctDNA and ctRNA (including microRNA) profiling, such as electrochemical methods, surface plasmon resonance, Raman spectroscopy, and microfluidics and dielectrophoresis‐based assays. We present an overview of the analytical sensitivity and accuracy of these methods as well as the biological and technical challenges they present. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
23. Bottom‐Up Assembly of DNA–Silica Nanocomposites into Micrometer‐Sized Hollow Spheres.
- Author
-
Hu, Yong, Grösche, Maximilian, Sheshachala, Sahana, Oelschlaeger, Claude, Willenbacher, Norbert, Rabe, Kersten S., and Niemeyer, Christof M.
- Subjects
- *
NANOCOMPOSITE materials , *DNA nanotechnology , *SPHERES , *SURFACE chemistry , *SILICA nanoparticles - Abstract
Although DNA nanotechnology has developed into a highly innovative and lively field of research at the interface between chemistry, materials science, and biotechnology, there is still a great need for methodological approaches for bridging the size regime of DNA nanostructures with that of micrometer‐ and millimeter‐sized units for practical applications. We report on novel hierarchically structured composite materials from silica nanoparticles and DNA polymers that can be obtained by self‐assembly through the clamped hybridization chain reaction. The nanocomposite materials can be assembled into thin layers within microfluidically generated water‐in‐oil droplets to produce mechanically stabilized hollow spheres with uniform size distributions at high throughput rates. The fact that cells can be encapsulated in these microcontainers suggests that our concept not only contributes to the further development of supramolecular bottom‐up manufacturing, but can also be exploited for applications in the life sciences. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
24. Dynamics of Synthetic Membraneless Organelles in Microfluidic Droplets.
- Author
-
Linsenmeier, Miriam, Kopp, Marie R. G., Grigolato, Fulvio, Emmanoulidis, Leonidas, Liu, Dany, Zürcher, Dominik, Hondele, Maria, Weis, Karsten, Capasso Palmiero, Umberto, and Arosio, Paolo
- Subjects
- *
ARTIFICIAL cells , *DROPLETS , *PHASE separation , *ORGANELLES , *CELL compartmentation , *CELL size - Abstract
Cells can form membraneless organelles by liquid–liquid phase separation. As these organelles are highly dynamic, it is crucial to understand the kinetics of these phase transitions. Here, we use droplet‐based microfluidics to mix reagents by chaotic advection and observe nucleation, growth, and coarsening in volumes comparable to cells (pL) and on timescales of seconds. We apply this platform to analyze the dynamics of synthetic organelles formed by the DEAD‐box ATPase Dhh1 and RNA, which are associated with the formation of processing bodies in yeast. We show that the timescale of phase separation decreases linearly as the volume of the compartment increases. Moreover, the synthetic organelles coarsen into one single droplet via gravity‐induced coalescence, which can be arrested by introducing a hydrogel matrix that mimics the cytoskeleton. This approach is an attractive platform to investigate the dynamics of compartmentalization in artificial cells. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
25. High‐Throughput Isolation of Cell Protrusions with Single‐Cell Precision for Profiling Subcellular Gene Expression.
- Author
-
Zhang, Pengchao, Han, Xin, Yao, Jun, Shao, Ning, Zhang, Kai, Zhou, Yufu, Zu, Youli, Wang, Bin, and Qin, Lidong
- Subjects
- *
GENE expression profiling , *ORGANELLES , *CANCER cells , *CANCER cell migration - Abstract
Invading cancer cells extend cell protrusions, which guide cancer‐cell migration and invasion, eventually leading to metastasis. The formation and activity of cell protrusions involve the localization of molecules and organelles at the cell front; however, it is challenging to precisely isolate these subcellular structures at the single‐cell level for molecular analysis. Here, we describe a newly developed microfluidic platform capable of high‐throughput isolation of cell protrusions at single‐cell precision for profiling subcellular gene expression. Using this microfluidic platform, we demonstrate the efficient generation of uniform cell‐protrusion arrays (more than 5000 cells with protrusions) for a series of cell types. We show precise isolation of cell protrusions with high purity at single‐cell precision for subsequent RNA‐Seq analysis, which was further validated by RT‐qPCR and RNA FISH. Our highly controlled protrusion isolation method opens a new avenue for the study of subcellular functional mechanisms and signaling pathways in metastasis. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
26. Hydrophobic Poly(tert‐butyl acrylate) Photonic Crystals towards Robust Energy‐Saving Performance.
- Author
-
Wu, Xingjiang, Hong, Ri, Meng, Jinku, Cheng, Rui, Zhu, Zhijie, Wu, Guan, Li, Qing, Wang, Cai‐Feng, and Chen, Su
- Subjects
- *
PHOTONIC crystals , *GLASS transition temperature , *ACRYLATES , *BUTYL group , *STRUCTURAL colors , *CRYSTAL structure - Abstract
Photonic crystals (PCs) have been widely applied in optical, energy, and biological fields owing to their periodic crystal structure. However, the major challenges are easy cracking and poor structural color, seriously hindering their practical applications. Now, hydrophobic poly(tert‐butyl acrylate) (P(t‐BA)) PCs have been developed with relatively lower glass transition temperature (Tg), large crack‐free area, excellent hydrophobic properties, and brilliant structure color. This method based on hydrophobic groups (tertiary butyl groups) provides a reference for designing new kinds of PCs via the monomers with relatively lower Tg. Moreover, the P(t‐BA) PCs film were applied as the photoluminescence (PL) enhanced film to enhance the PL intensity of CdSe@ZnS QDs by 10‐fold in a liquid‐crystal display (LCD) device. The new‐type hydrophobic force assembled PCs may open an innovative avenue toward new‐generation energy‐saving devices. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
27. „Lab on a Chip".
- Author
-
Drese, Klaus S.
- Abstract
Copyright of Wiener Klinisches Magazin is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
- Published
- 2019
- Full Text
- View/download PDF
28. Integration of Lateral Filter Arrays with Immunoaffinity for Circulating‐Tumor‐Cell Isolation.
- Author
-
Chen, Kangfu, Dopico, Pablo, Varillas, Jose, Zhang, Jinling, George, Thomas J., and Fan, Z. Hugh
- Subjects
- *
CANCER prognosis , *CANCER treatment , *SERPENTINE , *BLOOD cells , *IMMUNOGLOBULINS - Abstract
Circulating tumor cells (CTCs) are an important biomarker for cancer prognosis and treatment monitoring. However, the heterogeneity of the physical and biological properties of CTCs limits the efficiency of various approaches used to isolate small numbers of CTCs from billions of normal blood cells. To address this challenge, we developed a lateral filter array microfluidic (LFAM) device to integrate size‐based separation with immunoaffinity‐based CTC isolation. The LFAM device consists of a serpentine main channel, through which most of a sample passes, and an array of lateral filters for CTC isolation. The unique device design produces a two‐dimensional flow, which reduces nonspecific, geometric capture of normal cells as typically observed in vertical filters. The LFAM device was further functionalized by immobilizing antibodies that are specific to the target cells. The resulting devices captured pancreatic cancer cells spiked in blood samples with (98.7±1.2) % efficiency and were used to isolate CTCs from patients with metastatic colorectal cancer. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
29. 3D‐Printing of Functionally Graded Porous Materials Using On‐Demand Reconfigurable Microfluidics.
- Author
-
Costantini, Marco, Jaroszewicz, Jakub, Kozoń, Łukasz, Szlązak, Karol, Święszkowski, Wojciech, Garstecki, Piotr, Stubenrauch, Cosima, Barbetta, Andrea, and Guzowski, Jan
- Subjects
- *
POROUS materials , *THREE-dimensional printing , *MICROFLUIDICS , *PORE size (Materials) , *TISSUE engineering - Abstract
Tailoring the morphology of macroporous structures remains one of the biggest challenges in material synthesis. Herein, we present an innovative approach for the fabrication of custom macroporous materials in which pore size varies throughout the structure by up to an order of magnitude. We employed a valve‐based flow‐focusing junction (vFF) in which the size of the orifice can be adjusted in real‐time (within tens of milliseconds) to generate foams with on‐line controlled bubble size. We used the junction to fabricate layered and smoothly graded porous structures with pore size varying in the range of 80–800 μm. Additionally, we mounted the vFF on top of an extrusion printer and 3D‐printed constructs characterized by a predefined 3D geometry and a controlled, spatially varying internal porous architecture, such as a model of a bone. The presented technology opens new possibilities in macroporous material synthesis with potential applications ranging from tissue engineering to aerospace industry and construction. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
30. Quaternization of Vinyl/Alkynyl Pyridine Enables Ultrafast Cysteine‐Selective Protein Modification and Charge Modulation.
- Author
-
Matos, Maria J., Navo, Claudio D., Hakala, Tuuli, Ferhati, Xhenti, Guerreiro, Ana, Hartmann, David, Bernardim, Barbara, Saar, Kadi L., Compañón, Ismael, Corzana, Francisco, Knowles, Tuomas P. J., Jiménez‐Osés, Gonzalo, and Bernardes, Gonçalo J. L.
- Subjects
- *
PYRIDINIUM compounds , *PYRIDINE , *CYSTEINE , *STOICHIOMETRY , *REACTIVITY (Chemistry) - Abstract
Quaternized vinyl‐ and alkynyl‐pyridine reagents were shown to react in an ultrafast and selective manner with several cysteine‐tagged proteins at near‐stoichiometric quantities. We have demonstrated that this method can effectively create a homogenous antibody–drug conjugate that features a precise drug‐to‐antibody ratio of 2, which was stable in human plasma and retained its specificity towards Her2+ cells. Finally, the developed warhead introduces a +1 charge to the overall net charge of the protein, which enabled us to show that the electrophoretic mobility of the protein may be tuned through the simple attachment of a quaternized vinyl pyridinium reagent at the cysteine residues. We anticipate the generalized use of quaternized vinyl‐ and alkynyl‐pyridine reagents not only for bioconjugation, but also as warheads for covalent inhibition and as tools to profile cysteine reactivity. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
31. Development of microparticle based detection methods for hydrophilic and amphiphilic biomarkers
- Author
-
Dinter, Franziska
- Subjects
ddc:616 ,616 Krankheiten ,Hydrophilie ,Nachweis ,Microfluidics ,Mikropartikel ,Biomarker ,Amphiphilie ,Mikrofluidik - Abstract
Für die Personalisierte Medizin wird eine präzise und schnelle Analyse relevanter kardiovaskulärer, Tumor- oder Autoimmunbiomarker in der heutigen Labordiagnostik immer wichtiger. Patienten sollen möglichst individuell und auf ihre Bedürfnisse abgestimmt behandelt werden. Mithilfe einfacher, tragbarer, zeit- und materialsparender Analysemethoden sollen in Zukunft die Ärzte durch automatisierte, multiparametrische Testsysteme unterstützt werden. Um diese Probleme adressieren zu können, ist es notwendig, Systeme zu entwickeln, die einen simultanen Nachweis von Protein-, Nukleinsäure-, und Lipidbiomarkern ermöglichen. Die vorliegende Dissertation setzt sich mit der Entwicklung mikropartikelbasierter Nachweissysteme für hydrophile und amphiphile Biomarker auseinander. Hierbei wurde ein mikropartikelbasierter Mikrofluidikchip zur Analyse von vier Protein- und DNAbasierten kardiovaskulären Biomarkern entwickelt. Dieser zeigt gegenüber der Verwendung einer Multiwellplatte eine Reduzierung der Zeit von 1 h auf 7 min, die Reduzierung von Patientenmaterial, aufgrund des Einsatzes geringer Volumina und eine erhöhte Sensitivität um einen Faktor von fünf gegenüber den Herstellerangaben der Biomarker. Die Analyse amphiphiler Biomarker wie Phospholipide oder Lipoproteine setzte die Verwendung hydrophober Mikropartikel voraus. Neuartige, fluoreszenzkodierte, hydrophobe Mikropartikel wurden hergestellt und anhand verschiedener Kriterien wie Verhalten in Puffersystemen, Hydrophobizität, Lösungsmittelstabilität und Fluoreszenz- und Größenverteilung charakterisiert. Mithilfe der typisierten hydrophoben Mikropartikel wurden amphiphile Biomarker, wie z. B. Anti-Phospholipid-Antikörper gegen Cardiolipin, welche bei Autoimmunerkrankungen, Krebs und kardiovaskulären Erkrankungen eine Rolle spielen, an die Mikropartikeloberfläche gekoppelt. Ein aussagekräftiger Nachweis der Anti- Phospholipid-Antikörper konnte sowohl auf Membran- als auch Mikropartikelbasis entwickelt werden. Mit dem entwickelten Proof-of-Principle konnten erste Patientenseren analysiert und eine eindeutige Zuordnung der positiven und negativen Seren vorgenommen werden., For Personalised Medicine, precise and rapid analysis of relevant cardiovascular, tumour or autoimmune biomarkers is becoming increasingly important in today's laboratory diagnostics. Patients should be treated as individually as possible and tailored to their needs. With the help of simple, portable, time- and material-saving analytical methods, doctors should be supported in future by automated, multiparametric test systems. To address these problems, it is necessary to develop systems that allow simultaneous detection of protein, nucleic acid and lipid biomarkers. This dissertation deals with the development of microbead-based detection systems for hydrophilic and amphiphilic biomarkers. A microbead-based microfluidic chip was developed for the analysis of four protein- and DNA-based cardiovascular biomarkers. Compared to the use of a multiwell plate, this shows a reduction in time from 1 h to 7 min, the reduction of patient material due to the use of low volumes and an increased sensitivity by a factor of five compared to the biomarker manufacturer's specifications. The analysis of amphiphilic biomarkers such as phospholipids or lipoproteins required the use of hydrophobic microbeads. Novel, fluorescence-encoded, hydrophobic microbeads were prepared and characterised using various criteria such as behaviour in buffer systems, hydrophobicity, solvent stability and fluorescence and size distribution. Using the typed hydrophobic microbeads, amphiphilic biomarkers, such as anti-phospholipid antibodies against cardiolipin, which play a role in autoimmune diseases, cancer and cardiovascular diseases, were coupled to the microbead surface. A meaningful detection of the anti-phospholipid antibodies could be developed on both membrane and microbead basis. With the developed proof-of-principle, first patient sera could be analysed and a clear assignment of positive and negative sera could be made.
- Published
- 2023
32. Grenzflächen mit fluorierten Amphiphilen: Überstrukturen und Mikrofluidik
- Author
-
Florian Junge, Pin‐Wei Lee, Abhishek Kumar Singh, Janos Wasternack, Michał P. Pachnicz, Rainer Haag, and Christoph A. Schalley
- Subjects
Aggregation ,Tenside ,Fluor ,Amphiphile ,General Medicine ,Mikrofluidik ,500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften - Abstract
Der vorliegende Aufsatz diskutiert die jüngsten Entwicklungen in der Forschung zu Grenzflächenphänomenen fluorierter Amphiphile und konzentriert sich auf Anwendungen, die die einzigartigen und vielfältigen Grenzflächeneigenschaften dieser Amphiphile ausnutzen. Vor allem bilden fluorierte Amphiphile stabile Aggregate mit oft deutlich anderer Morphologie als ihre nicht fluorierten Analoga. Folglich finden fluorierte Tenside vielfältigen Einsatz in Hochleistungsanwendungen wie dem Mikrofluidik-unterstützten Screening. Darüber hinaus wird ihr fluorspezifisches Verhalten an der Fest/Flüssig-Grenzfläche thematisiert, wie zum Beispiel die Bildung superhydrophober Beschichtungen nach der Abscheidung auf Oberflächen. Da fluorierte Tenside und perfluorierte Materialien im Allgemeinen potenzielle Umweltbedrohungen darstellen, werden auch die jüngsten Entwicklungen der Schadstoffsanierung durch ihre Adsorption an fluorierte Oberflächen bewertet.
- Published
- 2023
- Full Text
- View/download PDF
33. Simulation and Design Automation Tools for Microfluidic Devices
- Author
-
Fink, Gerold
- Subjects
Entwurfsautomatisierung ,droplet-based ,Microfluidics ,design automation ,tröpfchenbasiert ,Mikrofluidik ,simulation - Abstract
Durch die Mikrofluidik ist es gelungen komplexe (bio-)chemische Vorgänge, die normalerweise mit unhandlichen und teuren Laborgeräten durchgeführt werden, in kleine mikrofluidische Chips zu integrieren, die oft auch als Lab-on-a-Chip (LoC) bezeichnet werden. Solche LoCs ermöglichen es Laboroperationen an Flüssigkeiten wie z.B. Erhitzen, Mischen, usw. parallel und automatisiert durchzuführen und profitieren dabei von den kleinen Volumen der Reagenzien, schnellen Reaktionszeiten und im Allgemeinen von einer hohen Kosteneffizienz. Der Entwurfsprozess für solche mikrofluidischen Systeme ist jedoch noch nicht vollständig ausgereift und wird bisher in der Regel von Hand durchgeführt, wobei sich Designer auf ihr Fachwissen sowie auf vereinfachte Annahmen verlassen. Dies kann leicht zu Problemen führen, da der Entwurf solcher LoCs eine komplexe Aufgabe darstellt, bei der viele Parameter berücksichtigt werden müssen. Dies führt häufig zu einem ``Trial-and-Error''-Ansatz, bei dem ein Design mehrfach hergestellt, getestet und verfeinert wird, bis es die gewünschte Funktionalität erfüllt, was zeit- und kostenintensive Iterationen nach sich zieht. In dieser Arbeit wollen wir dieses Problem adressieren, indem wir Simulationsmethoden und Tools zur Entwurfsautomatisierung entwickeln, die Designer während des gesamten Entwurfsprozesses unterstützen. Genauer gesagt, wir (1) führen einen neuen Simulationsansatz ein, der es erlaubt, mikrofluidische Systeme genau und effizient zu simulieren, indem wir physikalische Modelle mit verschiedenen Abstraktionsebenen kombinieren, (2) entwickeln ein Onlinetool, das automatisch Designs für sogenannte Konzentrationsgradienten-Generatoren realisiert, (3) präsentieren ein Tool, das online zugänglich ist und es erlaubt Routing-Layouts für LoCs zu generieren, d.h., bestimmte Komponenten automatisch mit mikrofluidischen Kanälen zu verbinden, (4) untersuchen die automatische Erzeugung von Designs für verschiedener Architekturen von tröpfchenbasierten mikrofluidischen Netzwerken und (5) behandeln die Robustheit mikrofluidischer Systeme in Bezug auf Defekte, die während des Herstellungsprozesses und der Nutzung solcher Systeme auftreten können. Insgesamt ermöglichen diese Methoden und Tools den Designern, mühsame und zeitintensive Aufgaben zu vermeiden und kostspielige Iterationen zu verhindern. Microfluidics has managed to minimize complex (bio-)chemical operations usually realized with unwieldy and expensive lab equipment into single microfluidic chips, commonly known as Lab-on-a-Chip (LoC). More precisely, such LoCs allow to perform standard laboratory operations such as heating, mixing, incubation, etc. in a parallel and automated fashion, while benefiting from small reagent volumes, fast reaction times, high throughputs, and, in general, a high cost efficiency. As a result, they have been successfully utilized in several fields such as medicine, chemistry, biology, etc. However, the design process for microfluidic devices is not yet fully developed and is usually accomplished entirely by hand so far, where designers rely on their expertise as well as assumptions and simplifications. This is especially critical since designing such LoCs is a complex task, where a lot of parameters need to be considered (e.g., channel dimensions, flow rates, used fluids, etc.) which all affect and depend on each other. This frequently results in a ``trial-and-error'' approach, where a design gets fabricated, tested, and refined multiple times until a design is obtained that fulfills the desired functionality --- introducing time-consuming and costly iteration loops. In this thesis, we aim to address this problem, by developing simulation methods and design automation tools that aid designers through the whole design process. More precisely, we (1) introduce a new simulation approach that allows to accurately and efficiently simulate microfluidic devices, by combining physical models with different levels of abstractions, (2) develop an online tool that automatically realizes designs for concentration gradient generators, (3) propose a tool that is accessible online and allows to generate routing layouts for LoCs, i.e., automatically connect certain microfluidic components with microfluidic channels, (4) investigate the automatic design of different architectures of droplet-based microfluidic networks, and (5) deal with the robustness of microfluidic devices with respect to defects that occur during the fabrication process and usage of the device. Overall, these methods and tools allow designers to circumvent tedious and time-consuming tasks as well as break costly iteration loops. Author Gerold Fink Dissertation Universität Linz 2023
- Published
- 2023
34. Pulsing heart at the microscale: Generation and characterization of human organotypic cardiac microtissues for translational medicine
- Author
-
Ergir, Ece
- Subjects
organ-on-a-chip ,Organe am chip ,Kardiozyten ,microfluidics ,cardiomyocytes ,Mikrofluidik - Abstract
As cardiovascular diseases (CVD) remain the leading cause of mortality worldwide; there is an increasing demand for developing physiologically relevant in vitro cardiovascular tissue models suitable for studying personalized medicine and pre-clinical tests. Although recent technologies provide some insight into how human CVDs can be modelled in vitro, they may not always give a comprehensive overview of the complexity of the human heart due to their limits in cellular heterogeneity, physiological complexity and maturity. The aim of this dissertation is to provide a deeper understanding of microphysiological technologies in cardiovascular biology, and to establish a miniaturized cardiac tissue model in vitro that could better reflect the physiological complexity, cellular heterogeneity and maturity of a human heart, and demonstrate its functional applications for translational research. We have developed a simple and effective protocol to generate scaffold-free multicellular beating human cardiac microtissues in vitro from human induced pluripotent stem cells (hiPSCs) – namely human organotypic cardiac microtissues (hOCMTs) – that show a degree of proto-self-organization and can be cultured for long term. The 3D hOCMTs contain multiple cell types of the heart, and show functional beating activity without external stimuli for more than 100 days. The 3D hOCMTs show improved cardiac specification, survival and metabolic maturation compared to standard 2D monolayer cardiac differentiation. Furthermore, we show that the 3D hOCMTs could respond to cardioactive and cardiotoxic drugs in a dose dependent manner. Due to their tendency for self-organization, cellular heterogeneity, and functionality in our 3D microtissues over extended culture time, we could confirm these constructs as human cardiac organoids (hCOs). Finally, we reviewed in vitro technologies already described in the literature and proposed to enable in-vivo-like biomechanical cues in microphysiological tissue models, and further overviewed nanomedical applications for cardiac therapies. This work shows the potential of 3D hCOs to enable the development of more physiologically-relevant cardiac tissue models, and represent a powerful platform that could lead to future translational research in cardiovascular biology.
- Published
- 2023
- Full Text
- View/download PDF
35. Altering the mechanical anisotropy of the Anisogel to affect cell behaviour
- Author
-
Babu, Susan, De Laporte, Laura, and Pich, Andrij
- Subjects
Anisotropie ,microfluidics ,anisotropy ,Mikrofluidik ,hydrogels , anisotropy , magnetic microgels , biomechanical properties , nerve alignment , microfluidics , Hydrogele , Anisotropie , magnetische Mikrogele , biomechanische Eigenschaften , Nervenausrichtung , Mikrofluidik ,magnetic microgels ,magnetische Mikrogele ,ddc:540 ,Nervenausrichtung ,Hydrogele ,biomechanical properties ,biomechanische Eigenschaften ,hydrogels ,nerve alignment - Abstract
Dissertation, RWTH Aachen University, 2023; Aachen : RWTH Aachen University 1 Online-Ressource : Illustrationen, Diagramme (2023). = Dissertation, RWTH Aachen University, 2023, The overarching goal of this thesis is to demonstrate how the design of hydrogels for tissue engineering can be fine-tuned to meet the requirements of each cell type or tissue to provide the best conditions for cellular regrowth and organization in three dimensions (3D). A synthetic, injectable and enzymatically crosslinked polyethylene glycol-based (PEG) hydrogel is chosen as a candidate for this purpose because of its cell-friendly cross-linking mechanism under physiological conditions and the ease with which various material parameters can be modified. Firstly, the PEG hydrogel is shown to successfully support the growth of two different types of cell aggregates; embryoid bodies and breast cell spheroids, by the modification of their bulk properties such as stiffness, degradation rate and type and concentration of cell adhesive biomolecules. The breast spheroid culture system in PEG is then used to develop a 3D traction force microscopy setup to quantify cell induced traction forces against its surrounding matrix. Additionally, these hydrogels are used to establish a novel ferrofluid droplet based microrheology platform, which would enable the measurement of local viscoelastic properties of biological samples. For the regeneration of aligned tissues like spinal cord, these hydrogels have to be modified to introduce some directional guidance. This is achieved by the incorporation of oriented rod-shaped magnetic microgels to form an Anisogel. Anisogels are used in this work to guide the growth of neurites from dorsal root ganglia extracted from chick embryos, mice and rats. However, in each of these cases, cell growth is controlled by modifying local rather than bulk hydrogel properties. This is achieved by varying the mechanical and biochemical properties of the microgels, microgel orientation and co-culture with supporting cells. Although PEG-based Anisogel has many advantages, it is inherently elastic and difficult to handle during in vivo injections. Hence, three different kinds of physically crosslinked and viscoelastic hydrogels are tested for their suitability as Anisogel matrices and a Ureido-Pyrimidinone based hydrogel is shown to be successful in supporting aligned nerve growth comparable to PEG-based Anisogels. Lastly, two different techniques for microgel production are demonstrated to introduce a higher degree of complexity in Anisogels. Microgels can thus be pre-programmed to align in any specific direction under a fixed magnetic field to form multi-directional Anisogels and can be continuously produced using microfluidics to enable a smooth clinical translation of Anisogels., Published by RWTH Aachen University, Aachen
- Published
- 2023
- Full Text
- View/download PDF
36. Bioinspired Engineering of a Multivalent Aptamer‐Functionalized Nanointerface to Enhance the Capture and Release of Circulating Tumor Cells.
- Author
-
Song, Yanling, Shi, Yuanzhi, Huang, Mengjiao, Wang, Wei, Wang, Yang, Cheng, Jie, Lei, Zhichao, Zhu, Zhi, and Yang, Chaoyong
- Subjects
- *
APTAMERS , *CANCER cells , *MICROFLUIDIC devices , *ANTIGENS , *THIOLS - Abstract
Circulating tumor cell (CTC)‐enrichment by using aptamers has a number of advantages, but the issue of compromised binding affinities and stabilities in real samples hinders its wide applications. Inspired by the high efficiency of the prey mechanism of the octopus, we engineered a deterministic lateral displacement (DLD)‐patterned microfluidic chip modified with multivalent aptamer‐functionalized nanospheres (AP‐Octopus‐Chip) to enhance capture efficiency. The multivalent aptamer–antigen binding efficiency improves 100‐fold and the capture efficiency is enhanced more than 300 % compared with a monovalent aptamer‐modified chip. Moreover, the captured cancer cells can be released through a thiol exchange reaction with up to 80 % efficiency and 96 % viability, which is fully compatible with downstream mutation detection and CTC culture. Using the chip, we were able to find CTCs in all cancer samples analyzed. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
37. Self‐Orienting Hydrogel Micro‐Buckets as Novel Cell Carriers.
- Author
-
Liu, Qian, Zhao, Meng, Mytnyk, Serhii, Klemm, Benjamin, Zhang, Kai, Wang, Yiming, Yan, Dadong, Mendes, Eduardo, and van Esch, Jan H.
- Subjects
- *
HYDROGELS , *PARTICLES , *AQUEOUS solutions , *PEPTIDES , *CELLULAR therapy - Abstract
Hydrogel microparticles are important in materials engineering, but their applications remain limited owing to the difficulties associated with their manipulation. Herein, we report the self‐orientation of crescent‐shaped hydrogel microparticles and elucidate its mechanism. Additionally, the microparticles were used, for the first time, as micro‐buckets to carry living cells. In aqueous solution, the microparticles spontaneously rotated to a preferred orientation with the cavity facing up. We developed a geometric model that explains the self‐orienting behavior of crescent‐shaped particles by minimizing the potential energy of this specific morphology. Finally, we selectively modified the particles' cavities with RGD peptide and exploited their preferred orientation to load them with living cells. Cells could adhere, proliferate, and be transported and released in vitro. These micro‐buckets hold a great potential for applications in smart materials, cell therapy, and biological engineering. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
38. MaxSynBio: Wege zur Synthese einer Zelle aus nicht lebenden Komponenten.
- Author
-
Schwille, Petra, Spatz, Joachim, Landfester, Katharina, Bodenschatz, Eberhard, Herminghaus, Stephan, Sourjik, Victor, Erb, Tobias J., Bastiaens, Philippe, Lipowsky, Reinhard, Hyman, Anthony, Dabrock, Peter, Baret, Jean‐Christophe, Vidakovic‐Koch, Tanja, Bieling, Peter, Dimova, Rumiana, Mutschler, Hannes, Robinson, Tom, Tang, T.‐Y. Dora, Wegner, Seraphine, and Sundmacher, Kai
- Abstract
Abstract: Ein großes deutsches Max‐Planck‐Forschungskonsortium (“MaxSynBio”) untersucht lebende Systeme aus fundamentaler Perspektive. Das Forschungsprogramm von MaxSynBio verfolgt dabei ausschließlich einen “Bottom‐up”‐Ansatz in der synthetischen Biologie: Es konzentriert sich auf die detaillierte Analyse und das Verständnis essentieller Lebensprozesse, indem es diese Prozesse als elementare Module in minimalen synthetischen Systemen rekonstituiert. Das ultimative Ziel von MaxSynBio ist es, eine lebende Zelle komplett aus nicht lebenden Komponenten zu konstruieren. Die grundlegenden Erkenntnisse aus den Aktivitäten in MaxSynBio können auf lange Sicht zur Etablierung neuer biotechnologischer Verfahren führen, die auf synthetischen Zellkonstrukten basieren. Langfristig könnten dadurch Organismen ersetzt werden, die derzeit in der konventionellen Biotechnologie Verwendung finden. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
39. Proteomic Analysis of Single Mammalian Cells Enabled by Microfluidic Nanodroplet Sample Preparation and Ultrasensitive NanoLC‐MS.
- Author
-
Zhu, Ying, Clair, Geremy, Chrisler, William B., Shen, Yufeng, Zhao, Rui, Shukla, Anil K., Moore, Ronald J., Misra, Ravi S., Pryhuber, Gloria S., Smith, Richard D., Ansong, Charles, and Kelly, Ryan T.
- Subjects
- *
PROTEOMICS , *CELL-mediated cytotoxicity , *CELL proliferation , *CELL culture , *CELL differentiation - Abstract
Abstract: We report on the quantitative proteomic analysis of single mammalian cells. Fluorescence‐activated cell sorting was employed to deposit cells into a newly developed nanodroplet sample processing chip, after which samples were analyzed by ultrasensitive nanoLC‐MS. An average of circa 670 protein groups were confidently identified from single HeLa cells, which is a far greater level of proteome coverage for single cells than has been previously reported. We demonstrate that the single‐cell proteomics platform can be used to differentiate cell types from enzyme‐dissociated human lung primary cells and identify specific protein markers for epithelial and mesenchymal cells. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
40. Magnetophoretic Sorting of Single Catalyst Particles.
- Author
-
Solsona, Miguel, Nieuwelink, Anne‐Eva, Meirer, Florian, Abelmann, Leon, Odijk, Mathieu, Olthuis, Wouter, Weckhuysen, Bert M., and van den Berg, Albert
- Subjects
- *
CATALYSTS , *MICROFLUIDICS , *CATALYTIC cracking , *MAGNETIC moments , *IRON - Abstract
Abstract: A better understanding of the deactivation processes taking place within solid catalysts is vital to design better ones. However, since inter‐particle heterogeneities are more a rule than an exception, particle sorting is crucial to analyse single catalyst particles in detail. Microfluidics offers new possibilities to sort catalysts at the single particle level. Herein, we report a first‐of‐its‐kind 3D printed magnetophoretic chip able to sort catalyst particles by their magnetic moment. Fluid catalytic cracking (FCC) particles were separated based on their Fe content. Magnetophoretic sorting shows that large Fe aggregates exist within 20 % of the FCC particles with the highest Fe content. The availability of Brønsted acid sites decreases with increasing Fe content. This work paves the way towards a high‐throughput catalyst diagnostics platform to determine why specific catalyst particles perform better than others. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
41. High‐Throughput Design of Biocompatible Enzyme‐Based Hydrogel Microparticles with Autonomous Movement.
- Author
-
Keller, Shauni, Teora, Serena P., Hu, Guo Xun, Nijemeisland, Marlies, and Wilson, Daniela A.
- Subjects
- *
POLYETHYLENE glycol , *HYDROGELS , *BIOMEDICAL materials , *NANOMOTORS , *MOLECULAR weights - Abstract
Abstract: Micro‐ and nanomotors and their use for biomedical applications have recently received increased attention. However, most designs use top‐down methods to construct inorganic motors, which are labour‐intensive and not suitable for biomedical use. Herein, we report a high‐throughput design of an asymmetric hydrogel microparticle with autonomous movement by using a microfluidic chip to generate asymmetric, aqueous, two‐phase‐separating droplets consisting of poly(ethylene glycol) diacrylate (PEGDA) and dextran, with the biocatalyst placed in the PEGDA phase. The motor is propelled by enzyme‐mediated decomposition of fuel. The speed of the motors is influenced by the roughness of the PEGDA surface after diffusion of dextran and was tuned by using higher molecular weight dextran. This roughness allows for easier pinning of oxygen bubbles and thus higher speeds of the motors. Pinning of bubbles occurs repeatedly at the same location, thereby resulting in constant circular or linear motion. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
42. Supramolecular Nested Microbeads as Building Blocks for Macroscopic Self‐Healing Scaffolds.
- Author
-
Yu, Ziyi, Liu, Ji, Tan, Cindy Soo Yun, Scherman, Oren A., and Abell, Chris
- Subjects
- *
SELF-healing materials , *MATERIALS , *NEST building , *SCAFFOLDING , *FLEXIBLE electronics , *SUSTAINABLE engineering , *SUSTAINABLE chemistry - Abstract
Abstract: The ability to construct self‐healing scaffolds that are injectable and capable of forming a designed morphology offers the possibility to engineer sustainable materials. Herein, we introduce supramolecular nested microbeads that can be used as building blocks to construct macroscopic self‐healing scaffolds. The core–shell microbeads remain in an “inert” state owing to the isolation of a pair of complementary polymers in a form that can be stored as an aqueous suspension. An annealing process after injection effectively induces the re‐construction of the microbead units, leading to supramolecular gelation in a preconfigured shape. The resulting macroscopic scaffold is dynamically stable, displaying self‐recovery in a self‐healing electronic conductor. This strategy of using the supramolecular assembled nested microbeads as building blocks represents an alternative to injectable hydrogel systems, and shows promise in the field of structural biomaterials and flexible electronics. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
43. Strukturierte kolloidale photonische Kristalle.
- Author
-
Hou, Jue, Li, Mingzhu, and Song, Yanlin
- Abstract
Abstract: Kolloidale photonische Kristalle (PCs) sind einfach herzustellen, kostengünstig und vielfältig im Hinblick auf Modifizierung und Funktionalisierung. Strukturierte kolloidale PCs bieten einen neuen Ansatz für die Entwicklung von leistungsstarken PC‐Vorrichtungen mit besonderen Strukturen und spezifischen Funktionen. In diesem Kurzaufsatz wird ein Überblick über die Methoden zur Herstellung von strukturierten kolloidalen PCs gegeben – Anordnung mithilfe von strukturierten Substraten, Tintenstrahldruck sowie selektive Immobilisierung und Modifizierung. Außerdem werden die Vorteile von Vorrichtungen mit strukturierten PCs im Einzelnen behandelt, beispielsweise für die Sensorik, mikrofluidische Kanäle, Nachweisverfahren, Displays und als Elemente zur Fälschungssicherung. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
44. Miniaturisierte und markierungsfreie Analyse einzelner Mikrofluidsegmente unter Einsatz der oberflächenverstärkten Raman-Spektroskopie
- Author
-
Mendl, Alexander
- Subjects
Raman-Spektroskopie ,Mikrofluidik ,Prozessmesstechnik - Abstract
Die Mikrofluidsegmenttechnik ermöglicht es, Reaktionen unter optimierten Strömungsverhältnissen und mit einer minimalen Substanzmenge durchzuführen. Besonders für mehrdimensionale Reaktionsscreenings, bei denen die Einflüsse mehrerer Effektoren gleichzeitig untersucht werden, eignet sich diese Technik, da die Segmente geordnet durch das System geführt werden, wodurch die Zusammensetzung jedes einzelnen Segments bekannt ist. Deshalb hat bei dieser meist sehr komplexen und technisch aufwendigen Verfahrensweise die Analyse der Segmente bzw. deren Inhaltsstoffe eine große Bedeutung. Neben der optischen Auswertung oder der Fluoreszenzmessung, bei der die Zielsubstanz mit einer fluoreszierenden Gruppe markiert werden muss, werden aktuell markierungsfreie Detektionsmethoden entwickelt. Diese Detektionsmethoden sind aber noch sehr aufwendig und sind ohne tiefgreifende Fachkenntnisse auf dem jeweiligen Gebiet nicht anzuwenden. Der Bedarf nach einer einfachen Analysemethode, mit der auch chemische Veränderungen in den Segmenten markierungsfrei detektiert werden können, ist die Grundlage für die Motivation der hier vorgestellten Arbeit. Diese beschreibt eine neue Methode für die markierungsfreie Analyse einzelner Fluidsegmente, die durch einen kompakten Aufbau und eine einfache Anbindung an beliebige Prozesse einen weitverbreiteten Einsatz der Analysetechnik ermöglicht. Die entwickelte Analysemethode beschreibt die erstmalige Kopplung der oberflächenverstärkten Raman-Spektroskopie (engl. surface enhanced Raman scattering/spectroscopy, SERS) mit einer Umsetzung der seriell erzeugten Segmente auf eine parallele Array-Struktur aus SERS-aktiven Messstellen (SERS-Array). Dieser Umsetzungsschritt entkoppelt die zeitlich kritische Messung von der schnellen Prozessierung der Segmente und ermöglicht zudem einen optimalen optischen Zugang zu den Messstellen, wodurch der Einsatz kompakter Spektrometersysteme ermöglicht wird. Zur Umsetzung des Konzepts wurde ein neuartiger SERS-aktiver Hydrogel-Film sowie ein Verfahren zum Auftragen des Films auf die Messstellen entwickelt. Bei der Entwicklung des Hydrogel-Films wurde eine Methode zur Herstellung quellbarer, SERS-aktiver Komposit-Sensorpartikel weiterentwickelt, indem die Haftung auf einem Glasträger, die Verdunstung des Lösungsmittels während der Applikation und die SERS-Verstärkung untersucht und angepasst wurden. Weiterhin wurde die Leistungsfähigkeit der entwickelten Analysemethode bestimmt, so zeigt das SERS-Array hervorragende Werte in Bezug auf die Langzeitstabilität. Das Gesamtsystem wurde im Vergleich mit anderen SERS-basierten Analysemethoden bewertet. Dabei zeigt sich, dass vergleichsweise hohe Frequenzen an Segmenten analysiert werden können und dass die Quantifizierung von Testsubstanzen in einem breiten Konzentrationsbereich, der etwas oberhalb derer der Vergleichssysteme liegt, möglich ist. Anhand einer Desaminierungsreaktion konnte gezeigt werden, dass in dieser Arbeit eine kompakte und einfach adaptierbare Methode für SERS-Messungen entwickelt wurde, die chemische Veränderungen innerhalb von Mikrofluidsegmenten detektieren kann., Segmented flow techniques enables reactions to be carried out under optimized flow conditions and with a minimal amount of substance. This technique is particularly suitable for multidimensional reaction screenings, as the segments are passed through the system in an orderly manner, and thus the history of each individual segment is known. The analysis of the segments or their composition is of great importance in this usually very complex and technically expensive process. In addition to optical detection or fluorescence measurement, in which the target substance must usually be labeled with a fluorescent group, label-free detection methods are currently being developed. However, these methods are still very complex and cannot be used without specialist knowledge in the respective field. In this work, a new method for label-free analysis of single fluid segments was developed, which allows widespread use of the analytical technique due to a compact design and easy connection to different processes. The developed analytical method includes the first combination of surface enhanced Raman scattering/spectroscopy (SERS) with a transfer of the serially generated fluid segments into a parallel array structure of SERS-active measuring spots (SERS array). This transfer step decouples the time-critical measurement from the fast processing of the fluid segments and allows an optimal optical access to the measuring spots, enabling the use of compact spectrometer systems. To implement the concept, a novel SERS-active hydrogel film was developed, as well as a method for applying the hydrogel film to the measurement spots. In the development of the hydrogel film, a method for producing swellable, SERS active composite sensor particles was developed by studying and adjusting the adhesion to the glass substrate, the evaporation of the solvent during application and the SERS enhancement. Furthermore, the performance of the developed analytical method was determined. For example, the SERS array shows excellent values in terms of storage and application time. The overall system was evaluated in comparison with other SERS-based analytical methods, showing that a comparatively high frequency of fluid segments can be analyzed and that the quantification of test substances is possible in a wide concentration range, which is slightly above the comparison systems. Using a deamination reaction, it was shown that this work has succeeded in developing a compact and easily adaptable analytical method for SERS measurements that can detect chemical changes within microfluidic segments.
- Published
- 2022
- Full Text
- View/download PDF
45. Microfluidic Compartmentalization for Smart Materials, Medical Diagnostics and Cell Therapy
- Author
-
Iseri, Emre and Iseri, Emre
- Abstract
The organisation of fluids in small compartments is ubiquitous in nature, such as in the cellular composition of all life. This work explores several engineering avenues where microscale fluid compartmentalization can bring novel material properties or novel functionality in life sciences or medicine. Here, we introduce four unique compartmentalization methods: 1) 3D fluid self-organisation in microscaffolds (FLUID3EAMS), 2) 2D microcapillary arrays on a dipstick (Digital Dipstick), 3) a sliding microfluidic platform with cross-flow (Slip-X-Chip), and 4) compartmentalization by cutting of soft solid matter (Solidify & Cut). These methods were used in a wide range of applications. Within the area of smart materials, we applied FLUID3EAMS to synthesize materials with temperature-tuneable permeability and surface energy and to establish, in a well-controlled fashion, tissue-like materials in the form of 3D droplet interface bilayer networks. Solidify & Cut was used to form soft composites with a new type of magnetic behaviour, rotation-induced ferromagnetism, that allows easy reprogramming of the magnetization of magnetopolymers. Within the area of medical diagnostics, we applied Digital Dipstick to perform rapid digital bacterial culture in a dipstick format and obtained clinically relevant diagnostic results on samples from patients with a urinary tract infection. Furthermore, Slip-X-Chip enables particle concentration and washing as new functions in sliding microfluidic platforms, which significantly expands their potential application area. Finally, within the area of cell therapy, we explored the microencapsulation of high concentrations of therapeutic cells and presented a novel technique to fabricate core-shell microcapsules by exploiting the superior material properties of spider silk membranes., Organisering av vätskor i små fack är allmänt förekommande i nature, t.ex. i den cellulära sammansättningen av allt liv. Det här arbetet utforskar ett flertal ingenjörsmässiga tillvägagångssätt där organisering av vätska på mikroskala kan frambringa nya egenskaper hos material eller uppnå ny funktionalitet i life science eller medicin. Här introduceras fyra unika sätt att dela upp vätskor: 1) 3-Dimensionell självorganisation av vätskor i mikrostrukturer (FLUID3EAMS), 2) Mikrokapillära 2D-matriser på en mätsticka (Digital Dipstick), 3) en glidande mikrofluidisk platform med tvärflöde (Slip-X-Chip), och 4) uppdelning genom skärande av mjuk solid material (Solidify & Cut). De här metoderna användes i flertalet applikationsområden. Inom området smarta material applicerade vi FLUID3EAMS för att syntetisera material med permeabilitet och ytenergi som kunde styras med temperatur och för att etablera, i välkontrollerade former, vävnadslika material i form av ett nätverk av 3-Dimensionella dubbellager av droppgränssnitt. Inom området medicinsk diagnostic, applicerade vi Digital Dipstick för att utföra snabb, digital odling av bakteriekulturer i ett mätstickeformat och uppnådde kliniskt relevanta diagnostiska resultat från patienter med urinvägsinfektion. En vidareutveckling av detta koncept, Slip-X-Chip, möjliggör partikelkoncentration och sköljning som tillagda funktioner i glidande mikrofluidiska plattformar, vilket väsentligt utökar deras potentiella användningsområden. Slutligen, inom området cellterapi, utforskade vi mikro-inkapsling av höga koncentrationer av terapeutiska celler och presenterade en ny teknik att framställa core-shell mikrokapslar genom att utnyttja de överlägsna materialegenskaperna hos silkesmembran från spindlar., QC 20220120
- Published
- 2022
46. Design improvements for an Organ-on-chip system : Implementation and evaluation of a bubble trap
- Author
-
Jonasson, Albin, Soto Carlsson, Linnéa, Jonasson, Albin, and Soto Carlsson, Linnéa
- Abstract
The field of organ-on-chip is a relatively new area of research and builds upon the principle of engineering microfluidic systems to mimic the body’s internal environment as precisely as possible. Eventually these models could hopefully simulate whole organ-systems and enable the examination of the cell’s or organ’s reaction to foreign substances like new pharmaceuticals in a better way than current models. Previously this has been done with in vitro models such as petri dishes that only offer static culturing conditions. These are not very realistic environments compared to the human body where the cells are exposed to both variations in pressure and flows among other things. The purpose of this bachelor’s thesis project has been to evaluate and improve the design of an organ-on-chip system developed by the EMBLA-group at Ångströmslaboratoriet, Uppsala university. This has been done by evaluating the manufacturing process to find areas of improvements of the current chip design, as well as conducting a literature study to understand key components of similar organ-on-chip systems and see if it is possible to implement relevant parts to the organ-on-chip of this project. One of these important parts is a so-called bubble trap. A bubble trap is a construction that enables the capturing and elimination of bubbles in the system since the bubbles can harm the chips components, kill the cells, and compromise measurements. A first prototype of the bubble trap was developed in Polydimethylsioxane (PDMS) and integrated on the EMBLA-group’s chip design. The principle behind the bubble trap was to use the natural buoyancy of the bubbles to trap them. This was done by introducing an upwards going slope before the inlets to the chip. In this manner the bubbles would float up to the top of the slope and accumulate at the roof as the liquid moved on into the chip without bubbles. To make the bubbles leave the chip a low-pressure chamber was added on top of the bubble trap to hel, Organ-på-chip (Organ-on-chip eller OoC) är ett relativt nytt forskningsområde som bygger på att mikrofluidiksystem utvecklas till att efterlikna människokroppen i så stor utsträckning som möjligt. Detta då det är attraktivt att kunna undersöka cellers/organs beteende vid tillförsel av vissa substanser, till exempel nya läkemedel. I tidigare in vitro modeller har det endast observerats och utförts tester på celler odlade i statiska förhållanden vilket inte är likt den omgivning cellerna har i människokroppen där de tex utsätts för olika vätskeflöden och tryckförändringar. Syftet med detta examensarbete har varit att utvärdera och förbättra designen på ett OoC system utvecklat av EMBLA-gruppen på Ångströmlaboratoriet vid Uppsala universitet. Detta har gjorts genom att studera den nuvarande tillverkningsprocessen för att hitta relevanta förbättringsområden samt att genom en litteraturstudie undersöka viktiga delar som bör ingå i dessa typer av system. En av dessa delar är en bubbelfälla (bubble trap eller BT) vilket innebär att det i chippet bör finnas ett sätt att eliminera/fånga upp bubblor. Detta eftersom bubblorna kan orsaka stor skada på både chipet, cellerna och mätningarna som skall utföras. En första prototyp av en BT design i Polydimetylsiloxan (PDMS) utvecklades och integrerades på EMBLA-gruppens OoC design. Principen bakom BT-designen var att utnyttja bubblornas flytkraft vilket gjordes genom att introducera en uppåtgående backe innan ingångskanalen. Bubblorna kan därmed flyta upp till toppen av lutningen och vätskan kan fortsätta in i mikrochipset utan bubblor. För att bubblorna ska ta sig ut ur chippet integrerades en tryckkammare ovanpå BT-designen för att få bubblorna att diffundera ut genom taket i den uppåtgående kammaren och ut ur chippet. Utvecklingen av den förbättrade chip-designen visade sig var tidskrävande och tiden för att utvärdera designens funktionalitet blev för kort. Ett test gjordes på den nya chip-designen vilket visade att den utveck
- Published
- 2022
47. Development of Microfluidic 3D Cell Culture with a Nanocellulose-Based Scaffold for Spheroid Formation as a Potential Tool for Drug Screening
- Author
-
Payande, Sara and Payande, Sara
- Abstract
Lack of clinical relevance is assumed to be the main reason behind the high failure rate of medical drugs in the very initial phases of clinical trials. Clinical relevance is difficult to achieve with current tools as they lack the biological and physiological cues found in vivo. Microfluidics, the knowledge of fluid manipulation in small channels, has proven to be a promising science to bridge the gap between the current in vitro and the real in vivo features. In this thesis, a scaffold for the growth of spheroids inside a microfluidic device for potential drug screening was developed. Firstly, the surface of a microfluidic device was coated with the polymers cellulose nanofibrils, polyallylamine hydrochloride, and polyethyleneimine using the Layer-by-Layer technique to achieve an even surface coverage. Here, different chip designs, polymer concentrations, and pressure directions were tested. It was decided that using a negative pressure direction with a polymer concentration of 50 mg/L in a chip design with micropillars was optimal and these conditions were then used for testing the spheroid formation. Secondly, spheroids were grown inside the microfluidic channels using different coatings: the previously mentioned polymer buildup, one non-coated channel, and one coated with attachment factor proteins. These three surface conditions were compared and it was shown that the polymer-based surface cover was indeed superior as a scaffold as it encouraged and promoted cell growth in the spheroid formation of liver cancer cells from the HepG2 cell line. Further development of this cellulose nanofibrils-coated microfluidic device displays a promising future for functioning as an in vitro 3D cell culture model that better mimics the close-to-cell microenvironments by imitating cell proliferation, cell-to-cell, and cell-to-extracellular matrix interactions., Sammanfattning Den främsta orsaken bakom den höga antal misslyckade kliniska läkemedelsprövningar i de initiala faserna antas bero på brist på klinisk relevans. Klinisk relevans är mycket svår att uppnå med dagens verktyg då de saknar de biologiska och fysiologiska förhållandena som återfinns in vivo. Mikrofluidik, kunskapen om vätskemanipulation i små kanaler har visat sig vara lovande vetenskap för att överbrygga klyftan mellan de nuvarande in vitro och de faktiska in vivo funktionerna. I detta arbete utvecklades en matris för sfäroider att växa på inuti en mikrofluidisk kanal för att potentiellt användas till läkemedelsscreening. Först användes Layer-by-Layer teknologi för att jämnt betäckta ytan inuti en mikrofluidisk kanal med polymererna cellulosananofibriller, polyallylamin hydroklorid samt polyetylenimin. Här testades olika designer på mikrofluidiska chip, polymerkoncentrationer samt tryckriktningar. Utifrån detta gick det att fastställa att negativt tryck med en polymerkoncentration på 50 mg/L i en chippdesign med mikropelare var optimal för en jämn ytbetäckning och dessa förhållanden användes sedan för att pröva sfäroidernas tillväxt. Härnäst testades därmed sfäroidernas tillväxt inuti mikrofluidiska kanaler under tre olika förhållanden: ett med polymerbetäckningen, ett utan betäckning och ett då ytan var täckt med proteiner med fästfaktorer. Dessa tre förhållanden jämfördes sedan med varandra och således gick det att konstatera att den polymerbaseradebetäckningen fungerade överlägset som matris för tillväxt av HepG2 lever cancer cell sfäroider eftersom den tycks främja dess tillväxt och bildning. Det pekar mot att ytterligare utveckling av denna cellulostäckta yta skulle innebära en lovande modell för in vitro 3D cellodling som bättre efterliknar den cellulära mikromiljön genom att imitera cellproliferation, interaktioner celler emellan samt mellan cell och extracellulär matrisen.
- Published
- 2022
48. Entwicklung und Automatisierung 3D-gedruckter mikrofluidischer Systeme zur Integration und Kultivierung adhärenter Zellkulturen
- Author
-
Winkler, Steffen Nils and Winkler, Steffen Nils
- Abstract
Mikrofluidische Systeme werden zur Manipulation von Flüssigkeiten auf Mikroebene eingesetzt. Von ihnen profitieren insbesondere Biowissenschaften durch die Reduktion von Reagenzien und die Automatisierung ganzer Arbeitsabläufe. Die Mikrostrukturierung erlaubt zudem die Entwicklung neuartiger mikrofluidischer Zellkultursysteme wie den organ-on-a-chip Systemen. Diese Systeme zeichnen sich durch eine höhere physiologische Relevanz gegenüber klassischen in vitro Systemen aus und können zur Rekonstruktion einzelner Organfunktionen genutzt werden. Aufgrund ihrer komplizierten Fertigung wird jedoch der Zugang zu diesen Systemen für Biowissenschaftler:innen er-schwert, sodass ihr Potential noch kaum in kommerziellen Produkten realisiert werden konnte. Eine Lösung bietet die additive Fertigung (3D-Druck) mikrofluidischer Systeme, durch die die unkomplizierte Herstellung eigener Prototypen an Ort und Stelle ermöglicht wird. Um den 3D-Druck jedoch auch für die Herstellung mikrofluidischer Zellkultursysteme nutzen zu können, benötigt es deutlich mehr Biokompatibilitätsstudien zu neuen 3D-Druckmaterialien. In diesem Sinne wurde in dem ersten Teil dieser Arbeit die in vitro Biokompatibilität eines aus Polyacrylat bestehenden, hitzebeständigen 3D-Druckmaterials sowie dessen Eignung für die Heißdampfsterilisation untersucht. Dabei konnte eine Biokompatibilität gegenüber adhärenten Mausfibroblasten und Hefezellen nachgewiesen werden. Diese Ergebnis-se ermöglichen somit den Einsatz des Materials für die Zellkultur. Die Biokompatibilität blieb auch nach Heißdampfsteri-lisation unbeeinträchtigt, sodass mit diesem Material gedruckte Zellkultursysteme unkompliziert sterilisiert werden können. Im Gegensatz dazu erwies sich das Material für menschliche embryonale Nierenzellen in Suspension als schädlich, was die Bedeutung einer auf den Organismus und die Anwendung zugeschnittenen Biokompatibilitätsprü-fung verdeutlicht. Im zweiten Teil dieser Arbeit wurde das evaluierte 3D-Druckmaterial zu
- Published
- 2022
49. Analysis of near-substrate magnetic particle transport for Lab-on-a-chip applications: stray field modulations, influence of particle properties and three-dimensional trajectories
- Author
-
Huhnstock, Rico
- Subjects
Janus Partikel ,Dünne Schicht ,Dünnschichtsysteme ,Exchange Bias ,Magnetische Feldlandschaften ,Transporteigenschaft ,Mikrofluidik ,Superparamagnetische Partikel ,Partikeltransport ,Lab-on-a-Chip ,Ionenbeschuss induzierte magnetische Strukturierung ,Superparamagnetismus ,Dreidimensionales Partikeltracking ,Magnetfeld ,Lab on a Chip ,Magnetische Anisotropie ,Teilchen - Abstract
Deutscher Titel: Analyse des substratnahen Transports magnetischer Partikel für Lab-on-a-Chip Anwendungen: Modulationen des Streufeldes, Einfluss der Partikeleigenschaften und dreidimensionale Trajektorien
- Published
- 2022
- Full Text
- View/download PDF
50. Entwicklung und Charakterisierung einer membranlosen mikrofluidischen Brennstoffzelle
- Author
-
Rösing, Wiebke
- Subjects
Mikrofluidik ,Brennstoffzelle ,Mikrosystemtechnik ,621.3 - Abstract
Membranlose mikrofluidische Brennstoffzellen (MFCs) stellen aufgrund der theoretisch höheren Energiedichte eine potenzielle Alternative zu konventionellen Batterien dar und sind für die Anwendung in tragbaren elektronischen Geräten von großem Interesse. MFCs werden mit flüssigem Brennstoff und Oxidant betrieben, die in zwei getrennte Eintrittsöffnungen, in einen mit Elektroden ausgestatteten Mikrokanal eingeleitet werden. Bedingt durch die laminare Strömung im Mikrokanal fließen die beiden Fluide parallel zum Kanal, ohne sich konvektiv zu durchmischen. Allerdings sind MFCs aufgrund von geringen Stromdichten bei gleichzeitig niedrigem Brennstoffumsatz noch nicht kommerziell im Einsatz. Ein wesentlicher Grund für die geringen Stromdichten ist die Entstehung von Verarmungsschichten an den Elektrodenoberflächen aufgrund des diffusionsbegrenzten Massentransports. Aus diesem Grund wird zur Entwicklung einer leistungsfähigeren MFC der Fokus in dieser Arbeit auf die Steigerung des konvektiven Massentransports im Mikrokanal in Richtung der Elektroden gelegt. Es wird eine MFC mit gekrümmten Mikrokanal entwickelt. Durch die Krümmung entstehen in der Kurve des Kanals zwei entgegengesetzte Wirbel, die sogenannten Dean-Wirbel, die einen konvektiven Massentransport der Reaktanden an die Elektrodenoberfläche hervorrufen. Neben der Entwicklung einer MFC, werden in dieser Arbeit numerische und experimentelle Untersuchungen zum Einfluss des durch die Krümmung hervorgerufenen konvektiven Massentransports auf die Leistung der entwickelten MFC durchgeführt. Die dreidimensionale Strömung in gekrümmten Mikrokanälen wird mit Hilfe von numerischen Simulationen charakterisiert und die Ergebnisse mittels Astigmatismus Particle Tracking Velocimetry-Messungen (APTV) erfolgreich validiert. Weiterhin wird durch Simulationen und elektrochemische Experimente unter Verwendung eines Modell-Redoxsystems die negative Wirkung der sich bildenden Verarmungsschicht auf die Stromdichte im geraden Abschnitt des Mikrokanals aufgezeigt. In der Kurve kann durch die Dean-Wirbel die Stromdichte dagegen gesteigert werden. Zudem gelingt es mittels Simulationen den Einfluss der Dean-Wirbel auf die Stromdichte und die Leistung der MFC nachzuweisen und zu analysieren. Schließlich wird anhand von APTV-Messungen im Einlassbereich der MFC eine der Hauptströmung überlagerten Strömung festgestellt. Um den daraus resultierenden Brennstoff-Crossover zu verhindern, wird ein neues System mit einer dünnen Lippe im Einlassbereich des Mikrokanals gefertigt, welches den parallelen Fluss der beiden Fluide gewährleistet. Dies schafft die ideale Voraussetzung für die Verwendung des optimierten Mikrokanals als MFC und ebnet den Weg für die weitere Erforschung der MFC mit gekrümmten Mikrokanal., Membraneless microfluidic fuel cells (MFCs) are a potential alternative to conventional batteries due to their theoretically higher energy density and are of great interest for widespread application in portable electronic devices. MFCs operate with liquid fuel and oxidant, which are introduced into a microchannel with integrated electrodes through two separate inlets. Due to laminar flow in the microchannel both fluids move parallel inside the channel without convective mixing. Thus, the membrane can be eliminated in the MFC. However, MFCs are not yet in commercial use due to low current density and low fuel utilization. A major reason for the low current density is the formation of depletion layers on the electrode surfaces due to diffusion-limited mass transport. In order to develop a more effcient MFC, this work focuses on increasing the convective mass transport in the microchannel to the electrodes. Therefore, a comparatively simple approach is chosen. A microfluidic fuel cell with a curved microchannel is developed, which creates two opposing vortices inside the curvature, the so-called Dean vortices. These vortices cause convective mass transport of the reactants to the electrode surface. In addition to the development of a microfluidic fuel cell numerical and experimental investigations on the influence of the convective mass transport caused by the curvature on the performance of the MFC are carried out. The three-dimensional flow in curved microchannels is characterized by means of numerical simulations and successfully validated by means of astigmatism particle tracking velocimetry measurements (APTV). Furthermore, numerical simulations and electrochemical experiments using a model redox system show the negative effect of the depletion layer on the current density in the straight channel part of the microchannel due to the diffusion-limited mass transport. In the curve, on the other hand, the current density can be increased due to the Dean vortices. Moreover, the functionality of the fabricated MFC as a membraneless microfluidic fuel cell using fuel and oxidant is demonstrated successfully. In addition, numerical simulations are used to demonstrate and characterize the influence of the Dean vortices on the current density and the performance of the MFC. Finally a second flow overlapping the main flow in the form of two counter-rotating vortices is detected using APTV measurements in the channel inlet area of the MFC. In order to prevent the resulting fuel crossover, a new microsystem with a thin lip in the center of the inlet area of the microchannel ensures parallel flow of both fluids. This creates the ideal conditions for using the optimized microchannel as a MFC and paves the way for further research into MFCs with curved microchannels.
- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.