1. Digital Image Correlation Characterization of Deformation Behavior and Cracking of Porous Segmented Alumina under Uniaxial Compression
- Author
-
Vladimir Kibitkin, Nickolai Savchenko, Mikhail Grigoriev, Andrey Solodushkin, Alexander Burlachenko, Ales Buyakov, Anna Zykova, Valery Rubtsov, and Sergei Tarasov
- Subjects
segmented ceramic ,digital image correlation ,Technology ,Chemical technology ,TP1-1185 - Abstract
In this study, the two-dimensional digital image correlation (DIC) technique has been applied to sequences of images taken from the surfaces of porous, segmented alumina samples during uniaxial compression tests. The sintered alumina was structurally composed of polycrystalline alumina grains with interior ~3–5-μm pores, a network of discontinuities that subdivided the sample into ~230 μm segments, and ~110 μm pores located at the discontinuity network nodes. Bimodal pore structure and the segment boundaries were the results of the evaporation and the outgassing of the paraffin and ultra-high-molecular-weight polyethylene admixed with alumina powder via slip casting. Only partial bonding bridges between the segments were formed during a low-temperature sintering at 1300 °C for 1 h. A special technological approach made it possible to change the strength of the partial bonding bridges between the segments, which significantly affected the deformation behavior ceramics during compression. The subpixel accuracy of the DIC results was achieved using an interpolation scheme for the identification functional. The vector fields obtained in the experiment made it possible to characterize the processes of deformation and destruction of a porous, segmented alumina using the strain localization in situ maps, cardinal plastic shear, and circulation of vector fields. The use of these characteristics made it possible to reveal new details in the mechanisms of deformation and destruction of segmented ceramics. The localizations of damage were identified and related to the characteristic structural heterogeneities of the tested porous segmented ceramics.
- Published
- 2023
- Full Text
- View/download PDF