71 results on '"Mike Lamont"'
Search Results
2. Sensitivity of the SHiP experiment to dark photons decaying to a pair of charged particles
- Author
-
S. Kormannshaus, K. Kershaw, N. Leonardo, M. Chernyavskiy, Oleg Ruchayskiy, Ciro Visone, I. Korol, Alexey Boyarsky, J.-M. Lévy, E. Elikkaya, E. Kurbatov, Davide Tommasini, D. Grenier, V. Poliakov, M. Manfredi, T. M. Roganova, E. Koukovini Platia, Sergey E. Ulin, Serge Smirnov, V.D. Samoylenko, Victor Golovtsov, A. Golovatiuk, S. Vilchinski, P. Ninin, Andrea Miano, F. L. Fabbri, A. Quercia, E. Solodko, W. Schmidt-Parzefall, Naotaka Naganawa, Mario Campanelli, Paolo Ciambrone, N. Konovalova, Salvatore Buontempo, Andrey Ustyuzhanin, Yu. Guz, I. Korol’ko, Mikhail V. Gorshenkov, L. Di Giulio, G. Soares, Vladimir Samsonov, M. Torii, Alexey A. Petrov, H. Shibuya, V. M. Grachev, V. E. Lyubovitskij, P. Wertelaers, Philippe Mermod, G. Felici, Nicola D'Ambrosio, A. Iuliano, Annarita Buonaura, Gianluigi Arduini, P. Dergachev, A.B. Rodrigues Cavalcante, Akira Nishio, S. Simone, Christopher Betancourt, J. J. Back, Claudio O. Dib, Pavel Shatalov, R. Froeschl, A. Bay, A. Datwyler, A. Rakai, Petr Andreevich Gorbounov, A. Saputi, B. Opitz, Giuseppe D'Appollonio, K.Y. Lee, A. Kono, Mike Lamont, J. Borburgh, Alexander Malinin, Vadim Kostyukhin, P. Santos Diaz, E. V. Atkin, Y. G. Kim, Konstantinos Petridis, R. Voronkov, A. L. Grandchamp, Liliana Congedo, N. Azorskiy, Alexander E. Shustov, A. Mefodev, A. Golutvin, Oleg Bezshyyko, B. Hosseini, Andrea Prota, J. Boehm, Giuseppe Iaselli, P. Pacholek, Genady Gavrilov, A. Kolesnikov, P. Kurbatov, John Osborne, Victor Maleev, R. de Asmundis, Nicolò Tosi, L. Golinka-Bezshyyko, P. Fonte, M. Ehlert, R. Jacobsson, V. Kurochka, A. Shakin, A.U. Yilmazer, F. Fedotovs, K. Filippov, D. Breton, D. Pereyma, D. A. Podgrudkov, B. Obinyakov, Mikhail Hushchyn, J. S. Schliwinski, L. Stoel, Volker Büscher, Alexey Volkov, Raffaele Albanese, S. Shirobokov, Shigeki Aoki, J.-L. Grenard, J. Bauche, Patrick Owen, D. Yilmaz, Z. M. Uteshev, V. Bayliss, E. van Herwijnen, A. Zelenov, M. Prokudin, Rosa Simoniello, S. Nasybulin, P. Teterin, D. Karpenkov, S. Ricciardi, G. L. Petkov, A. Korzenev, Y. Muttoni, F. Redi, O. Durhan, G. Bencivenni, V. P. Loschiavo, Ekaterina Kuznetsova, Oleg Fedin, K. S. Lee, A. Crupano, Heinz Vincke, Oksana Shadura, Elena Graverini, V. Drohan, Tiziano Rovelli, N. Owtscharenko, V. Cicero, S. van Waasen, A. M. Guler, Valery V. Dmitrenko, A. Alexandrov, Patrick Robbe, A. Hollnagel, Nobuko Kitagawa, J. Zimmerman, Caren Hagner, K.-Y. Choi, Daniel Treille, J. Gall, Satoru Takahashi, G. Vankova-Kirilova, A. Khotyantsev, L. Gatignon, Yosuke Suzuki, S. Marsh, L. Lopes, J. De Carvalho Saraiva, Gianfranca De Rosa, M. D. Skorokhvatov, Viktor Rodin, J. Prieto Prieto, Michael Wurm, A. Dolmatov, Sandro Cadeddu, Oleg Mineev, Inar Timiryasov, Giuliana Galati, G. Haefeli, G. M. Dallavalle, E. Khalikov, Karel Cornelis, Y. Berdnikov, Samuel Silverstein, Stefano Sgobba, A. Akmete, Helmut Vincke, Yuki Manabe, M. Casolino, M. M. Khabibullin, Lesya Shchutska, Alessandro Pastore, Matthew Fraser, F. Vannucci, Alexander Mclean Marshall, F. Bardou, W. Bonivento, J. Maalmi, D. Sukhonos, Arnaud Dubreuil, A. Sanz Ull, M. Battistin, Fedor Ratnikov, Iaroslava Bezshyiko, A. S. Chepurnov, M. de Magistris, Brennan Goddard, David Milstead, Alessandro Paoloni, Iryna Boiarska, B. D. Park, N. Okateva, Hans Dijkstra, Alessandro Montanari, J. Y. Sohn, Nicola Serra, E. S. Savchenko, E. Ursov, M. Bogomilov, Heiko Lacker, Natalia Polukhina, C. Franco, J.-K. Woo, Toshiyuki Nakano, A. Bagulya, D. Domenici, M. Nakamura, G. De Lellis, Yu. Zaytsev, G.V. Khaustov, J. L. Tastet, S. Movchan, Verena Kain, A. A. Rademakers, I. Kadenko, Maria Elena Stramaglia, A. Blanco, Vladimir Shevchenko, A. M. Anokhina, T. Enik, M. Bertani, F. Sanchez Galan, L. G. Dedenko, N. Di Marco, B. Kaiser, M. Jonker, Kunihiro Morishima, Lev Uvarov, C. S. Yoon, S. Bieschke, Markus Cristinziani, R. A. Fini, M. Patel, G. Khoriauli, I. Krasilnikova, Hiroki Rokujo, Kyrylo Bondarenko, Maria Cristina Montesi, S. V. Donskov, Konstantin F. Vlasik, Mikhail Shaposhnikov, P. Chau, O. Williams, D. Kolev, S. Ogawa, C. Kamiscioglu, Alexander Baranov, Yu. Mikhaylov, Dmitry Golubkov, A. K. Managadze, T. Fukuda, H. Hakobyan, M. Rinaldesi, T. Ruf, S. Than Naing, L. A. Dougherty, E. Lopez Sola, Richard Brenner, G. Lanfranchi, Nikolaos Charitonidis, F. Baaltasar Dos Santos, A. Calcaterra, D. Bick, N. I. Starkov, A.V. Etenko, Gareth J. Barker, V. Gentile, D. De Simone, Osamu Sato, Adele Lauria, Martina Ferrillo, Maksym Ovchynnikov, Marco Calviani, J.-W. Ko, S. Mikado, Raffaele Fresa, A. De Roeck, C. Hessler, A. Berdnikov, D. Joković, M. De Serio, A. Sokolenko, T. Rawlings, N. Gruzinskii, R. Tsenov, Oliver Lantwin, Masahiro Komatsu, A. Chumakov, Volodymyr Rodin, V. Grichine, V.N. Kolosov, Anne-Marie Magnan, J. Chauveau, T. Shchedrina, V. Venturi, V. Tioukov, K. Kodama, Stefania Xella, I. Vidulin, Antonio Perillo-Marcone, Rainer Wanke, Dmitry Gorbunov, Yu.A. Kudenko, M. Ferro-Luzzi, Victor Kim, Volodymyr M. Gorkavenko, I. W. Harris, S. Gorbunov, Sergey Kovalenko, C. Ahdida, A. Di Crescenzo, Laboratoire de l'Accélérateur Linéaire (LAL), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE (UMR_7585)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), SHiP, Ahdida, C., Akmete, A., Albanese, R., Alexandrov, A., Anokhina, A., Aoki, S., Arduini, G., Atkin, E., Azorskiy, N., Back, J. J., Bagulya, A., Santos, F. Baaltasar Do, Baranov, A., Bardou, F., Barker, G. J., Battistin, M., Bauche, J., Bay, A., Bayliss, V., Bencivenni, G., Berdnikov, A. Y., Berdnikov, Y. A., Bertani, M., Betancourt, C., Bezshyiko, I., Bezshyyko, O., Bick, D., Bieschke, S., Blanco, A., Boehm, J., Bogomilov, M., Boiarska, I., Bondarenko, K., Bonivento, W. M., Borburgh, J., Boyarsky, A., Brenner, R., Breton, D., Büscher, V., Buonaura, A., Buontempo, S., Cadeddu, S., Calcaterra, A., Calviani, M., Campanelli, M., Casolino, M., Charitonidis, N., Chau, P., Chauveau, J., Chepurnov, A., Chernyavskiy, M., Choi, K. -Y., Chumakov, A., Ciambrone, P., Cicero, V., Congedo, L., Cornelis, K., Cristinziani, M., Crupano, A., Dallavalle, G. M., Datwyler, A., D’Ambrosio, N., D’Appollonio, G., de Asmundis, R., De Carvalho Saraiva, J., De Lellis, G., de Magistris, M., De Roeck, A., De Serio, M., De Simone, D., Dedenko, L., Dergachev, P., Di Crescenzo, A., Giulio, L. Di, Marco, N. Di, Dib, C., Dijkstra, H., Dmitrenko, V., Dougherty, L. A., Dolmatov, A., Domenici, D., Donskov, S., Drohan, V., Dubreuil, A., Durhan, O., Ehlert, M., Elikkaya, E., Enik, T., Etenko, A., Fabbri, F., Fedin, O., Fedotovs, F., Felici, G., Ferrillo, M., Ferro-Luzzi, M., Filippov, K., Fini, R. A., Fonte, P., Franco, C., Fraser, M., Fresa, R., Froeschl, R., Fukuda, T., Galati, G., Gall, J., Gatignon, L., Gavrilov, G., Gentile, V., Goddard, B., Golinka-Bezshyyko, L., Golovatiuk, A., Golovtsov, V., Golubkov, D., Golutvin, A., Gorbounov, P., Gorbunov, D., Gorbunov, S., Gorkavenko, V., Gorshenkov, M., Grachev, V., Grandchamp, A. L., Graverini, E., Grenard, J. -L., Grenier, D., Grichine, V., Gruzinskii, N., Guler, A. M., Guz, Yu., Haefeli, G. J., Hagner, C., Hakobyan, H., Harris, I. W., Herwijnen, E. van, Hessler, C., Hollnagel, A., Hosseini, B., Hushchyn, M., Iaselli, G., Iuliano, A., Jacobsson, R., Joković, D., Jonker, M., Kadenko, I., Kain, V., Kaiser, B., Kamiscioglu, C., Karpenkov, D., Kershaw, K., Khabibullin, M., Khalikov, E., Khaustov, G., Khoriauli, G., Khotyantsev, A., Kim, Y. G., Kim, V., Kitagawa, N., Ko, J. -W., Kodama, K., Kolesnikov, A., Kolev, D. I., Kolosov, V., Komatsu, M., Kono, A., Konovalova, N., Kormannshaus, S., Korol, I., Korol’Ko, I., Korzenev, A., Kostyukhin, V., Platia, E. Koukovini, Kovalenko, S., Krasilnikova, I., Kudenko, Y., Kurbatov, E., Kurbatov, P., Kurochka, V., Kuznetsova, E., Lacker, H. M., Lamont, M., Lanfranchi, G., Lantwin, O., Lauria, A., Lee, K. S., Lee, K. Y., Leonardo, N., Lévy, J. -M., Loschiavo, V. P., Lopes, L., Sola, E. Lopez, Lyubovitskij, V., Maalmi, J., Magnan, A. -M., Maleev, V., Malinin, A., Manabe, Y., Managadze, A. K., Manfredi, M., Marsh, S., Marshall, A. M., Mefodev, A., Mermod, P., Miano, A., Mikado, S., Mikhaylov, Yu., Milstead, D. A., Mineev, O., Montanari, A., Montesi, M. C., Morishima, K., Movchan, S., Muttoni, Y., Naganawa, N., Nakamura, M., Nakano, T., Nasybulin, S., Ninin, P., Nishio, A., Obinyakov, B., Ogawa, S., Okateva, N., Opitz, B., Osborne, J., Ovchynnikov, M., Owtscharenko, N., Owen, P. H., Pacholek, P., Paoloni, A., Park, B. D., Pastore, A., Patel, M., Pereyma, D., Perillo-Marcone, A., Petkov, G. L., Petridis, K., Petrov, A., Podgrudkov, D., Poliakov, V., Polukhina, N., Prieto, J. Prieto, Prokudin, M., Prota, A., Quercia, A., Rademakers, A., Rakai, A., Ratnikov, F., Rawlings, T., Redi, F., Ricciardi, S., Rinaldesi, M., Rodin, Volodymyr, Rodin, Viktor, Robbe, P., Cavalcante, A. B. Rodrigue, Roganova, T., Rokujo, H., Rosa, G., Rovelli, T., Ruchayskiy, O., Ruf, T., Samoylenko, V., Samsonov, V., Galan, F. Sanchez, Diaz, P. Santo, Ull, A. Sanz, Saputi, A., Sato, O., Savchenko, E. S., Schliwinski, J. S., Schmidt-Parzefall, W., Serra, N., Sgobba, S., Shadura, O., Shakin, A., Shaposhnikov, M., Shatalov, P., Shchedrina, T., Shchutska, L., Shevchenko, V., Shibuya, H., Shirobokov, S., Shustov, A., Silverstein, S. B., Simone, S., Simoniello, R., Skorokhvatov, M., Smirnov, S., Soares, G., Sohn, J. Y., Sokolenko, A., Solodko, E., Starkov, N., Stoel, L., Stramaglia, M. E., Sukhonos, D., Suzuki, Y., Takahashi, S., Tastet, J. L., Teterin, P., Naing, S. Than, Timiryasov, I., Tioukov, V., Tommasini, D., Torii, M., Tosi, N., Treille, D., Tsenov, R., Ulin, S., Ursov, E., Ustyuzhanin, A., Uteshev, Z., Uvarov, L., Vankova-Kirilova, G., Vannucci, F., Venturi, V., Vidulin, I., Vilchinski, S., Vincke, Heinz, Vincke, Helmut, Visone, C., Vlasik, K., Volkov, A., Voronkov, R., Waasen, S. van, Wanke, R., Wertelaers, P., Williams, O., Woo, J. -K., Wurm, M., Xella, S., Yilmaz, D., Yilmazer, A. U., Yoon, C. S., Zaytsev, Yu., Zelenov, A., Zimmerman, J., Ahdida C., Akmete A., Albanese R., Alexandrov A., Anokhina A., Aoki S., Arduini G., Atkin E., Azorskiy N., Back J.J., Bagulya A., Santos F.B.D., Baranov A., Bardou F., Barker G.J., Battistin M., Bauche J., Bay A., Bayliss V., Bencivenni G., Berdnikov A.Y., Berdnikov Y.A., Bertani M., Betancourt C., Bezshyiko I., Bezshyyko O., Bick D., Bieschke S., Blanco A., Boehm J., Bogomilov M., Boiarska I., Bondarenko K., Bonivento W.M., Borburgh J., Boyarsky A., Brenner R., Breton D., Buscher V., Buonaura A., Buontempo S., Cadeddu S., Calcaterra A., Calviani M., Campanelli M., Casolino M., Charitonidis N., Chau P., Chauveau J., Chepurnov A., Chernyavskiy M., Choi K.-Y., Chumakov A., Ciambrone P., Cicero V., Congedo L., Cornelis K., Cristinziani M., Crupano A., Dallavalle G.M., Datwyler A., D'Ambrosio N., D'Appollonio G., de Asmundis R., De Carvalho Saraiva J., De Lellis G., de Magistris M., De Roeck A., De Serio M., De Simone D., Dedenko L., Dergachev P., Crescenzo A.D., Giulio L.D., Marco N.D., Dib C., Dijkstra H., Dmitrenko V., Dougherty L.A., Dolmatov A., Domenici D., Donskov S., Drohan V., Dubreuil A., Durhan O., Ehlert M., Elikkaya E., Enik T., Etenko A., Fabbri F., Fedin O., Fedotovs F., Felici G., Ferrillo M., Ferro-Luzzi M., Filippov K., Fini R.A., Fonte P., Franco C., Fraser M., Fresa R., Froeschl R., Fukuda T., Galati G., Gall J., Gatignon L., Gavrilov G., Gentile V., Goddard B., Golinka-Bezshyyko L., Golovatiuk A., Golovtsov V., Golubkov D., Golutvin A., Gorbounov P., Gorbunov D., Gorbunov S., Gorkavenko V., Gorshenkov M., Grachev V., Grandchamp A.L., Graverini E., Grenard J.-L., Grenier D., Grichine V., Gruzinskii N., Guler A.M., Guz Y., Haefeli G.J., Hagner C., Hakobyan H., Harris I.W., van Herwijnen E., Hessler C., Hollnagel A., Hosseini B., Hushchyn M., Iaselli G., Iuliano A., Jacobsson R., Jokovic D., Jonker M., Kadenko I., Kain V., Kaiser B., Kamiscioglu C., Karpenkov D., Kershaw K., Khabibullin M., Khalikov E., Khaustov G., Khoriauli G., Khotyantsev A., Kim Y.G., Kim V., Kitagawa N., Ko J.-W., Kodama K., Kolesnikov A., Kolev D.I., Kolosov V., Komatsu M., Kono A., Konovalova N., Kormannshaus S., Korol I., Korol'ko I., Korzenev A., Kostyukhin V., Platia E.K., Kovalenko S., Krasilnikova I., Kudenko Y., Kurbatov E., Kurbatov P., Kurochka V., Kuznetsova E., Lacker H.M., Lamont M., Lanfranchi G., Lantwin O., Lauria A., Lee K.S., Lee K.Y., Leonardo N., Levy J.-M., Loschiavo V.P., Lopes L., Sola E.L., Lyubovitskij V., Maalmi J., Magnan A.-M., Maleev V., Malinin A., Manabe Y., Managadze A.K., Manfredi M., Marsh S., Marshall A.M., Mefodev A., Mermod P., Miano A., Mikado S., Mikhaylov Y., Milstead D.A., Mineev O., Montanari A., Montesi M.C., Morishima K., Movchan S., Muttoni Y., Naganawa N., Nakamura M., Nakano T., Nasybulin S., Ninin P., Nishio A., Obinyakov B., Ogawa S., Okateva N., Opitz B., Osborne J., Ovchynnikov M., Owtscharenko N., Owen P.H., Pacholek P., Paoloni A., Park B.D., Pastore A., Patel M., Pereyma D., Perillo-Marcone A., Petkov G.L., Petridis K., Petrov A., Podgrudkov D., Poliakov V., Polukhina N., Prieto J.P., Prokudin M., Prota A., Quercia A., Rademakers A., Rakai A., Ratnikov F., Rawlings T., Redi F., Ricciardi S., Rinaldesi M., Rodin V., Robbe P., Cavalcante A.B.R., Roganova T., Rokujo H., Rosa G., Rovelli T., Ruchayskiy O., Ruf T., Samoylenko V., Samsonov V., Galan F.S., Diaz P.S., Ull A.S., Saputi A., Sato O., Savchenko E.S., Schliwinski J.S., Schmidt-Parzefall W., Serra N., Sgobba S., Shadura O., Shakin A., Shaposhnikov M., Shatalov P., Shchedrina T., Shchutska L., Shevchenko V., Shibuya H., Shirobokov S., Shustov A., Silverstein S.B., Simone S., Simoniello R., Skorokhvatov M., Smirnov S., Soares G., Sohn J.Y., Sokolenko A., Solodko E., Starkov N., Stoel L., Stramaglia M.E., Sukhonos D., Suzuki Y., Takahashi S., Tastet J.L., Teterin P., Naing S.T., Timiryasov I., Tioukov V., Tommasini D., Torii M., Tosi N., Treille D., Tsenov R., Ulin S., Ursov E., Ustyuzhanin A., Uteshev Z., Uvarov L., Vankova-Kirilova G., Vannucci F., Venturi V., Vidulin I., Vilchinski S., Vincke H., Visone C., Vlasik K., Volkov A., Voronkov R., Waasen S., Wanke R., Wertelaers P., Williams O., Woo J.-K., Wurm M., Xella S., Yilmaz D., Yilmazer A.U., Yoon C.S., Zaytsev Y., Zelenov A., and Zimmerman J.
- Subjects
Photon ,Physics and Astronomy (miscellaneous) ,parton distributions ,lepton ,PROTON-PROTON COLLISIONS ,QC770-798 ,Astrophysics ,01 natural sciences ,Dark photon ,High Energy Physics - Experiment ,LIMITS ,High Energy Physics - Experiment (hep-ex) ,photon: mass ,pi(0) ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,LEPTON ,Physics ,search ,charged particle ,Charged particle ,vector particle: massive ,QB460-466 ,photon: mixing ,Production (computer science) ,phi-meson decays ,numerical calculations: Monte Carlo ,upper limit ,Particle Physics - Experiment ,Quark ,Particle physics ,photon: decay modes ,PHI-MESON DECAYS ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Accelerator Physics and Instrumentation ,quark ,E(+)E(-) ,VECTOR GAUGE BOSON ,SEARCH ,Nuclear and particle physics. Atomic energy. Radioactivity ,0103 physical sciences ,e(+)e(-) ,ddc:530 ,Sensitivity (control systems) ,010306 general physics ,Engineering (miscellaneous) ,vector gauge boson ,photon: hidden sector ,hep-ex ,010308 nuclear & particles physics ,PI(0) ,Acceleratorfysik och instrumentering ,Fermion ,sensitivity ,WEIZSACKER-WILLIAMS METHOD ,PARTON DISTRIBUTIONS ,SHIP - dark photons - BSM ,proton-proton collisions ,High Energy Physics::Experiment ,limits ,Lepton ,weizsacker-williams method ,experimental results - Abstract
Dark photons are hypothetical massive vector particles that could mix with ordinary photons. The simplest theoretical model is fully characterised by only two parameters: the mass of the dark photon m$$_{\gamma ^{\mathrm {D}}}$$ γ D and its mixing parameter with the photon, $$\varepsilon $$ ε . The sensitivity of the SHiP detector is reviewed for dark photons in the mass range between 0.002 and 10 GeV. Different production mechanisms are simulated, with the dark photons decaying to pairs of visible fermions, including both leptons and quarks. Exclusion contours are presented and compared with those of past experiments. The SHiP detector is expected to have a unique sensitivity for m$$_{\gamma ^{\mathrm {D}}}$$ γ D ranging between 0.8 and 3.3$$^{+0.2}_{-0.5}$$ - 0.5 + 0.2 GeV, and $$\varepsilon ^2$$ ε 2 ranging between $$10^{-11}$$ 10 - 11 and $$10^{-17}$$ 10 - 17 .
- Published
- 2021
3. The scientific potential and technological challenges of the High-Luminosity Large Hadron Collider program
- Author
-
Oliver Brüning, Heather Gray, Katja Klein, Mike Lamont, Meenakshi Narain, Richard Polifka, and Lucio Rossi
- Subjects
Physics::Instrumentation and Detectors ,General Physics and Astronomy ,High Energy Physics::Experiment - Abstract
We present an overview of the High-Luminosity (HL-LHC) program at the Large Hadron Collider (LHC), its scientific potential and technological challenges for both the accelerator and detectors. The HL-LHC program is expected to start circa 2027 and aims to increase the integrated luminosity delivered by the LHC by an order of magnitude at the collision energy of 14 TeV. This requires upgrades to the injector system, accelerator complex and luminosity levelling. The two experiments, ATLAS and CMS, require substantial upgrades to most of their systems in order to cope with the increased interaction rate, and much higher radiation levels than at the current LHC. We present selected examples based on novel ideas and technologies for applications at a hadron collider. Both experiments will replace their tracking systems. We describe the ATLAS pixel detector upgrade featuring novel tilted modules, and the CMS Outer Tracker upgrade with a new module design enabling use of tracks in the level-1 trigger system. CMS will also install state-of-the-art highly segmented calorimeter endcaps. Finally, we describe new picosecond precision timing detectors of both experiments. In addition, we discuss how the upgrades will enhance the physics performance of the experiments, and solve the computing challenges posed by the expected large data sets. The physics program of the HL-LHC is focused on precision measurements probing the limits of the Standard Model (SM) of particle physics and discovering new physics. We present a selection of studies that have been carried out to motivate the HL-LHC program. A central topic of exploration will be the characterization of the Higgs boson. The large HL-LHC data samples will extend the sensitivity of searches for new particles or new interactions whose existence has been hypothesized in order to explain shortcomings of the SM. Finally, we comment on the nature of large scientific collaborations.
- Published
- 2022
4. Gamma Factory for CERN initiative - progress report
- Author
-
Kevin Cassou, Fabrizio Castelli, Vitoria Petrillo, Alexey Petrenko, Thibaut Lefèvre, Max Zolotorev, Valentine Fedosseev, Luca Serafini, Krzystof Dzierzega, Marco Zanetti, Pavel Antsiferov, Nicolo Biancacci, F. Kroeger, Stefano Redaelli, Mariusz Sapinski, Y. Peinaud, Laurence Nevay, A. Apyan, Alex Bogacz, Daniele Naturelli, Michaela Schaumann, Iryna Chaikovska, E.G. Bessonov, Aurélien Martens, Roderik Bruce, Szymon Putelny, Richard Scrivens, Detlef Kuchler, Kevin Dupraz, John Jowett, Christina Yin Vallgren, C. Curatolo, Arkadiusz Gorzawski, Jacek Bieron, Roberto Kersevan, Yann Dutheil, Django Manglunki, Ying Wu, Patrick Czodrowski, Wieslaw Placzek, A. Bosco, Francesco Maria Velotti, Mieczyslaw Witold Krasny, Thomas Stoehlker, Nuria Fuster Martinez, Magdalena Kowalska, Gunter Weber, Brennan Goddard, Simon Hirlander, Inga Tolstikhina, Mike Lamont, Hannes Bartosik, Bruce Marsh, Andrei Derevianko, Frank Zimmermann, Andrey Abramov, James Molson, Simon Rochester, Siobhan Alden, Fabian Zomer, Viacheslav Shevelko, Andrey Surzhykov, Stephen Gibson, Reyes Alemany Fernandez, Dmitry Budker, Laboratoire de l'Accélérateur Linéaire (LAL), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Institut de Mécanique Céleste et de Calcul des Ephémérides (IMCCE), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Lille-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), and Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
CERN Lab ,Physics::Instrumentation and Detectors ,[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph] ,chemistry.chemical_element ,ion: beam ,gamma ray: burst ,01 natural sciences ,7. Clean energy ,law.invention ,Nuclear physics ,Xenon ,law ,0103 physical sciences ,lead: ion ,010306 general physics ,Collider ,activity report ,Laser light ,Physics ,Large Hadron Collider ,010308 nuclear & particles physics ,Photon source ,CERN SPS ,Accelerators and Storage Rings ,xenon ,laser ,chemistry ,Factory (object-oriented programming) ,Physics::Accelerator Physics ,High Energy Physics::Experiment ,ion ,Beam (structure) ,performance - Abstract
International audience; The Gamma Factory (GF) initiative proposes to use partially stripped ion (PSI) beams as drivers of a new type of high-intensity and high-energy (0.1–400 MeV) photon source. As part of the ongoing Physics Beyond Collider studies, initial beam tests were carried out in 2017 and 2018 at the SPS and LHC with partially stripped xenon and lead beams. This contribution discusses the results of these tests and the preparations for the next GF R&D step: the proof-of-principle experiment at the SPS to study interaction of PSI beams with the laser light
- Published
- 2020
5. Measurement of the muon flux from 400 GeV/c protons interacting in a thick molybdenum/tungsten target
- Author
-
V. Bayliss, Gareth J. Barker, L. Stoel, Volker Büscher, Alexey Volkov, Satoru Takahashi, Nobuko Kitagawa, G. M. Dallavalle, J.-K. Woo, Sandro Cadeddu, V. Gentile, Nicola Serra, K.Y. Lee, Mike Lamont, K. S. Lee, C. Hessler, A. Berdnikov, D. De Simone, A. Rakai, I. W. Harris, D. Karpenkov, D. Joković, S. Gorbunov, E. Elikkaya, Sergey Kovalenko, L. Gatignon, Volodymyr Rodin, R. Voronkov, I. Kadenko, L. Shihora, M. De Serio, E. Kurbatov, M. Bertani, F. Sanchez Galan, Stefano Sgobba, A. Akmete, Oleg Bezshyyko, D. Kolev, C. Kamiscioglu, C. Ahdida, Yu. Mikhaylov, Heiko Lacker, Dmitry Golubkov, Philippe Mermod, A. K. Managadze, R. A. Fini, M. Rinaldesi, Oksana Shadura, L. A. Dougherty, S. Dmitrievskiy, Davide Tommasini, A. Bay, Raffaele Albanese, S. Shirobokov, F. Baaltasar Dos Santos, V.N. Kolosov, Anne-Marie Magnan, Shigeki Aoki, D. Grenier, A. Sanz Ull, R. de Asmundis, Toshiyuki Nakano, T. Ruf, G. Khoriauli, Konstantin F. Vlasik, S. Kormannshaus, K. Kershaw, A. Golutvin, V. Grichine, V. Poliakov, V. Venturi, V. Tioukov, Stefania Xella, Fabrizio Fabbri, D. Breton, E. Lopez Sola, G. Lanfranchi, N. Di Marco, B. Kaiser, M. Manfredi, J. Bauche, P. Santos Diaz, Lesya Shchutska, A. Blanco, A. Di Crescenzo, Heinz Vincke, Yu. Guz, Victor Kim, Mikhail V. Gorshenkov, Volodymyr M. Gorkavenko, David Milstead, A. Alexandrov, Nikolaos Charitonidis, Alexander Malinin, Caren Hagner, Vadim Kostyukhin, Alexey A. Petrov, Mitsuhiro Nakamura, S. van Waasen, Serge Smirnov, Kunihiro Morishima, Andrea Prota, Y. Berdnikov, P. Wertelaers, V.D. Samoylenko, I. Korol, J. Prieto Prieto, M. de Magistris, Helmut Vincke, Brennan Goddard, Alexey Boyarsky, S. V. Donskov, T. Enik, J. S. Schliwinski, Rainer Wanke, Tiziano Rovelli, Nicolò Tosi, L. Golinka-Bezshyyko, M. M. Khabibullin, J. Chauveau, Matthew Fraser, F. Vannucci, John Back, N. Owtscharenko, Karel Cornelis, F. Bardou, A. Sokolenko, Alexander E. Shustov, H. Shibuya, A. Mefodev, Hans Dijkstra, Inar Timiryasov, Fedor Ratnikov, Samuel Silverstein, N. Konovalova, S. Vilchinski, Giuliana Galati, G. Haefeli, P. Ninin, N. I. Starkov, J. Maalmi, N. Gruzinskii, B. D. Park, M. Casolino, D. Sukhonos, Z. M. Uteshev, Osamu Sato, Dmitry Gorbunov, A. Kolesnikov, T. Rawlings, P. Kurbatov, Arnaud Dubreuil, T. Shchedrina, Adele Lauria, A. L. Grandchamp, S. Ricciardi, Andrea Miano, Iaroslava Bezshyiko, Paolo Ciambrone, A. S. Chepurnov, T. M. Roganova, D. Domenici, Martina Ferrillo, Masahiro Komatsu, G. L. Petkov, Alessandro Montanari, E. S. Savchenko, Alessandro Paoloni, Iryna Boiarska, M. Bogomilov, V. P. Loschiavo, Maksym Ovchynnikov, Ekaterina Kuznetsova, Yu.A. Kudenko, M. Ferro-Luzzi, Gianluigi Arduini, Marco Calviani, C. Franco, L. G. Dedenko, M. Jonker, A. Chumakov, A. Quercia, E. Solodko, V. E. Lyubovitskij, K. Kodama, Vladimir Shevchenko, Natalia Polukhina, Oleg Ruchayskiy, Maria Elena Stramaglia, Ciro Visone, Oleg Fedin, P. Teterin, Oleg Mineev, A. Bagulya, R. Tsenov, Oliver Lantwin, J.-W. Ko, V. M. Grachev, Akira Nishio, Hiroki Rokujo, S. Movchan, Markus Cristinziani, O. Williams, Yu. Zaytsev, Antonio Perillo-Marcone, J.-M. Lévy, J. L. Tastet, A. Datwyler, Liliana Congedo, N. Azorskiy, G. Vankova-Kirilova, L. Lopes, Viktor Rodin, John Osborne, Victor Maleev, Patrick Owen, P. Fonte, M. Chernyavskiy, A. Korzenev, Y. Muttoni, F. Redi, E. Khalikov, O. Durhan, G. Bencivenni, M. Battistin, Alexander Mclean Marshall, A. Pastore, S. Nasybulin, J. Zimmerman, K.-Y. Choi, J. Gall, G. Rosa, P. Chau, A. A. Rademakers, E. van Herwijnen, D. Yilmaz, A. M. Anokhina, M. Patel, S. Mikado, A. Khotyantsev, Yuki Manabe, J. Y. Sohn, N. Okateva, Petr Andreevich Gorbounov, S. Than Naing, Giuseppe Iaselli, V. Kurochka, A. Shakin, A.U. Yilmazer, Nicola D'Ambrosio, F. Fedotovs, Giuseppe D'Appollonio, G.V. Khaustov, Raffaele Fresa, A. De Roeck, Alexander Baranov, R. Jacobsson, D. Pereyma, M. Ehlert, K. Filippov, Yosuke Suzuki, J. Boehm, J. De Carvalho Saraiva, A. Crupano, A. Calcaterra, D. Bick, W. Schmidt-Parzefall, S. Buontempo, A.S. Novikov, E. Koukovini Platia, A. Golovatiuk, Verena Kain, Claudio O. Dib, G. De Lellis, T. Fukuda, H. Hakobyan, Richard Brenner, G. Gavrilov, Elena Graverini, Y.G. Kim, Naotaka Naganawa, V. Drohan, A. Iuliano, Annarita Buonaura, S. Simone, Christopher Betancourt, Pavel Shatalov, R. Froeschl, E. V. Atkin, B. Hosseini, J.-L. Grenard, Rosa Simoniello, M. D. Skorokhvatov, Michael Wurm, A. Dolmatov, E. Ursov, Sergey E. Ulin, S. Ogawa, Mario Campanelli, Vladimir Samsonov, P. Dergachev, A.B. Rodrigues Cavalcante, A. Saputi, B. Opitz, Konstantinos Petridis, D. A. Podgrudkov, B. Obinyakov, Mikhail Hushchyn, Andrey Ustyuzhanin, Daniel Treille, A. M. Guler, V. Cicero, C. S. Yoon, S. Bieschke, Valery V. Dmitrenko, Patrick Robbe, A. Hollnagel, Maria Cristina Montesi, I. Korol’ko, M. Torii, P. Pacholek, L. Di Giulio, G. Felici, A. Kono, J. Borburgh, M. Prokudin, S. Marsh, W. Bonivento, I. Krasilnikova, Kyrylo Bondarenko, Mikhail Shaposhnikov, A.V. Etenko, Laboratoire de l'Accélérateur Linéaire (LAL), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE (UMR_7585)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), SHiP, Ahdida, C., Akmete, A., Albanese, R., Alexandrov, A., Anokhina, A., Aoki, S., Arduini, G., Atkin, E., Azorskiy, N., Back, J. J., Bagulya, A., Santos, F. Baaltasar Do, Baranov, A., Bardou, F., Barker, G. J., Battistin, M., Bauche, J., Bay, A., Bayliss, V., Bencivenni, G., Berdnikov, A. Y., Berdnikov, Y. A., Bertani, M., Betancourt, C., Bezshyiko, I., Bezshyyko, O., Bick, D., Bieschke, S., Blanco, A., Boehm, J., Bogomilov, M., Boiarska, I., Bondarenko, K., Bonivento, W. M., Borburgh, J., Boyarsky, A., Brenner, R., Breton, D., Büscher, V., Buonaura, A., Buontempo, S., Cadeddu, S., Calcaterra, A., Calviani, M., Campanelli, M., Casolino, M., Charitonidis, N., Chau, P., Chauveau, J., Chepurnov, A., Chernyavskiy, M., Choi, K. -Y., Chumakov, A., Ciambrone, P., Cicero, V., Congedo, L., Cornelis, K., Cristinziani, M., Crupano, A., Dallavalle, G. M., Datwyler, A., D’Ambrosio, N., D’Appollonio, G., de Asmundis, R., De Carvalho Saraiva, J., De Lellis, G., de Magistris, M., De Roeck, A., De Serio, M., De Simone, D., Dedenko, L., Dergachev, P., Crescenzo, A. Di, Giulio, L. Di, Marco, N. Di, Dib, C., Dijkstra, H., Dmitrenko, V., Dmitrievskiy, S., Dougherty, L. A., Dolmatov, A., Domenici, D., Donskov, S., Drohan, V., Dubreuil, A., Durhan, O., Ehlert, M., Elikkaya, E., Enik, T., Etenko, A., Fabbri, F., Fedin, O., Fedotovs, F., Felici, G., Ferrillo, M., Ferro-Luzzi, M., Filippov, K., Fini, R. A., Fonte, P., Franco, C., Fraser, M., Fresa, R., Froeschl, R., Fukuda, T., Galati, G., Gall, J., Gatignon, L., Gavrilov, G., Gentile, V., Goddard, B., Golinka-Bezshyyko, L., Golovatiuk, A., Golubkov, D., Golutvin, A., Gorbounov, P., Gorbunov, D., Gorbunov, S., Gorkavenko, V., Gorshenkov, M., Grachev, V., Grandchamp, A. L., Graverini, E., Grenard, J. -L., Grenier, D., Grichine, V., Gruzinskii, N., Guler, A. M., Guz, Yu., Haefeli, G. J., Hagner, C., Hakobyan, H., Harris, I. W., Herwijnen, E. van, Hessler, C., Hollnagel, A., Hosseini, B., Hushchyn, M., Iaselli, G., Iuliano, A., Jacobsson, R., Joković, D., Jonker, M., Kadenko, I., Kain, V., Kaiser, B., Kamiscioglu, C., Karpenkov, D., Kershaw, K., Khabibullin, M., Khalikov, E., Khaustov, G., Khoriauli, G., Khotyantsev, A., Kim, Y. G., Kim, V., Kitagawa, N., Ko, J. -W., Kodama, K., Kolesnikov, A., Kolev, D. I., Kolosov, V., Komatsu, M., Kono, A., Konovalova, N., Kormannshaus, S., Korol, I., Korol’Ko, I., Korzenev, A., Kostyukhin, V., Platia, E. Koukovini, Kovalenko, S., Krasilnikova, I., Kudenko, Y., Kurbatov, E., Kurbatov, P., Kurochka, V., Kuznetsova, E., Lacker, H. M., Lamont, M., Lanfranchi, G., Lantwin, O., Lauria, A., Lee, K. S., Lee, K. Y., Lévy, J. -M., Loschiavo, V. P., Lopes, L., Sola, E. Lopez, Lyubovitskij, V., Maalmi, J., Magnan, A., Maleev, V., Malinin, A., Manabe, Y., Managadze, A. K., Manfredi, M., Marsh, S., Marshall, A. M., Mefodev, A., Mermod, P., Miano, A., Mikado, S., Mikhaylov, Yu., Milstead, D. A., Mineev, O., Montanari, A., Montesi, M. C., Morishima, K., Movchan, S., Muttoni, Y., Naganawa, N., Nakamura, M., Nakano, T., Nasybulin, S., Ninin, P., Nishio, A., Novikov, A., Obinyakov, B., Ogawa, S., Okateva, N., Opitz, B., Osborne, J., Ovchynnikov, M., Owtscharenko, N., Owen, P. H., Pacholek, P., Paoloni, A., Park, B. D., Pastore, A., Patel, M., Pereyma, D., Perillo-Marcone, A., Petkov, G. L., Petridis, K., Petrov, A., Podgrudkov, D., Poliakov, V., Polukhina, N., Prieto, J. Prieto, Prokudin, M., Prota, A., Quercia, A., Rademakers, A., Rakai, A., Ratnikov, F., Rawlings, T., Redi, F., Ricciardi, S., Rinaldesi, M., Rodin, Volodymyr, Rodin, Viktor, Robbe, P., Cavalcante, A. B. Rodrigue, Roganova, T., Rokujo, H., Rosa, G., Rovelli, T., Ruchayskiy, O., Ruf, T., Samoylenko, V., Samsonov, V., Galan, F. Sanchez, Diaz, P. Santo, Ull, A. Sanz, Saputi, A., Sato, O., Savchenko, E. S., Schliwinski, J. S., Schmidt-Parzefall, W., Serra, N., Sgobba, S., Shadura, O., Shakin, A., Shaposhnikov, M., Shatalov, P., Shchedrina, T., Shchutska, L., Shevchenko, V., Shibuya, H., Shihora, L., Shirobokov, S., Shustov, A., Silverstein, S. B., Simone, S., Simoniello, R., Skorokhvatov, M., Smirnov, S., Sohn, J. Y., Sokolenko, A., Solodko, E., Starkov, N., Stoel, L., Stramaglia, M. E., Sukhonos, D., Suzuki, Y., Takahashi, S., Tastet, J. L., Teterin, P., Naing, S. Than, Timiryasov, I., Tioukov, V., Tommasini, D., Torii, M., Tosi, N., Treille, D., Tsenov, R., Ulin, S., Ursov, E., Ustyuzhanin, A., Uteshev, Z., Vankova-Kirilova, G., Vannucci, F., Venturi, V., Vilchinski, S., Vincke, Heinz, Vincke, Helmut, Visone, C., Vlasik, K., Volkov, A., Voronkov, R., Waasen, S. van, Wanke, R., Wertelaers, P., Williams, O., Woo, J. -K., Wurm, M., Xella, S., Yilmaz, D., Yilmazer, A. U., Yoon, C. S., Zaytsev, Yu., and Zimmerman, J.
- Subjects
Physics and Astronomy (miscellaneous) ,Proton ,drift tube ,Physics::Instrumentation and Detectors ,Hadron ,Monte Carlo method ,Tungsten ,01 natural sciences ,law.invention ,Physics, Particles & Fields ,Subatomär fysik ,iron ,molybdenum ,law ,Subatomic Physics ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,Detectors and Experimental Techniques ,Nuclear Experiment ,Physics ,Large Hadron Collider ,new physics ,400 GeV/c ,p: interaction ,Nuclear & Particles Physics ,particle: interaction ,Physical Sciences ,0202 Atomic, Molecular, Nuclear, Particle and Plasma Physics ,GEANT ,p: beam dump ,numerical calculations: Monte Carlo ,Particle Physics - Experiment ,chemistry.chemical_element ,muon: particle identification ,lcsh:Astrophysics ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,Nuclear physics ,tungsten: target ,0103 physical sciences ,lcsh:QB460-466 ,p: beam transport ,muon: flux: measured ,Nuclear Physics - Experiment ,lcsh:Nuclear and particle physics. Atomic energy. Radioactivity ,ddc:530 ,Beam dump ,010306 general physics ,Engineering (miscellaneous) ,0206 Quantum Physics ,Muon ,Science & Technology ,Spectrometer ,010308 nuclear & particles physics ,background ,CERN SPS ,chemistry ,interaction: length ,lcsh:QC770-798 ,Physics::Accelerator Physics ,High Energy Physics::Experiment ,experimental results ,muon: momentum spectrum ,muon: spectrometer - Abstract
The SHiP experiment is proposed to search for very weakly interacting particles beyond the Standard Model which are produced in a 400 GeV/$c$ proton beam dump at the CERN SPS. About $10^{11}$ muons per spill will be produced in the dump. To design the experiment such that the muon-induced background is minimized, a precise knowledge of the muon spectrum is required. To validate the muon flux generated by our Pythia and GEANT4 based Monte Carlo simulation (FairShip), we have measured the muon flux emanating from a SHiP-like target at the SPS. This target, consisting of 13 interaction lengths of slabs of molybdenum and tungsten, followed by a 2.4 m iron hadron absorber was placed in the H4 400 GeV/$c$ proton beam line. To identify muons and to measure the momentum spectrum, a spectrometer instrumented with drift tubes and a muon tagger were used. During a three-week period a dataset for analysis corresponding to $(3.27\pm0.07)~\times~10^{11}$ protons on target was recorded. This amounts to approximatively 1% of a SHiP spill. The SHiP experiment will search for very weakly interacting particles beyond the Standard Model which are produced in a 400 \GeV/$c$ proton beam dump at the CERN SPS. About $10^{11}$ muons per spill will be produced in the dump. To design the experiment such that the muon-induced background is minimized, a precise knowledge of the muon spectrum is required. To validate the muon flux generated by our Pythia and GEANT4 based Monte Carlo simulation (FairShip), we have measured the muon flux emanating from a SHiP-like target at the SPS. This target, consisting of 13 interaction lengths of slabs of molybdenum and tungsten, followed by a 2.4 m iron hadron absorber was placed in the H4 400~\GeV/$c$ proton beam line. To identify muons and to measure the momentum spectrum, a spectrometer instrumented with drift tubes and a muon tagger were used. During a three-week period a dataset for analysis corresponding to $(3.27\pm0.07)~\times~10^{11}$ protons on target was recorded. This amounts to approximatively 1\% of a SHiP spill. The SHiP experiment is proposed to search for very weakly interacting particles beyond the Standard Model which are produced in a 400 GeV/c proton beam dump at the CERN SPS. About $10^{11}$ muons per spill will be produced in the dump. To design the experiment such that the muon-induced background is minimized, a precise knowledge of the muon spectrum is required. To validate the muon flux generated by our Pythia and GEANT4 based Monte Carlo simulation (FairShip), we have measured the muon flux emanating from a SHiP-like target at the SPS. This target, consisting of 13 interaction lengths of slabs of molybdenum and tungsten, followed by a 2.4 m iron hadron absorber was placed in the H4 400 GeV/c proton beam line. To identify muons and to measure the momentum spectrum, a spectrometer instrumented with drift tubes and a muon tagger were used. During a 3-week period a dataset for analysis corresponding to $(3.27\pm 0.07)~\times ~10^{11}$ protons on target was recorded. This amounts to approximatively 1% of a SHiP spill.
- Published
- 2020
6. The quest for new physics with the Physics Beyond Colliders programme
- Author
-
Joerg Jaeckel, Mike Lamont, Claude Vallée, Centre de Physique des Particules de Marseille (CPPM), and Aix Marseille Université (AMU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Particle physics ,Physics::Instrumentation and Detectors ,Physics beyond the Standard Model ,Dark matter ,General Physics and Astronomy ,Elementary particle ,Context (language use) ,7. Clean energy ,01 natural sciences ,dark matter ,law.invention ,law ,0103 physical sciences ,neutrino: mass ,010306 general physics ,Collider ,numerical calculations ,dark energy ,Physics ,Large Hadron Collider ,010308 nuclear & particles physics ,new physics ,CERN LHC Coll ,interpretation of experiments ,axion ,[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph] ,baryon: asymmetry ,Dark energy ,Physics::Accelerator Physics ,axion-like particles ,High Energy Physics::Experiment ,Neutrino - Abstract
In recent years, interest in complementary methods to high-energy-frontier colliders to investigate the physics of elementary particles and forces has grown. This development is driven by the so-far negative results of searches for new particles with high masses at the Large Hadron Collider, and by theoretical attempts to account for neutrino masses and to solve cosmological puzzles such as dark matter, dark energy and the matter–antimatter asymmetry in the Universe. Traditionally, CERN has hosted a wealth of accelerator and non-accelerator projects below the high-energy frontier, in which more than a thousand physicists are currently involved. The Physics Beyond Colliders (PBC) study was launched three years ago to explore the future of this field. Here we give an overview of the various PBC proposals, ranging from explorations of the dark sector to precision measurements of strongly interacting processes. The methodology employed to compare the reach of those projects — based on a set of common benchmark models — has raised interest in the collider, neutrino and non-accelerator communities and may provide a comprehensive overview of how the parameter range for physics beyond the Standard Model should be explored in the worldwide context. Within the Physics Beyond Collider programme, complementary methods to high-energy frontier particle colliders to investigate the physics of elementary particles and their interactions are studied.
- Published
- 2020
7. Design of a Helium Passivation System for the Target Vessel of the Beam Dump Facility at CERN
- Author
-
K. Kershaw, J. Klier, P. Dalakov, P. Avigni, Marco Calviani, J. M. Martin Ruiz, Mike Lamont, M. Battistin, and E. Lopez Sola
- Subjects
Physics - Instrumentation and Detectors ,Large Hadron Collider ,Passivation ,Nuclear engineering ,FOS: Physical sciences ,chemistry.chemical_element ,Context (language use) ,Instrumentation and Detectors (physics.ins-det) ,law.invention ,chemistry ,Cascade ,law ,Electromagnetic shielding ,Physics::Accelerator Physics ,Beam dump ,Detectors and Experimental Techniques ,Instrumentation ,physics.ins-det ,Mathematical Physics ,Helium ,Beam (structure) - Abstract
The Beam Dump Facility (BDF) is a proposed general-purpose facility at CERN, dedicated to fixed target and beam dump experiments, currently being developed in the context of the Physics Beyond Colliders program. The design of the facility will allow to host different types of experiments, of which SHiP is planned to be the initial one. The core of the facility is a high-density target/dump absorbing the full intensity of the SPS beam and generating a cascade of particles that are detected downstream the target complex. The target and its shielding blocks are positioned inside a vessel, which is planned to be passivized with helium, in order to reduce the activation of the gas surrounding the target and to extend the operational life of materials and equipment. The passivation system that will be in charge of purifying and circulating the helium is a critical component for the operation of the facility. Fluid dynamics simulations have been performed to study the circulation of the helium through the vessel. A detailed design of the helium passivation system and its main components has been developed.
- Published
- 2019
8. Beam impact tests of a prototype target for the Beam Dump Facility at CERN: experimental setup and preliminary analysis of the online results
- Author
-
P. Avigni, M. Battistin, Simone Gilardoni, E. Lopez Sola, E. Cano-Pleite, J-L Grenard, M. Casolino, B. Riffaud, Oliver Aberle, V. Vlachoudis, Richard Jacobsson, S. Burger, J. Busom Descarrega, D. Grenier, Mike Lamont, Marco Calviani, Laura Bianchi, J. Canhoto Espadanal, C. Hessler, M. Pandey, L. Zuccalli, Antonio Perillo-Marcone, M. A. Fraser, A. Ortega Rolo, S. Girod, Michael Guinchard, and C. Ahdida
- Subjects
Nuclear and High Energy Physics ,Physics - Instrumentation and Detectors ,Physics and Astronomy (miscellaneous) ,Nuclear engineering ,FOS: Physical sciences ,Impact test ,01 natural sciences ,Preliminary analysis ,law.invention ,law ,0103 physical sciences ,lcsh:Nuclear and particle physics. Atomic energy. Radioactivity ,Beam dump ,Detectors and Experimental Techniques ,010306 general physics ,physics.ins-det ,Physics ,Large Hadron Collider ,010308 nuclear & particles physics ,Instrumentation and Detectors (physics.ins-det) ,Surfaces and Interfaces ,Super Proton Synchrotron ,Proton (rocket family) ,lcsh:QC770-798 ,Post Irradiation Examination ,Beam (structure) - Abstract
The Beam Dump Facility (BDF) is a project for a new facility at CERN dedicated to high intensity beam dump and fixed target experiments. Currently in its design phase, the first aim of the facility is to search for Light Dark Matter and Hidden Sector models with the Search for Hidden Particles (SHiP) experiment. At the core of the facility sits a dense target/dump, whose function is to absorb safely the 400 GeV/c Super Proton Synchrotron (SPS) beam and to maximize the production of charm and beauty mesons. An average power of 300 kW will be deposited on the target, which will be subjected to unprecedented conditions in terms of temperature, structural loads and irradiation. In order to provide a representative validation of the target design, a prototype target has been designed, manufactured and tested under the SPS fixed-target proton beam during 2018, up to an average beam power of 50 kW, corresponding to 350 kJ per pulse. The present contribution details the target prototype design and experimental setup, as well as a first evaluation of the measurements performed during beam irradiation. The analysis of the collected data suggests that a representative reproduction of the operational conditions of the Beam Dump Facility target was achieved during the prototype tests, which will be complemented by a Post Irradiation Examination campaign during 2020. The beam dump facility (BDF) is a project for a new facility at CERN dedicated to high intensity beam dump and fixed target experiments. Currently in its design phase, the first aim of the facility is to search for light dark matter and hidden sector models with the Search for Hidden Particles (SHiP) experiment. At the core of the facility sits a dense target/dump, whose function is to absorb safely the 400 GeV/c Super Proton Synchrotron (SPS) beam and to maximize the production of charm and beauty mesons. An average power of 300 kW will be deposited on the target, which will be subjected to unprecedented conditions in terms of temperature, structural loads and irradiation. In order to provide a representative validation of the target design, a prototype target has been designed, manufactured, and tested under the SPS fixed-target proton beam during 2018, up to an average beam power of 50 kW, corresponding to 350 kJ per pulse. The present contribution details the target prototype design and experimental setup, as well as a first evaluation of the measurements performed during beam irradiation. The analysis of the collected data suggests that a representative reproduction of the operational conditions of the beam dump facility target was achieved during the prototype tests, which will be complemented by a postirradiation examination campaign during 2020.
- Published
- 2019
9. Design of a high power production target for the Beam Dump Facility at CERN
- Author
-
Marco Calviani, J. Canhoto Espadanal, E. Lopez Sola, Simone Gilardoni, B. Riffaud, V. Vlachoudis, L. Zuccalli, M. A. Fraser, M. Battistin, Antonio Perillo-Marcone, B Goddard, D. Grenier, P. Avigni, M. Pandey, K. Kershaw, Richard Jacobsson, J. Busom Descarrega, Stefano Sgobba, and Mike Lamont
- Subjects
Nuclear and High Energy Physics ,Physics - Instrumentation and Detectors ,Physics and Astronomy (miscellaneous) ,Nuclear engineering ,FOS: Physical sciences ,01 natural sciences ,law.invention ,High Energy Physics - Experiment ,High Energy Physics - Experiment (hep-ex) ,law ,0103 physical sciences ,Water cooling ,lcsh:Nuclear and particle physics. Atomic energy. Radioactivity ,Beam dump ,Detectors and Experimental Techniques ,010306 general physics ,physics.ins-det ,Power density ,Physics ,Large Hadron Collider ,hep-ex ,010308 nuclear & particles physics ,Order (ring theory) ,Instrumentation and Detectors (physics.ins-det) ,Surfaces and Interfaces ,Super Proton Synchrotron ,lcsh:QC770-798 ,Production (computer science) ,Particle Physics - Experiment ,Beam (structure) - Abstract
The Beam Dump Facility (BDF) project is a proposed general-purpose facility at CERN, dedicated to beam dump and fixed target experiments. In its initial phase, the facility is foreseen to be exploited by the Search for Hidden Particles (SHiP) experiment. Physics requirements call for a pulsed 400 GeV/c proton beam as well as the highest possible number of protons on target (POT) each year of operation, in order to search for feebly interacting particles. The target/dump assembly lies at the heart of the facility, with the aim of safely absorbing the full high intensity Super Proton Synchrotron (SPS) beam, while maximizing the production of charmed and beauty mesons. High-Z materials are required for the target/dump, in order to have the shortest possible absorber and reduce muon background for the downstream experiment. The high average power deposited on target (305 kW) creates a challenge for heat removal. During the BDF facility Comprehensive Design Study (CDS), launched by CERN in 2016, extensive studies have been carried out in order to define and assess the target assembly design. These studies are described in the present contribution, which details the proposed design of the BDF production target, as well as the material selection process and the optimization of the target configuration and beam dilution. One of the specific challenges and novelty of this work is the need to consider new target materials, such as a molybdenum alloy (TZM) as core absorbing material and Ta2.5W as cladding. Thermo-structural and fluid dynamics calculations have been performed to evaluate the reliability of the target and its cooling system under beam operation. In the framework of the target comprehensive design, a preliminary mechanical design of the full target assembly has also been carried out, assessing the feasibility of the whole target system., 17 pages, 18 figures
- Published
- 2019
10. Gamma Factory at CERN -- novel research tools made of light
- Author
-
Dmitry Budker, Vittoria Petrillo, Ying Wu, Daniele Nutarelli, T. Stoehlker, Mariusz Sapinski, C. Yin-Vallgren, I. Tolstikhina, A. Surzhikov, Alke Martens, Laurence Nevay, Marco Zanetti, F. Kroeger, Mike Lamont, Fabrizio Castelli, C. Curatolo, Mieczyslaw Witold Krasny, Brennan Goddard, Alexey Petrenko, Aram Apyan, Magdalena Kowalska, I. Chaikovska, Hannes Bartosik, E.G. Bessonov, Max Zolotorev, A. Bogacz, Andrey Abramov, S. Hirlander, Simon M. Rochester, A. Bosco, Andrei Derevianko, Roderik Bruce, Thibaut Lefèvre, Siobhan Alden, Arkadiusz Gorzawski, Roberto Kersevan, Nicolo Biancacci, Stephen Gibson, K. Dupraz, Patrick Czodrowski, V. P. Shevelko, B. Marsh, Valentin Fedosseev, Michaela Schaumann, Jacek Bieron, Yann Dutheil, Django Manglunki, Frank Zimmermann, Wieslaw Placzek, G. Weber, Luca Serafini, N. Fuster Martinez, R. Alemany Fernandez, P.S. Antsiferov, James Molson, Fabian Zomer, K. Dzierzega, Szymon Pustelny, F. Velotti, S. Radaelli, Kevin Cassou, John Jowett, Laboratoire de l'Accélérateur Linéaire (LAL), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE (UMR_7585)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), and Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Accelerator Physics (physics.acc-ph) ,Physics - Instrumentation and Detectors ,Orders of magnitude (temperature) ,[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph] ,General Physics and Astronomy ,FOS: Physical sciences ,Electron ,01 natural sciences ,law.invention ,Nuclear physics ,law ,0103 physical sciences ,Neutron ,ddc:530 ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Detectors and Experimental Techniques ,010306 general physics ,physics.ins-det ,physics.acc-ph ,Physics ,Range (particle radiation) ,Muon ,Large Hadron Collider ,010308 nuclear & particles physics ,Instrumentation and Detectors (physics.ins-det) ,Laser ,Accelerators and Storage Rings ,Physics::Accelerator Physics ,Physics - Accelerator Physics ,Neutrino - Abstract
We discuss the possibility of creating novel research tools by producing and storing highly relativistic beams of highly ionised atoms in the CERN accelerator complex, and by exciting their atomic degrees of freedom with lasers to produce high-energy photon beams. Intensity of such photon beams would be by several orders of magnitude higher than offered by the presently operating light sources, in the particularly interesting gamma-ray energy domain of 0.1-400 MeV. In this energy range, the high-intensity photon beams can be used to produce secondary beams of polarised electrons, polarised positrons, polarised muons, neutrinos, neutrons and radioactive ions. New research opportunities in a wide domain of fundamental and applied physics can be opened by the Gamma Factory scientific programme based on the above primary and secondary beams., 12 pages; presented by W. Placzek at the XXV Cracow Epiphany Conference on Advances in Heavy Ion Physics, 8-11 January 2019, Cracow, Poland
- Published
- 2019
11. Utilization of a Standardized Post-Occupancy Evaluation to Assess the Guiding Principles of a Major Academic Medical Center
- Author
-
Francis Fullam, William Jeffrey Canar, Mike Lamont, Zack Altizer, and Dave Redemske
- Subjects
Medical education ,Academic Medical Centers ,Guiding Principles ,Facility planning ,business.industry ,Process (engineering) ,Public Health, Environmental and Occupational Health ,Audit ,Environmental design ,Critical Care and Intensive Care Medicine ,Post-occupancy evaluation ,Health administration ,Evidence-Based Facility Design ,Surveys and Questionnaires ,Health care ,Patients' Rooms ,Humans ,Hospital Design and Construction ,business ,Psychology ,Interior Design and Furnishings - Abstract
Facility planning for healthcare organizations has become increasingly important in recent years, due primarily to the complicated needs of patient rooms and the escalating pressure to provide high-quality care to satisfy patients. Concurrently, there has been a considerable development in the field of evidence-based design (EBD) on the impact the healthcare environment has on patients and the operations of clinical staff. Although tools are being developed to assist in measuring EBD principles, they have not been universally adopted by organizations regarding how they either develop or assess healthcare facilities. This case study focuses on our attempt to implement an internal facilities evaluation process and a Post-Occupancy Evaluation (POE) on a major Academic Medical Center’s (AMC) new bed tower. An assembled auditing team comprised of diverse professional healthcare backgrounds performed an audit on three patient rooms using a Center for Health Design POE Questionnaire. The results of this evaluation were then compared to the guiding principles developed for the hospital during its design. Results indicated that the project narrowly missed the threshold score agreed upon by the AMC’s facilities leadership. This project demonstrated the difficulty in implementing a POE without prior experience, while highlighting the value of a standardized evaluation tool to assess past and future facilities projects.
- Published
- 2019
12. The experimental facility for the Search for Hidden Particles at the CERN SPS
- Author
-
I. W. Harris, S. Gorbunov, Sergey Kovalenko, C. Ahdida, Karel Cornelis, A. Iuliano, Annarita Buonaura, C. Hessler, A. Berdnikov, S. Simone, Christopher Betancourt, Pavel Shatalov, Yu. Mikhaylov, Dmitry Golubkov, A. Calcaterra, W. Schmidt-Parzefall, D. Bick, R. Froeschl, A. U. Yilmazer, A. K. Managadze, Adrian Fabich, Yu. Guz, M. Rinaldesi, J. Boehm, A. Crupano, Rainer Wanke, D. Joković, L. A. Dougherty, P. Santos Diaz, Andrea Prota, D. Sukhonos, Helmut Vincke, L. Stoel, L. Lopes, Volker Büscher, Alessandro Paoloni, Philippe Mermod, S. Vilchinski, P. Ninin, Andrea Miano, Giuseppe D'Appollonio, Claudio O. Dib, V. M. Grachev, Akira Nishio, K. S. Lee, Alexey A. Petrov, E. V. Atkin, L. Gatignon, B. Hosseini, V. Ivantchenko, Alexander Malinin, Vadim Kostyukhin, B. D. Park, A. Bay, F. Baaltasar Dos Santos, S. Mikado, Mike Lamont, Heiko Lacker, Natalia Polukhina, M. De Serio, I. Krasilnikova, Nicolò Tosi, Kyrylo Bondarenko, Mikhail Shaposhnikov, L. G. Dedenko, Hiroki Rokujo, M. M. Khabibullin, F. Bardou, Oksana Shadura, A. Bagulya, D. Pereyma, L. Golinka-Bezshyyko, A. Golutvin, Dmitry Gorbunov, M. Ferro-Luzzi, A. Blanco, P. Fonte, H. Shibuya, Richard Jacobsson, Toshiyuki Nakano, G. De Lellis, K. Filippov, E. Khalikov, Victor Kim, Volodymyr M. Gorkavenko, Gianluigi Arduini, S. Movchan, G. Gavrilov, Oleg Mineev, Satoru Takahashi, Raffaele Fresa, W. Bonivento, Alexander Mclean Marshall, S. van Waasen, V. Bayliss, Kunihiro Morishima, Osamu Sato, I. Kadenko, Oleg Ruchayskiy, Yuki Manabe, Sergey E. Ulin, N. Kondrateva, Adele Lauria, D. Kolev, Ciro Visone, Maksym Ovchynnikov, A. Pastore, J.-K. Woo, C. Kamiscioglu, G. Rosa, A. Korzenev, Sandro Cadeddu, T. Ruf, T. Shchedrina, Mario Campanelli, Nobuko Kitagawa, N. Di Marco, Yosuke Suzuki, E. Lopez Sola, Marco Calviani, A. De Roeck, S. Nasybulin, C. S. Yoon, J. Y. Sohn, Yu. Zaytsev, Tiziano Rovelli, M. Chernyavskiy, Verena Kain, S. Than Naing, O. Lantwin, G. M. Dallavalle, G. Lanfranchi, Mikhail V. Gorshenkov, P. Venkova, G. Granich, J. L. Tastet, Lesya Shchutska, Nikolaos Charitonidis, J.-M. Lévy, Vladimir Samsonov, J. De Carvalho Saraiva, Stefano Sgobba, N. Owtscharenko, Inar Timiryasov, D. Breton, A. Golovatiuk, J.-W. Ko, Nicola Serra, A. A. Rademakers, S. Bieschke, V. Drohan, Giuliana Galati, G. Haefeli, J. Bauche, P. Chau, Volodymyr Rodin, A. Sanz Ull, Nicola D'Ambrosio, K.-Y. Choi, I. Berezkina, M. Casolino, S. Buontempo, A.S. Novikov, J. Ebert, E. Koukovini Platia, John Osborne, Victor Maleev, Kang Young Lee, T. Fukuda, H. Hakobyan, Richard Brenner, P. Dergachev, A.B. Rodrigues Cavalcante, Anne-Marie Magnan, Mitsuhiro Nakamura, Z. M. Uteshev, Maria Cristina Montesi, K. Kodama, A. S. Chepurnov, A.V. Etenko, Matthew Fraser, F. Vannucci, S. Ricciardi, P. Wertelaers, G. L. Petkov, Fedor Ratnikov, V. Venturi, Y. Berdnikov, Valeri Tioukov, Samuel Silverstein, B. Storaci, J. Maalmi, A. Saputi, P. Dipinto, Alessandro Montanari, E. S. Savchenko, R. A. Fini, M. de Magistris, Andrey Ustyuzhanin, B. Opitz, Konstantinos Petridis, M. Bogomilov, I. Korol’ko, Brennan Goddard, Markus Cristinziani, Stefania Xella, Patrick Owen, David Milstead, Antonio Perillo-Marcone, Alexander E. Shustov, A. M. Guler, M. Torii, E. van Herwijnen, Gareth J. Barker, Seok Kim, Hans Dijkstra, A. Mefodev, D. Yilmaz, Sung Keun Park, T. Enik, I. Zarubina, D. Domenici, E. Kurbatov, S. Dmitrievskiy, S. Kormannshaus, K. Kershaw, Valery V. Dmitrenko, A. L. Grandchamp, P. Kurbatov, Davide Tommasini, R. Brundler, A. Alexandrov, Patrick Robbe, A. Hollnagel, V. P. Loschiavo, D. Grenier, Ekaterina Kuznetsova, Maria Elena Stramaglia, A. Sokolenko, Yuri Gornushkin, P. Pacholek, Oleg Fedin, Mauro Villa, P. Zarubin, V. Gentile, Rocco Paparella, M. Bertani, Serge Smirnov, V. Poliakov, C. Franco, T. Rawlings, D. De Simone, Caren Hagner, Arnaud Dubreuil, D. A. Podgrudkov, B. Obinyakov, V.D. Samoylenko, P. Teterin, F. Sanchez Galan, Laura Fabbri, Yu. G. Kudenko, Mikhail Hushchyn, V. Shevchenko, M. Manfredi, Alexander E. Volkov, Iaroslava Bezshyiko, Daniel Treille, R. Tsenov, J. Prieto Prieto, G. Khoriauli, N. Konovalova, Heinz Vincke, Konstantin F. Vlasik, M. Jonker, V. Kolosov, V. E. Lyubovitskij, S. V. Donskov, A. Rakai, N. I. Starkov, Y. Muttoni, F. Redi, G. Bencivenni, J. Gall, A. Khotyantsev, T. M. Roganova, F. L. Fabbri, A. Quercia, E. Solodko, A. Datwyler, N. Azorskiy, R. Voronkov, Oleg Bezshyyko, G. Felici, J. Chauveau, Yeong Gyun Kim, John Back, Raffaele Albanese, S. Shirobokov, Shigeki Aoki, V. Grichine, A. Kono, N. Gruzinskii, J. Borburgh, A. Kolesnikov, G. Vankova-Kirilova, Masahiro Komatsu, G. Khaustov, A. Chumakov, M. D. Skorokhvatov, Michael Wurm, A. Dolmatov, Viktor Rodin, M. Prokudin, S. Marsh, S. Ogawa, M. Battistin, Marco Bruschi, N. Okateva, A. Di Crescenzo, I. Korol, Alexey Boyarsky, Naotaka Naganawa, J.-L. Grenard, Rosa Simoniello, Paolo Ciambrone, A. M. Anokhina, M. Patel, Petr Andreevich Gorbounov, Giuseppe Iaselli, V. Kurochka, Elena Graverini, Alexander Baranov, A. Shakin, F. Fedotovs, Laboratoire de l'Accélérateur Linéaire (LAL), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE (UMR_7585)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), SHiP, Ahdida, C., Albanese, R., Alexandrov, A., Anokhina, A., Aoki, S., Arduini, G., Atkin, E., Azorskiy, N., Back, J. J., Bagulya, A., Santos, F. Baaltasar Do, Baranov, A., Bardou, F., Barker, G. J., Battistin, M., Bauche, J., Bay, A., Bayliss, V., Bencivenni, G., Berdnikov, A. Y., Berdnikov, Y. A., Berezkina, I., Bertani, M., Betancourt, C., Bezshyiko, I., Bezshyyko, O., Bick, D., Bieschke, S., Blanco, A., Boehm, J., Bogomilov, M., Bondarenko, K., Bonivento, W. M., Borburgh, J., Boyarsky, A., Brenner, R., Breton, D., Brundler, R., Bruschi, M., Büscher, V., Buonaura, A., Buontempo, S., Cadeddu, S., Calcaterra, A., Calviani, M., Campanelli, M., Casolino, M., Charitonidis, N., Chau, P., Chauveau, J., Chepurnov, A., Chernyavskiy, M., Choi, K. -Y., Chumakov, A., Ciambrone, P., Cornelis, K., Cristinziani, M., Crupano, A., Dallavalle, G. M., Datwyler, A., D'Ambrosio, N., D'Appollonio, G., Saraiva, J. De Carvalho, Lellis, G. De, de Magistris, M., Roeck, A. De, Serio, M. De, Simone, D. De, Dedenko, L., Dergachev, P., Crescenzo, A. Di, Marco, N. Di, Dib, C., Dijkstra, H., Dipinto, P., Dmitrenko, V., Dmitrievskiy, S., Dougherty, L. A., Dolmatov, A., Domenici, D., Donskov, S., Drohan, V., Dubreuil, A., Ebert, J., Enik, T., Etenko, A., Fabbri, F., Fabbri, L., Fabich, A., Fedin, O., Fedotovs, F., Felici, G., Ferro-Luzzi, M., Filippov, K., Fini, R. A., Fonte, P., Franco, C., Fraser, M., Fresa, R., Froeschl, R., Fukuda, T., Galati, G., Gall, J., Gatignon, L., Gavrilov, G., Gentile, V., Goddard, B., Golinka-Bezshyyko, L., Golovatiuk, A., Golubkov, D., Golutvin, A., Gorbounov, P., Gorbunov, D., Gorbunov, S., Gorkavenko, V., Gornushkin, Y., Gorshenkov, M., Grachev, V., Grandchamp, A. L., Granich, G., Graverini, E., Grenard, J. -L., Grenier, D., Grichine, V., Gruzinskii, N., Guler, A. M., Guz, Yu., Haefeli, G. J., Hagner, C., Hakobyan, H., Harris, I. W., Herwijnen, E. van, Hessler, C., Hollnagel, A., Hosseini, B., Hushchyn, M., Iaselli, G., Iuliano, A., Ivantchenko, V., Jacobsson, R., Joković, D., Jonker, M., Kadenko, I., Kain, V., Kamiscioglu, C., Kershaw, K., Khabibullin, M., Khalikov, E., Khaustov, G., Khoriauli, G., Khotyantsev, A., Kim, S. H., Kim, Y. G., Kim, V., Kitagawa, N., Ko, J. -W., Kodama, K., Kolesnikov, A., Kolev, D. I., Kolosov, V., Komatsu, M., Kondrateva, N., Kono, A., Konovalova, N., Kormannshaus, S., Korol, I., Korol'Ko, I., Korzenev, A., Kostyukhin, V., Platia, E. Koukovini, Kovalenko, S., Krasilnikova, I., Kudenko, Y., Kurbatov, E., Kurbatov, P., Kurochka, V., Kuznetsova, E., Lacker, H. M., Lamont, M., Lanfranchi, G., Lantwin, O., Lauria, A., Lee, K. S., Lee, K. Y., Lévy, J. -M., Loschiavo, V. P., Lopes, L., Sola, E. Lopez, Lyubovitskij, V., Maalmi, J., Magnan, A., Maleev, V., Malinin, A., Manabe, Y., Managadze, A. K., Manfredi, M., Marsh, S., Marshall, A. M., Mefodev, A., Mermod, P., Miano, A., Mikado, S., Mikhaylov, Yu., Milstead, D. A., Mineev, O., Montanari, A., Montesi, M. C., Morishima, K., Movchan, S., Muttoni, Y., Naganawa, N., Nakamura, M., Nakano, T., Nasybulin, S., Ninin, P., Nishio, A., Novikov, A., Obinyakov, B., Ogawa, S., Okateva, N., Opitz, B., Osborne, J., Ovchynnikov, M., Owtscharenko, N., Owen, P. H., Pacholek, P., Paoloni, A., Paparella, R., Park, B. D., Park, S. K., Pastore, A., Patel, M., Pereyma, D., Perillo-Marcone, A., Petkov, G. L., Petridis, K., Petrov, A., Podgrudkov, D., Poliakov, V., Polukhina, N., Prieto, J. Prieto, Prokudin, M., Prota, A., Quercia, A., Rademakers, A., Rakai, A., Ratnikov, F., Rawlings, T., Redi, F., Ricciardi, S., Rinaldesi, M., Rodin, Volodymyr, Rodin, Viktor, Robbe, P., Cavalcante, A. B. Rodrigue, Roganova, T., Rokujo, H., Rosa, G., Rovelli, T., Ruchayskiy, O., Ruf, T., Samoylenko, V., Samsonov, V., Galan, F. Sanchez, Diaz, P. Santo, Ull, A. Sanz, Saputi, A., Sato, O., Savchenko, E. S., Schmidt-Parzefall, W., Serra, N., Sgobba, S., Shadura, O., Shakin, A., Shaposhnikov, M., Shatalov, P., Shchedrina, T., Shchutska, L., Shevchenko, V., Shibuya, H., Shirobokov, S., Shustov, A., Silverstein, S. B., Simone, S., Simoniello, R., Skorokhvatov, M., Smirnov, S., Sohn, J. Y., Sokolenko, A., Solodko, E., Starkov, N., Stoel, L., Storaci, B., Stramaglia, M. E., Sukhonos, D., Suzuki, Y., Takahashi, S., Tastet, J. L., Teterin, P., Naing, S. Than, Timiryasov, I., Tioukov, V., Tommasini, D., Torii, M., Tosi, N., Treille, D., Tsenov, R., Ulin, S., Ustyuzhanin, A., Uteshev, Z., Vankova-Kirilova, G., Vannucci, F., Venkova, P., Venturi, V., Vilchinski, S., Villa, M., Vincke, Heinz, Vincke, Helmut, Visone, C., Vlasik, K., Volkov, A., Voronkov, R., Waasen, S. van, Wanke, R., Wertelaers, P., Woo, J. -K., Wurm, M., Xella, S., Yilmaz, D., Yilmazer, A. U., Yoon, C. S., Zarubin, P., Zarubina, I., Zaytsev, Yu., Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Ahdida C., Albanese R., Alexandrov A., Anokhina A., Aoki S., Arduini G., Atkin E., Azorskiy N., Back J.J., Bagulya A., Santos F.B.D., Baranov A., Bardou F., Barker G.J., Battistin M., Bauche J., Bay A., Bayliss V., Bencivenni G., Berdnikov A.Y., Berdnikov Y.A., Berezkina I., Bertani M., Betancourt C., Bezshyiko I., Bezshyyko O., Bick D., Bieschke S., Blanco A., Boehm J., Bogomilov M., Bondarenko K., Bonivento W.M., Borburgh J., Boyarsky A., Brenner R., Breton D., Brundler R., Bruschi M., Buscher V., Buonaura A., Buontempo S., Cadeddu S., Calcaterra A., Calviani M., Campanelli M., Casolino M., Charitonidis N., Chau P., Chauveau J., Chepurnov A., Chernyavskiy M., Choi K.-Y., Chumakov A., Ciambrone P., Cornelis K., Cristinziani M., Crupano A., Dallavalle G.M., Datwyler A., D'ambrosio N., D'appollonio G., Saraiva J.D.C., Lellis G.D., De Magistris M., Roeck A.D., De Serio M., De Simone D., Dedenko L., Dergachev P., Di Crescenzo A., Di Marco N., Dib C., Dijkstra H., Dipinto P., Dmitrenko V., Dmitrievskiy S., Dougherty L.A., Dolmatov A., Domenici D., Donskov S., Drohan V., Dubreuil A., Ebert J., Enik T., Etenko A., Fabbri F., Fabbri L., Fabich A., Fedin O., Fedotovs F., Felici G., Ferro-Luzzi M., Filippov K., Fini R.A., Fonte P., Franco C., Fraser M., Fresa R., Froeschl R., Fukuda T., Galati G., Gall J., Gatignon L., Gavrilov G., Gentile V., Goddard B., Golinka-Bezshyyko L., Golovatiuk A., Golubkov D., Golutvin A., Gorbounov P., Gorbunov D., Gorbunov S., Gorkavenko V., Gornushkin Y., Gorshenkov M., Grachev V., Grandchamp A.L., Granich G., Graverini E., Grenard J.-L., Grenier D., Grichine V., Gruzinskii N., Guler A.M., Guz Y., Haefeli G.J., Hagner C., Hakobyan H., Harris I.W., Van Herwijnen E., Hessler C., Hollnagel A., Hosseini B., Hushchyn M., Iaselli G., Iuliano A., Ivantchenko V., Jacobsson R., Jokovic D., Jonker M., Kadenko I., Kain V., Kamiscioglu C., Kershaw K., Khabibullin M., Khalikov E., Khaustov G., Khoriauli G., Khotyantsev A., Kim S.H., Kim Y.G., Kim V., Kitagawa N., Ko J.-W., Kodama K., Kolesnikov A., Kolev D.I., Kolosov V., Komatsu M., Kondrateva N., Kono A., Konovalova N., Kormannshaus S., Korol I., Korol'ko I., Korzenev A., Kostyukhin V., Platia E.K., Kovalenko S., Krasilnikova I., Kudenko Y., Kurbatov E., Kurbatov P., Kurochka V., Kuznetsova E., Lacker H.M., Lamont M., Lanfranchi G., Lantwin O., Lauria A., Lee K.S., Lee K.Y., Levy J.-M., Loschiavo V.P., Lopes L., Sola E.L., Lyubovitskij V., Maalmi J., Magnan A., Maleev V., Malinin A., Manabe Y., Managadze A.K., Manfredi M., Marsh S., Marshall A.M., Mefodev A., Mermod P., Miano A., Mikado S., Mikhaylov Y., Milstead D.A., Mineev O., Montanari A., Montesi M.C., Morishima K., Movchan S., Muttoni Y., Naganawa N., Nakamura M., Nakano T., Nasybulin S., Ninin P., Nishio A., Novikov A., Obinyakov B., Ogawa S., Okateva N., Opitz B., Osborne J., Ovchynnikov M., Owtscharenko N., Owen P.H., Pacholek P., Paoloni A., Paparella R., Park B.D., Park S.K., Pastore A., Patel M., Pereyma D., Perillo-Marcone A., Petkov G.L., Petridis K., Petrov A., Podgrudkov D., Poliakov V., Polukhina N., Prieto J.P., Prokudin M., Prota A., Quercia A., Rademakers A., Rakai A., Ratnikov F., Rawlings T., Redi F., Ricciardi S., Rinaldesi M., Rodin V., Robbe P., Rodrigues Cavalcante A.B., Roganova T., Rokujo H., Rosa G., Rovelli T., Ruchayskiy O., Ruf T., Samoylenko V., Samsonov V., Sanchez Galan F., Santos Diaz P., Sanz Ull A., Saputi A., Sato O., Savchenko E.S., Schmidt-Parzefall W., Serra N., Sgobba S., Shadura O., Shakin A., Shaposhnikov M., Shatalov P., Shchedrina T., Shchutska L., Shevchenko V., Shibuya H., Shirobokov S., Shustov A., Silverstein S.B., Simone S., Simoniello R., Skorokhvatov M., Smirnov S., Sohn J.Y., Sokolenko A., Solodko E., Starkov N., Stoel L., Storaci B., Stramaglia M.E., Sukhonos D., Suzuki Y., Takahashi S., Tastet J.L., Teterin P., Than Naing S., Timiryasov I., Tioukov V., Tommasini D., Torii M., Tosi N., Treille D., Tsenov R., Ulin S., Ustyuzhanin A., Uteshev Z., Vankova-Kirilova G., Vannucci F., Venkova P., Venturi V., Vilchinski S., Villa M., Vincke H., Visone C., Vlasik K., Volkov A., Voronkov R., Van Waasen S., Wanke R., Wertelaers P., Woo J.-K., Wurm M., Xella S., Yilmaz D., Yilmazer A.U., Yoon C.S., Zarubin P., Zarubina I., and Yu Zaytsev Y.
- Subjects
Technology ,Physics - Instrumentation and Detectors ,background: induced ,large detector systems for particle and astroparticle physics ,SPS ,beam transport ,Electron ,7. Clean energy ,01 natural sciences ,09 Engineering ,dark matter detectors (wimps, axions etc.) ,High Energy Physics - Experiment ,030218 nuclear medicine & medical imaging ,law.invention ,Neutrino detector ,High Energy Physics - Experiment (hep-ex) ,0302 clinical medicine ,Recoil ,law ,etc.) ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,Neutrino detectors ,Detectors and Experimental Techniques ,Nuclear Experiment ,physics.ins-det ,Instruments & Instrumentation ,Instrumentation ,background: suppression ,Mathematical Physics ,nucleus: recoil ,Physics ,Range (particle radiation) ,tau neutrino ,02 Physical Sciences ,Large Hadron Collider ,beam loss ,Instrumentation and Detectors (physics.ins-det) ,p: beam ,Nuclear & Particles Physics ,vacuum system ,particle: interaction ,Dark Matter detectors (WIMP ,beam optics ,p: beam dump ,Physics - Instrumentation and Detector ,proposed experiment ,Particle Physics - Experiment ,zirconium: admixture ,FOS: Physical sciences ,Accelerator Physics and Instrumentation ,beam: ejection ,p: target ,Hidden Sector ,Nuclear physics ,KKKK: SHiP ,03 medical and health sciences ,0103 physical sciences ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Beam dump ,numerical calculations ,muon: shielding ,detector: design ,activity report ,Dark Matter detectors (WIMPs ,Science & Technology ,hep-ex ,010308 nuclear & particles physics ,Large detector systems for particle and astroparticle physics ,beam-dump facility ,Acceleratorfysik och instrumentering ,CERN SPS ,Hidden sector ,axion ,axions etc.) ,Large detector systems for particle and astroparticle physic ,molybdenum: alloy ,Physics::Accelerator Physics ,target: design ,titanium: admixture ,Beam (structure) ,neutrino detectors - Abstract
The Search for Hidden Particles (SHiP) Collaboration has shown that the CERN SPS accelerator with its 400 $\mathrm{\small GeV/c}$ proton beam offers a unique opportunity to explore the Hidden Sector. The proposed experiment is an intensity frontier experiment which is capable of searching for hidden particles through both visible decays and through scattering signatures from recoil of electrons or nuclei. The high-intensity experimental facility developed by the SHiP collaboration is based on a number of key features and developments which provide the possibility of probing a large part of the parameter space for a wide range of models with light long-lived superweakly interacting particles with masses up to O(10) $\mathrm{\small GeV/c^2}$ in an environment of extremely clean background conditions. This paper describes the proposal for the experimental facility together with the most important feasibility studies. The paper focuses on the challenging new ideas behind the beam extraction and beam delivery, the proton beam dump, and the suppression of beam-induced background., 21 pages
- Published
- 2019
13. Recreational Snow-Sports Injury Risk Factors and Countermeasures: A Meta-Analysis Review and Haddon Matrix Evaluation
- Author
-
Isaac Carlson, Anna V. Lorimer, Peter C. Griffiths, Patria A. Hume, and Mike Lamont
- Subjects
medicine.medical_specialty ,Sports medicine ,business.industry ,Poison control ,Physical Therapy, Sports Therapy and Rehabilitation ,Wrist Injuries ,Suicide prevention ,Occupational safety and health ,Risk Factors ,Skiing ,Snow ,Environmental health ,Injury prevention ,medicine ,Craniocerebral Trauma ,Humans ,Head Protective Devices ,Orthopedics and Sports Medicine ,Haddon Matrix ,Snow Sports ,business ,Personal Protective Equipment ,human activities ,Personal protective equipment - Abstract
Snow sports (alpine skiing/snowboarding) would benefit from easily implemented and cost-effective injury prevention countermeasures that are effective in reducing injury rate and severity. For snow sports, to identify risk factors and to quantify evidence for effectiveness of injury prevention countermeasures. Searches of electronic literature databases to February 2014 identified 98 articles focused on snow sports that met the inclusion criteria and were subsequently reviewed. Pooled odds ratios (ORs) with 90 % confidence intervals (CIs) and inferences (percentage likelihood of benefit/harm) were calculated using data from 55 studies using a spreadsheet for combining independent groups with a weighting factor based on quality rating scores for effects. More experienced skiers and snowboarders are more likely to sustain an injury as a result of jumps, while beginners sustain injuries primarily as a result of falls. Key risk factors that countermeasure interventions should focus on include, beginner skiers (OR 2.72; 90 % CI 2.15–3.44, 99 % most likely harmful), beginner snowboarders (OR 2.66; 90 % CI 2.08–3.40, 99 % harmful), skiers/snowboarders who rent snow equipment (OR 2.58; 90 % CI 1.98–3.37, 99 % harmful) and poor visibility due to inclement weather (OR 2.69; 90 % CI 1.43–5.07, 97 % harmful). Effective countermeasures include helmets for skiers/snowboarders to prevent head injuries (OR 0.58; 90 % CI 0.51–0.66, 99 % most likely beneficial), and wrist guards for snowboarders to prevent wrist injuries (OR 0.33; 90 % CI 0.23–0.47, 99 % beneficial). The review identified key risk factors for snow-sport injuries and evaluated the evidence for the effectiveness of existing injury prevention countermeasures in recreational (general public use of slopes, not racing) snow sports using a Haddon’s matrix conceptual framework for injury causation (host/snow-sport participant, agent/mechanism and environment/community). Best evidence for the effectiveness of injury prevention countermeasures in recreational snow sports was for the use of helmets and wrist guards and to address low visibility issues via weather reports and signage.
- Published
- 2015
14. Tune variations in the Large Hadron Collider
- Author
-
Jorg Wenninger, R J Steinhagen, Nicholas Sammut, Massimo Giovannozzi, Mike Lamont, Ezio Todesco, and N. Aquilina
- Subjects
Physics ,Nuclear and High Energy Physics ,Large Hadron Collider ,Superconducting magnet ,Betatron tunes ,Betatron ,Accelerators and Storage Rings ,Magnetic field ,Magnetisation decay ,Nuclear physics ,Dipole ,Magnet ,Superconducting magnets ,Quadrupole ,Physics::Accelerator Physics ,Quadrupole magnet ,Instrumentation - Abstract
The horizontal and vertical betatron tunes of the Large Hadron Collider (LHC) mainly depend on the strength of the quadrupole magnets, but are also affected by the quadrupole component in the main dipoles. In case of systematic misalignments, the sextupole component from the main dipoles and sextupole corrector magnets also affect the tunes due to the feed down effect. During the first years of operation of the LHC, the tunes have been routinely measured and corrected through either a feedback or a feed forward system. In this paper, the evolution of the tunes during injection, ramp and flat top are reconstructed from the beam measurements and the settings of the tune feedback loop and of the feed forward corrections. This gives the obtained precision of the magnetic model of the machine with respect to quadrupole and sextupole components. Measurements at the injection plateau show an unexpected large decay whose origin is not understood. This data is discussed together with the time constants and the dependence on previous cycles. We present results of dedicated experiments that show that this effect does not originate from the decay of the main dipole component. During the ramp, the tunes drift by about 0.022. It is shown that this is related to the precision of tracking the quadrupole field in the machine and this effect is reduced to about 0.01 tune units during flat top.
- Published
- 2015
- Full Text
- View/download PDF
15. LHC Report: playing with angles
- Author
-
Mike Lamont for the LHC team
- Published
- 2016
16. LHC Performance in Run 2 and Beyond
- Author
-
Mike Lamont
- Subjects
Physics ,Particle physics ,Large Hadron Collider ,Accelerators and Storage Rings ,Particle Physics - Experiment - Published
- 2016
17. LHC Report: stoat-ally back on track!
- Author
-
Stefano Bertolasi and Mike Lamont for the LHC team
- Published
- 2016
18. Chamonix 2016: setting the future course for the LHC and the accelerator complex
- Author
-
Mike Lamont
- Published
- 2016
19. Design Development for the Beam Dump Facility Target Complex at CERN
- Author
-
S. Delavalle, Mike Lamont, Richard Jacobsson, V. Vlachoudis, J-L Grenard, E. Lopez Sola, R. Scott, K. Kershaw, Marco Calviani, M. Casolino, D. Hounsome, C. Ahdida, and Helmut Vincke
- Subjects
Accelerator Physics (physics.acc-ph) ,Physics - Instrumentation and Detectors ,Nuclear engineering ,FOS: Physical sciences ,01 natural sciences ,law.invention ,law ,Tau neutrino ,0103 physical sciences ,Beam dump ,Detectors and Experimental Techniques ,010306 general physics ,physics.ins-det ,Instrumentation ,Light dark matter ,Mathematical Physics ,physics.acc-ph ,Physics ,Large Hadron Collider ,010308 nuclear & particles physics ,Instrumentation and Detectors (physics.ins-det) ,Accelerators and Storage Rings ,Super Proton Synchrotron ,Hidden sector ,Physics::Accelerator Physics ,Physics - Accelerator Physics ,Beam (structure) ,Lepton - Abstract
CERN has launched a study phase to evaluate the feasibility of a new high-intensity beam dump facility at the CERN Super Proton Synchrotron accelerator with the primary goal of exploring Hidden Sector models and searching for Light Dark Matter, but which also offers opportunities for other fixed target flavour physics programs such as rare tau lepton decays and tau neutrino studies. The new facility will require - among other infrastructure - a target complex in which a dense target/dump will be installed, capable of absorbing the entire energy of the beam extracted from the SPS accelerator. In theory, the target/dump could produce very weakly interacting particles, to be investigated by a suite of particle detectors to be located downstream of the target complex. As part of the study, a development design of the target complex has been produced, taking into account the handling and remote handling operations needed through the lifetime of the facility. Two different handling concepts have been studied and both resulting designs are presented., 26 pages, 30 figures
- Published
- 2018
20. LHC Report: perhaps the end of the beginning
- Author
-
Mike Lamont for the LHC team
- Published
- 2015
21. LHC Report: Now it’s full speed ahead (still with probe beam)
- Author
-
Mike Lamont
- Published
- 2015
22. LHC Report: Start of intensity ramp-up before a short breather
- Author
-
Mike Lamont for the LHC team
- Published
- 2015
23. LHC Report: a very productive hiatus
- Author
-
Mike Lamont for the LHC team
- Published
- 2015
24. LHC Report: First stable beams at 6.5 TeV
- Author
-
Mike Lamont, Jorg Wenninger, Jan Uythoven, Stefano Redaelli, Wolfgang Hofle and Massimo Giovannozzi for the LHC team
- Published
- 2015
25. LHC Report: Cloudy with sunny spells
- Author
-
Lionel Herblin & Mike Lamont for the LHC team
- Published
- 2015
26. Translation of International Snow-Sports Equipment Standards into Injury-Prevention Practice
- Author
-
Brenda A. Costa-Scorse, Mike Lamont, Will G. Hopkins, and Roald Bahr
- Subjects
Service (systems architecture) ,Engineering ,animal structures ,business.industry ,Interface (computing) ,media_common.quotation_subject ,Human factors and ergonomics ,Poison control ,musculoskeletal system ,Occupational safety and health ,Renting ,Structured interview ,otorhinolaryngologic diseases ,Forensic engineering ,Operations management ,Quality (business) ,business ,human activities ,media_common - Abstract
International industry standards set out requirements to mount ski bindings, test equipment functionality, provide guidelines on how to maintain the ski-binding-boot interface, and calculate correct release values. The standards call for the use of a torque testing device to assess functionality of the ski-binding with release values based on parameters of age, weight, height, boot-sole length, and skier type. To determine whether these standards were being applied in New Zealand a cross-sectional study was completed with a national survey of ski technicians and structured interviews with senior ski industry personnel. In setting up ski bindings, only 10 % of ski technicians used a torque-testing device, and substantial proportions did not take into account appropriate skier characteristics or check the boot-binding interface. Interviews of senior personnel indicated that there was good intent about quality of rental service; however, there were inconsistencies between operating procedures and international standards. The interviews also highlighted a need for better standardized questioning techniques for ski technicians to accurately determine skier type, and increased education for both ski technicians and skiers on correct setup to prevent injury related to non-release or inadvertent release. In conclusion, Ski-Binding-Boot (SBB) system inspection, routine torque testing to ensure safe functional ski-bindings, and consistent application of the international standards for correct setup of ski-binding-boot systems continues to be elusive in New Zealand. Assessment of the implementation of the international standards in other countries is also needed. KEYWORDS: alpine skiing, equipment, standards, ski-binding-boot system, torque, injury Language: en
- Published
- 2014
27. LHC, HL-LHC and beyond
- Author
-
Mike Lamont
- Subjects
Physics ,Particle physics ,Large Hadron Collider - Published
- 2014
28. Accelerator physics at LEP
- Author
-
H Burkhardt, Mike Lamont, D Brandt, S. Myers, and Jorg Wenninger
- Subjects
Accelerator physics ,Physics ,Particle physics ,Luminosity (scattering theory) ,Large Hadron Collider ,General Physics and Astronomy ,Synchrotron radiation ,Accelerators and Storage Rings ,Resonance (particle physics) ,Standard Model ,Nuclear physics ,Physics::Accelerator Physics ,High Energy Physics::Experiment ,Storage ring ,Beam (structure) - Abstract
Accelerator physics issues and their influence on performance are presented for the Large Electron Positron storage ring (LEP) at CERN in Geneva, Switzerland. After several years of operation on the Z boson resonance at beam energies around 45 GeV, the beam energy was increased in steps to over 100 GeV. The major power loss to synchrotron radiation and its consequences on the maximum beam energy are discussed. The subjects of luminosity optimisation, beam-beam effect, instabilities, detector backgrounds and beam lifetime are addressed. The precise beam energy calibration, which is of particular importance for the determination of standard model parameters, is described.
- Published
- 2000
29. LHC Report: Run 1 – the final flurry
- Author
-
Mike Lamont for the LHC team
- Published
- 2013
30. The magnetic behaviour of the LHC at 6.5 TeV
- Author
-
M. Juchno, L. Bottura, Ezio Todesco, Massimo Giovannozzi, Michaela Schaumann, Mike Lamont, Per Espen Hagen, Ewen Maclean, Jorg Wenninger, M. Solfaroli Camillocci, R. Tomás García, and Frank Schmidt
- Subjects
Physics ,Particle physics ,Large Hadron Collider ,010308 nuclear & particles physics ,Hadron ,Condensed Matter Physics ,01 natural sciences ,Synchrotron ,Electronic, Optical and Magnetic Materials ,law.invention ,Magnetic field ,Nuclear physics ,Dipole ,law ,Magnet ,0103 physical sciences ,Quadrupole ,Physics::Accelerator Physics ,Electrical and Electronic Engineering ,010306 general physics ,Saturation (magnetic) - Abstract
After two years of shutdown, the Large Hadron Collider (LHC) operated in 2015 at an energy of 6.5 TeV. In this paper, we give the first outlook of the behavior of the LHC magnets operating at this field level, corresponding to 8-T peak field in the main dipoles. The main magnetic features are reconstructed through the beam measurements, mainly the tune (quadrupolar components) and the chromaticity (sextupolar components). The decay and snapback at injection and the start of the ramp are expected to increase by 50% due to the higher operational current. The behavior at high field will be affected by the saturation components, which were barely visible in one magnet family in the 4-TeV runs and totally invisible in the rest. Although the initial plan aims at a rather conservative value of β*, during the squeeze, the triplet and matching section quadrupole will become important. Beam measurements will provide interesting information about the magnetic behavior of these quadrupoles; in particular, through beta beating, we will estimate the absolute precision of the knowledge of the quadrupole strength. The statistics of the beam measurements will be rather limited in the first stages of commissioning, but should already reveal the main features of the 6.5-TeV operation.
- Published
- 2016
31. Chromaticity decay due to superconducting dipoles on the injection plateau of the Large Hadron Collider
- Author
-
Nicholas Sammut, Mike Lamont, M. Strzeclzyk, Ezio Todesco, and N. Aquilina
- Subjects
Physics ,Superconductivity ,Nuclear and High Energy Physics ,Large Hadron Collider ,Physics and Astronomy (miscellaneous) ,Low Energy Ion Ring ,Surfaces and Interfaces ,Plateau (mathematics) ,Magnetic dipoles ,Accelerators and Storage Rings ,Magnetic field ,Nuclear physics ,Dipole ,Magnetic fields ,lcsh:QC770-798 ,lcsh:Nuclear and particle physics. Atomic energy. Radioactivity ,Chromaticity ,Magnetic dipole ,Large Hadron Collider (France and Switzerland) - Abstract
It is well known that in a superconducting accelerator a significant chromaticity drift can be induced by the decay of the sextupolar component of the main dipoles. In this paper we give a brief overview of what was expected for the Large Hadron Collider (LHC) on the grounds of magnetic measurements of individual dipoles carried out during the production. According to this analysis, the decay time constants were of the order of 200 s: since the injection in the LHC starts at least 30 minutes after the magnets are at constant current, the dynamic correction of this effect was not considered to be necessary. The first beam measurements of chromaticity showed significant decay even after a few hours. For this reason, a dynamic correction of decay on the injection plateau was implemented based on beam measurements. This means that during the injection plateau the sextupole correctors are powered with a varying current to cancel out the decay of the dipoles. This strategy has been implemented successfully. A similar phenomenon has been observed for the dependence of the decay amplitude on the powering history of the dipoles: according to magnetic measurements, also in this case time constants are of the order of 200 s and therefore no difference is expected between a one hour or a ten hours flattop. On the other hand, the beam measurements show a significant change of decay for these two conditions. For the moment there is no clue of the origin of these discrepancies. We give a complete overview of the two effects, and the modifications that have been done to the field model parameters to be able to obtain a final chromaticity correction within a few units., peer-reviewed
- Published
- 2012
32. LHC Report: Level best
- Author
-
Mike Lamont for the LHC team
- Published
- 2012
33. Development of the LEP high level control system using ORACLE as an online database
- Author
-
Mike Lamont, P. Collier, R. Bailey, M. Tarrant, A. Belk, and G. de Rijk
- Subjects
Physics ,Nuclear and High Energy Physics ,High level control ,business.industry ,Control (management) ,Online database ,Application software ,computer.software_genre ,Oracle ,Development (topology) ,Project management ,business ,Software engineering ,Instrumentation ,computer ,Computer Science::Databases - Abstract
A complete rewrite of the high level application software for the control of LEP has been carried out. ORACLE was evaluated and subsequently used as the on-line database in the implementation of the system. All control information and settings are stored on this database. This paper describes the project development cycle, the method used, the use of CASE and the project management used by the team. The performance of the system and the database and their impact on the LEP performance is discussed.
- Published
- 1994
34. Performance of the high level application software during LEP operation
- Author
-
P. Collier, Mike Lamont, and R. Bailey
- Subjects
Physics ,Nuclear and High Energy Physics ,Luminosity (scattering theory) ,Exploit ,business.industry ,Application software ,computer.software_genre ,Polarization (waves) ,Turnaround time ,Software ,Electronic engineering ,business ,Instrumentation ,computer - Abstract
After the first year of operating LEP, it was clear that a new generation of application software would be required to effectively exploit the accelerator. In response a new system of application software was developed. During 1992 and 1993 this software has been used exclusively to drive LEP in many different operational modes including polarization runs and 8 bunch pretzel operation. The software has performed well and has clearly enhanced the performance of the machine. For example, the turn around time has been significantly reduced, contributing an increase of around 20% to the integrated luminosity for 1992. The software has also made the accelerator accessible to less experience operators. After outlining the functionality of the system the impact of the software on various aspects of LEP performance is discussed. Comparative data from the last 3 years is presented.
- Published
- 1994
35. LHC Report: Rocky Recovery
- Author
-
Mike Lamont for the LHC Team
- Published
- 2011
36. LHC Report: Freshly squeezed beams!
- Author
-
Mike Lamont for the LHC Team
- Published
- 2011
37. LHC experiences close encounters with UFOs
- Author
-
Mike Lamont for the LHC Team
- Published
- 2011
38. LHC Report: the machine - on the level
- Author
-
Mike Lamont for the LHC Team
- Published
- 2011
39. LHC Report: No beams but still busy
- Author
-
Mike Lamont for the LHC Team
- Published
- 2011
40. LHC Report: Steady as she goes
- Author
-
Mike Lamont for the LHC Team
- Published
- 2011
41. LHC Report: Take Five
- Author
-
Mike Lamont for the LHC Team
- Published
- 2011
42. LHC status and plans
- Author
-
Mike Lamont
- Subjects
Large Hadron Collider ,Accelerators and Storage Rings ,Particle Physics - Experiment - Published
- 2010
43. CERN Large Hadron Collider optics model, measurements, and corrections
- Author
-
Ryoichi Miyamoto, G. Vanbavinckhove, Rama Calaga, Frank Schmidt, Per Espen Hagen, M. Aiba, Oliver Brüning, Rogelio Tomás, Mike Lamont, and Massimo Giovannozzi
- Subjects
Physics ,Nuclear and High Energy Physics ,Particle physics ,Large Hadron Collider ,Physics and Astronomy (miscellaneous) ,business.industry ,Hadron ,Beam commissioning ,Elementary particle ,Particle accelerator ,Surfaces and Interfaces ,Accelerators and Storage Rings ,Linear coupling ,law.invention ,Nuclear physics ,Optics ,law ,Beta (plasma physics) ,Dispersion (optics) ,lcsh:QC770-798 ,lcsh:Nuclear and particle physics. Atomic energy. Radioactivity ,business - Abstract
Optics stability during all phases of operation is crucial for the LHC. Tools and procedures have been developed for rapid checks of beta beating, dispersion, and linear coupling, as well as for prompt optics corrections. Important optics errors during the different phases of the beam commissioning were observed and locally corrected using the segment-by-segment technique. The most relevant corrections at injection have been corroborated with dedicated magnetic measurements.
- Published
- 2010
44. First β-beating measurement and optics analysis for the CERN Large Hadron Collider
- Author
-
Rama Calaga, Massimo Giovannozzi, A. Franchi, G. Vanbavinckhove, M. Aiba, Rogelio Tomás, Jorg Wenninger, Mike Lamont, Frank Zimmermann, Akio Morita, Stephane Fartoukh, and Verena Kain
- Subjects
Coupling ,Physics ,Nuclear and High Energy Physics ,Large Hadron Collider ,Physics and Astronomy (miscellaneous) ,Proton ,business.industry ,Hadron ,Particle accelerator ,Surfaces and Interfaces ,Betatron ,Accelerators and Storage Rings ,law.invention ,Nuclear physics ,Optics ,law ,Physics::Accelerator Physics ,lcsh:QC770-798 ,lcsh:Nuclear and particle physics. Atomic energy. Radioactivity ,Collider ,business ,Beam (structure) - Abstract
Proton beams were successfully steered through the entire ring of the CERN Large Hadron Collider (LHC) on September the 10th of 2008. A reasonable lifetime was achieved for the counterclockwise beam, namely beam 2, after the radiofrequency capture of the particle bunch was established. This provided the unique opportunity of acquiring turn-by-turn betatron oscillations for a maximum of 90 turns right at injection. Transverse coupling was not corrected and chromaticity was estimated to be large. Despite this largely constrained scenario, reliable optics measurements have been accomplished. These measurements together with the application of new algorithms for the reconstruction of optics errors have led to the identification of a dominant error source.
- Published
- 2009
45. Enhancing Two-Phase Flow Mixing and Mass Transfer in Microchannel With Surface Features
- Author
-
Jenn Marco, Rick Stevenson, Christy Burton, Sean P. Fitzgerald, Anna Lee Tonkovich, Dongming Qiu, Laura J. Silva, Mike Lamont, Jan Lerou, and Maddalena Fanelli
- Subjects
Plug flow ,Microchannel ,Superficial velocity ,Chemistry ,Mass flow ,Thermodynamics ,Two-phase flow ,Mechanics ,Secondary flow ,Volumetric flow rate ,Open-channel flow - Abstract
Slug or plug flow is generally considered as major flow pattern in microchannels in gas-liquid two-phase flow. A new microchannel design has enabled experimental interfacial surface area density exceeding 10,000 m2 /m3 based on the two-phase volume in bubbly flow, and mass transfer coefficients exceeding 10sec−1 . Numerical simulations as well as experiments are presented with the new microchannel design. The velocity components of secondary flow induced by specially designed angled microgrooves break the gas phase into small bubbles, where otherwise much larger gas pockets/slugs would dominate in flat or smooth wall microchannels. As such, mixing of the two phases and mass transfer are greatly enhanced as a results of increased interfacial surface area density and reduced average mass transfer distance. The Volume-Of-Fluid (VOF) method is used in the numerical computations for different surface feature patterns, gas and liquid flow rates, liquid viscosity and surface tension. In the experiments, nitrogen, carbon dioxide and water are used as the two phase media. The two-phase superficial velocity in the channel is in the range 0.45–2.75 m/s. The results show that the two-phase flow in the microchannel with the angled microgrooves leads to enhanced mass transfer relative to the flat microchannel. Higher flow rates and higher liquid viscosity lead to smaller gas bubbles and in turn enhanced mixing. Opportunities for additional improvement exist with increasing flow rates and optimized processing conditions.Copyright © 2008 by ASME
- Published
- 2008
46. Cern Neutrinos to Gran Sasso (CNGS): results from commissioning
- Author
-
W. Herr, K. Cornells, K. Elsener, J. Wenninger, Edda Gschwendtner, Malika Meddahi, Verena Kain, and Mike Lamont
- Subjects
Physics ,ICARUS ,Particle physics ,Large Hadron Collider ,Physics::Instrumentation and Detectors ,Astrophysics::Instrumentation and Methods for Astrophysics ,CERN Neutrinos to Gran Sasso ,Accelerators and Storage Rings ,Nuclear physics ,Beamline ,Physics::Accelerator Physics ,High Energy Physics::Experiment ,Nuclear Experiment ,Neutrino oscillation ,Beam (structure) - Abstract
The CNGS project (CERN Neutrinos to Gran Sasso) aims at directly detecting nm - nt oscillations. An intense nm beam is generated at CERN and directed towards LNGS (Laboratori Nazionali del Gran Sasso) in Italy where nt will be detected in large and complex detectors. An overview of the CNGS beam facility is given. Results from the primary and secondary beam line commissioning performed in summer 2006 are presented. Measurements are compared with expectations.
- Published
- 2007
47. Passive Heat Transfer Enhancement in Microchannels Using Wall Features
- Author
-
Laura J. Silva, Thomas Yuschak, Anna Lee Tonkovich, Mike Lamont, and Ravi Arora
- Subjects
Pressure drop ,Dynamic scraped surface heat exchanger ,Microchannel ,Chemistry ,Heat transfer enhancement ,Heat transfer ,Micro heat exchanger ,Thermodynamics ,Laminar flow ,Mechanics ,Laminar flow reactor - Abstract
The two important considerations in the design of a heat exchanger are — the total heat transfer rate and the allowable pressure drop. The allowable pressure drop defines the maximum flow rate through a single microchannel and economics drives the design towards this flow rate. Typically the flow rate in the microchannel is in laminar flow regime (Re < 2000) due to smaller hydraulic diameter. The laminar flow heat transfer in a smooth microchannel is limited by the boundary layer thickness. Commonly the heat transfer rate is enhanced by passively disrupting the laminar boundary layer using protrusions or depressions in the channel walls. More often these methods are best applicable at small range of Reynolds number where the heat transfer rate enhancement is more than the pressure drop increase and break down as the flow rate is changed outside the range. The benefit of a flow disruption method can be reaped only if it provides higher heat transfer enhancement than the increase in the pressure drop at the working flow rates in the microchannel. A heat transfer efficient microchannel design has been developed using wall features that create stable disrupted flow and break the laminar boundary layer in a microchannel over a wide range of flow rates. The paper experimentally investigates the developed design for the heat transfer enhancement and pressure drop increase compared to a smooth wall microchannel. A simple microchannel device was designed and fabricated with and without wall features. The experiments with single gas phase fluid showed promising results with the developed wall feature design as the heat transfer rate increase was 20% to 80% more than the pressure drop increase in the laminar regime. The wall feature design was an important variable to affect the magnitude of performance enhancement in different flow regime. A general criterion was developed to judge the efficacy of wall feature design that can be used during a microchannel heat exchanger design.
- Published
- 2007
48. LHC on-line model
- Author
-
G. Kruk, W. Herr, Ilya Agapov, Mike Lamont, and Frank Schmidt
- Subjects
Physics ,Large Hadron Collider ,Speedup ,business.industry ,Control engineering ,Accelerators and Storage Rings ,Power (physics) ,Perspective (geometry) ,Software ,Key (cryptography) ,Code (cryptography) ,Physics::Accelerator Physics ,business ,Beam (structure) - Abstract
The LHC machine will be a very demanding accelerator from a beam control perspective. There are tight constraints on the key beam parameters in the presence of large non-linearities and dynamic persistent current effects. Particle loss in the LHC must be actively minimized to avoid damage to the machine. Therefore any adjustment to the machine parameters would ideally be checked beforehand with a proper modeling tool. The LHC On-Line Model is an attempt to provide such an analysis tool based mainly on the MAD-X code. The goal is not to provide a real-time interactive system to control the LHC, but rather a way to speed up interaction with the power of MAD-X and to facilitate off-line analysis to give results within appropriate time constraints. There will be a rich spectrum of potential applications such as closed orbit correction, beta-beating analysis, optimization of non-linear correction and knob settings. We report the status of the on-line model software which is at present being developed for the beginning of the LHC commissioning.
- Published
- 2007
49. The LHC Collimator Controls Architecture - Design and beam tests
- Author
-
M. Sobczak, R W Assmann, Stefano Redaelli, P. Gander, M. Jonker, A. Masi, Mike Lamont, and Roberto Losito
- Subjects
Physics ,Large Hadron Collider ,business.industry ,Physics::Instrumentation and Detectors ,Physics::Medical Physics ,Full scale ,Collimator ,Collision ,Accelerators and Storage Rings ,Collimated light ,law.invention ,Software ,law ,Control system ,Physics::Accelerator Physics ,business ,Simulation ,Beam (structure) - Abstract
The LHC collimation system will require simultaneous management by the LHC control system of more than 500 jaw positioning mechanisms in order to ensure the required beam cleaning and machine protection performance in all machine phases, from injection at 450 GeV to collision at 7 TeV. Each jaw positionis a critical parameter for the machine safety. In this paper, the architecture of the LHC collimator controls is presented. The basic design to face the accurate control of the LHC collimators and the interfaces to the other components of LHC Software Application and control infrastructures are described. The full controls system has been tested in a real accelerator environment in the CERN SPS during beam tests with a full scale collimator prototype. The results and the lessons learned are presented.
- Published
- 2007
50. Non-Newtonian Flow Behavior in Microchannels for Emulsion Formation
- Author
-
Mike Lamont, Eric Daymo, Rick Stevenson, Ravi Arora, Laura J. Silva, Anna Lee Tonkovich, and Jan Lerou
- Subjects
Condensed Matter::Soft Condensed Matter ,Physics::Fluid Dynamics ,Pressure drop ,Materials science ,Microchannel ,Shear (geology) ,Drop (liquid) ,Emulsion ,Shear stress ,Nanotechnology ,Mechanics ,Apparent viscosity ,Shear flow - Abstract
Emulsion formation within microchannels enables smaller mean droplet sizes for new commercial applications such as personal care, medical, and food products among others. When operated at a high flow rate per channel, the resulting emulsion mixture creates a high wall shear stress along the walls of the narrow microchannel. This high fluid-wall shear stress of continuous phase material past a dispersed phase, introduced through a permeable wall, enables the formation of small emulsion droplets — one drop at a time. A challenge to the scale-up of this technology has been to understand the behavior of non-Newtonian fluids under high wall shear stress. A further complication has been the change in fluid properties with composition along the length of the microchannel as the emulsion is formed. Many of the predictive models for non-Newtonian emulsion fluids were derived at low shear rates and have shown excellent agreement between predictions and experiments. The power law relationship for non-Newtonian emulsions obtained at low shear rates breaks down under the high shear environment created by high throughputs in small microchannels. The small dimensions create higher velocity gradients at the wall, resulting in larger apparent viscosity. Extrapolation of the power law obtained in low shear environment may lead to under-predictions of pressure drop in microchannels. This work describes the results of a shear-thinning fluid that generates larger pressure drop in a high-wall shear stress microchannel environment than predicted from traditional correlations.Copyright © 2006 by ASME
- Published
- 2006
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.