22 results on '"Miguel Abril"'
Search Results
2. 20 razones para amar la ingeniería: Y 21 para ser ingeniera
- Author
-
Miguel Abril Martí, Patricia Martínez Lope
- Published
- 2023
3. ROG for biomedical semantic segmentation of lung cancer tumors
- Author
-
Felipe Escallon Paez and Jose Miguel Abril-Nova
- Published
- 2021
- Full Text
- View/download PDF
4. ROG for biomedical semantic segmentation of lung cancer tumors
- Author
-
Paez, Felipe Escallon, primary and Miguel Abril-Nova, Jose, additional
- Published
- 2021
- Full Text
- View/download PDF
5. The CARMENES search for exoplanets around M dwarfs Two temperate Earth-mass planet candidates around Teegarden's Star
- Author
-
A. Claret, E. Casal, Jorge Sanz-Forcada, D. Montes, Juan Luis Cano, N. Casasayas-Barris, M. Lampón, C. Rodríguez López, E. de Guindos, Michael Perryman, N. Lodieu, S. Pedraz, Johana Panduro, Otmar Stahl, Guillem Anglada-Escudé, Peter H. Hauschildt, E. Solano, A. López-Comazzi, Ralf Launhardt, J. I. Vico Linares, E. Herrero, M. J. López-González, J. Kemmer, P. Schöfer, T. Stuber, A. Klutsch, J. H. M. M. Schmitt, S. Reinhardt, Manuel López-Puertas, M. Ammler-von Eiff, M. Lafarga, Manuel Perger, R. Hernández Arabí, M. R. Zapatero Osorio, J. Garcia de la Fuente, Hugo M. Tabernero, Priyanka Chaturvedi, Ulrich Grözinger, M. López del Fresno, Grzegorz Nowak, F. J. Alonso-Floriano, M. Brinkmöller, F. Labarga, Lluis Gesa, R. Calvo Ortega, L. M. Lara, Juan Pablo Pascual, Francesc Vilardell, M. C. Cárdenas Vázquez, Andreas Schweitzer, Denis Shulyak, Aviv Ofir, A. Rosich, J. Klüter, Alfredo Sota, Ernesto Sánchez-Blanco, Ignasi Ribas, M. Tala Pinto, A. Fernández-Martín, V. Casanova, Sebastian Schafer, Vianak Naranjo, P. Martín-Fernández, S. Czesla, I. Hermelo, P. Rhode, Hannu Parviainen, Karl Wagner, M. Kürster, Hubert Klahr, Juan Carlos Suárez, Florian Rodler, V. Wolthoff, P. Bluhm, Birgit Fuhrmeister, M. Llamas, Emilio Marfil, S. V. Jeffers, Philipp Huke, H. Magán Madinabeitia, Jose A. Caballero, R. Antona Jiménez, Fei Yan, S. Lalitha, C. del Burgo, E. Díez-Alonso, A. Rodríguez Trinidad, A. Pavlov, F. F. Bauer, J. Góngora Rueda, M. Azzaro, Jesus M. Carro, I. Gallardo Cava, L. F. Sarmiento, M. Kim, A. Guijarro, Susana Martín-Ruiz, M. L. García Vargas, M. A. Sánchez Carrasco, Sabine Reffert, Lisa Nortmann, Andreas Quirrenbach, A. Fukui, M. Cortés-Contreras, Pedro J. Amado, H. Anwand-Heerwart, Ricardo Dorda, F. J. Lázaro, A. P. Hatzes, F. Hernández Otero, Javier López-Santiago, Jesús Aceituno, E. Mirabet, D. Baroch, Mahmoudreza Oshagh, Ana Pérez-Calpena, J. B. P. Strachan, Juan Carlos Morales, Evangelos Nagel, Th. Henning, R. González-Peinado, J. Helmling, David Barrado, E. N. Johnson, S. Dreizler, Lev Tal-Or, Enric Palle, Víctor J. S. Béjar, M. Fernandez, J. Guàrdia, S. Stock, E. L. Martin, S. Becerril, D. Pérez Medialdea, Armin Huber, D. Hintz, L. Hernández Castaño, I. M. Ferro, M. Zechmeister, H. W. Rix, C. Cardona Guillén, Gilles Bergond, S. Sadegi, W. Xu, G. Veredas, A. Ramón Ballesta, B. Arroyo-Torres, R. P. Hedrosa, Rafael Rebolo, J. A. Marín Molina, A. Sánchez-López, Norio Narita, F. J. Aceituno, Ovidio Rabaza, J. I. González Hernández, A. Garcia-Piquer, M. E. Moreno-Raya, Rafael Luque, Paula Sarkis, J. Stürmer, Trifon Trifonov, P. Redondo, E. Gonzalez-Alvarez, E. Rodriguez, Ralf Klein, L. Mancini, Diana Kossakowski, D. Benítez, J. F. López Salas, D. Galadí-Enríquez, Josep Colomé, C. J. Marvin, E. de Juan, Z. M. Berdinas, D. Maroto Fernández, Ansgar Reiners, Carlos Cifuentes, Walter Seifert, Pilar Montañés-Rodríguez, Ulrich Mall, V. M. Passegger, A. Kaminski, L. Gonzalez-Cuesta, Holger Mandel, Miguel Abril, Max Planck Institute for Astronomy, CSIC - Instituto de Astrofísica de Andalucía (IAA), Landessternwarte Königstuhl, CSIC - Instituto de Ciencias del Espacio (ICE), Institute for Astrophysics in Göttingen, Universidad Complutense de Madrid, Thüringer Landessternwarte Tautenburg Karl Schwarzschild-Observatorium, Instituto de Astrofísica de Canarias, Hamburg Observatory, Max Planck Society, Observatorio de Calar Alto, Ministerio de Economía y Competitividad (España), Ministerio de Ciencia, Innovación y Universidades (España), Junta de Andalucía, German Research Foundation, German Centre for Air and Space Travel, European Research Council, CSIC-INTA - Centro de Astrobiología (CAB), Consejo Superior de Investigaciones Científicas (España), European Commission, Ministero dell'Istruzione, dell'Università e della Ricerca, Science and Technology Facilities Council (UK), Israel Science Foundation, Consejo Nacional de Ciencia y Tecnología (México), and Japan Society for the Promotion of Science
- Subjects
Astrofísica ,Brightness ,010504 meteorology & atmospheric sciences ,individual: Teegarden’s Star [Stars] ,methods: data analysis ,planetary systems ,stars: late-type ,stars: individual: Teegarden's Star ,FOS: Physical sciences ,Minimum mass ,Stars: late-type ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,Photometry (optics) ,Settore FIS/05 - Astronomia e Astrofisica ,Methods: data analysis ,Planet ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,data analysis [Methods] ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,individual: Teegarden's Star [Stars] ,0105 earth and related environmental sciences ,Stars: individual: Teegarden's Star ,Earth and Planetary Astrophysics (astro-ph.EP) ,Physics ,Astronomy ,Astronomy and Astrophysics ,Earth mass ,Exoplanet ,Radial velocity ,Planetary systems ,Slow rotation ,13. Climate action ,Space and Planetary Science ,late-type [Stars] ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics - Earth and Planetary Astrophysics - Abstract
Context. Teegarden's Star is the brightest and one of the nearest ultra-cool dwarfs in the solar neighbourhood. For its late spectral type (M7.0 V), the star shows relatively little activity and is a prime target for near-infrared radial velocity surveys such as CARMENES. Aims. As part of the CARMENES search for exoplanets around M dwarfs, we obtained more than 200 radial-velocity measurements of Teegarden's Star and analysed them for planetary signals. Methods. We find periodic variability in the radial velocities of Teegarden's Star. We also studied photometric measurements to rule out stellar brightness variations mimicking planetary signals. Results. We find evidence for two planet candidates, each with 1.1 M minimum mass, orbiting at periods of 4.91 and 11.4 d, respectively. No evidence for planetary transits could be found in archival and follow-up photometry. Small photometric variability is suggestive of slow rotation and old age. Conclusions. The two planets are among the lowest-mass planets discovered so far, and they are the first Earth-mass planets around an ultra-cool dwarf for which the masses have been determined using radial velocities.© ESO 2019., M.Z. acknowledges support from the Deutsche Forschungsgemeinschaft under DFG RE 1664/12-1 and Research Unit FOR2544 >Blue Planets around Red Stars>, project no. RE 1664/14-1. CARMENES is an instrument for the Centro Astronomico Hispano-Aleman de Calar Alto (CAHA, Almeria, Spain). CARMENES is funded by the German Max-Planck-Gesellschaft (MPG), the Spanish Consejo Superior de Investigaciones Cientificas (CSIC), the European Union through FEDER/ERF FICTS-2011-02 funds, and the members of the CARMENES Consortium (Max-Planck-Institut fur Astronomie, Instituto de Astrofisica de Andalucia, Landessternwarte Konigstuhl, Institut de Ciencies de l'Espai, Institut fur Astrophysik Gottingen, Universidad Complutense de Madrid, Thuringer Landessternwarte Tautenburg, Instituto de Astrofisica de Canarias, Hamburger Sternwarte, Centro de Astrobiologia and Centro Astronomico Hispano-Aleman), with additional contributions by the Spanish Ministry of Economy, the German Science Foundation through the Major Research Instrumentation Programme and DFG Research Unit FOR2544 >Blue Planets around Red Stars>, the Klaus Tschira Stiftung, the states of Baden-Wurttemberg and Niedersachsen, and by the Junta de Andalucia. Based on data from the CARMENES data archive at CAB (INTA-CSIC). This article is based on observations made with the MuSCAT2 instrument, developed by ABC, at Telescopio Carlos Sanchez operated on the island of Tenerife by the IAC in the Spanish Observatorio del Teide. Data were partly collected with the 150-cm and 90-cm telescopes at the Sierra Nevada Observatory (SNO) operated by the Instituto de Astrofisica de Andalucia (IAA-CSIC). Data were partly obtained with the MONET/South telescope of the MOnitoring NEtwork of Telescopes, funded by the Alfried Krupp von Bohlen und Halbach Foundation, Essen, and operated by the Georg-August-Universitat Gottingen, the McDonald Observatory of the University of Texas at Austin, and the South African Astronomical Observatory. We acknowledge financial support from the Spanish Agencia Estatal de Investigacion of the Ministerio de Ciencia, Innovacion y Universidades and the European FEDER/ERF funds through projects AYA2015-69350-C3-2-P, AYA2016-79425-C3-1/2/3-P, AYA2018-84089, BES-2017-080769, BES-2017-082610, ESP2015-65712-C5-5-R, ESP2016-80435-C2-1/2-R, ESP2017-87143-R, ESP2017-87676-2-2, ESP2017-87676-C5-1/2/5-R, FPU15/01476, RYC-2012-09913, the Centre of Excellence >Severo Ochoa> and >Maria de Maeztu> awards to the Instituto de Astrofisica de Canarias (SEV-2015-0548), Instituto de Astrofisica de Andalucia (SEV-2017-0709), and Centro de Astrobiologia (MDM-2017-0737), the Generalitat de Catalunya through CERCA programme>, the Deutsches Zentrum fur Luft-und Raumfahrt through grants 50OW0204 and 50OO1501, the European Research Council through grant 6 94 513, the Italian Ministero dell'instruzione, dell'universita de della ricerca and Universita degli Studi di Roma Tor Vergata through FFABR 2017 and >Mission: Sustainability 2016>, the UK Science and Technology Facilities Council through grant ST/P000592/1, the Israel Science Foundation through grant 848/16, the Chilean CONICYT-FONDECYT through grant 31 80 405, the Mexican CONACYT through grant CVU 4 48 248, the JSPS KAKENHI through grants JP18H01265 and 18H05439, and the JST PRESTO through grant JPMJPR1775.
- Published
- 2019
6. The CARMENES search for exoplanets around M dwarfs: High-resolution optical and near-infrared spectroscopy of 324 survey stars
- Author
-
S. Becerril, S. Reinhart, I. M. Ferro, Philipp Huke, E. Díez-Alonso, R. González-Peinado, M. Azzaro, Richard J. Mathar, Jose Antonio Pascual, A. Lamert, Javier López-Santiago, E. Mirabet, M. A. Sánchez Carrasco, Gilles Bergond, Ulrich Mall, D. Pérez Medialdea, Armin Huber, E. Herrero, E. Casal, S. V. Jeffers, Grzegorz Nowak, Sebastian Schafer, J. Helmling, S. Sadegi, H. Magán Madinabeitia, G. Veredas, M. Lampón, E. N. Johnson, W. Xu, Karl Wagner, M. L. García Vargas, David Barrado, J. H. M. M. Schmitt, Enric Palle, R. Oreiro, D. Baroch, B. Arroyo-Torres, Pedro J. Amado, C. Cifuentes, J. A. Marín Molina, D. Galadí-Enríquez, Stefan Dreizler, Cristina Rodríguez-López, Víctor J. S. Béjar, A. Rodríguez Trinidad, M. Lafarga, I. Hermelo, V. M. Passegger, H. W. Rix, H. Anwand-Heerwart, Juan Carlos Suárez, Florian Rodler, Martin Kürster, M. Kim, P. Schöfer, J. Klüter, M. Tala, R.-R. Rohloff, D. Benítez, Johana Panduro, Lisa Nortmann, Andreas Quirrenbach, Z. M. Berdiñas, J. Schiller, J. López-González, S. Czesla, P. Rhode, Adrian Kaminski, A. Pavlov, Holger Mandel, L. Hernández Castaño, J. I. Vico Linares, C. Feiz, Guillem Anglada-Escudé, L. F. Sarmiento, Susana Martín-Ruiz, Simon Tulloch, A. P. Hatzes, Jesús Aceituno, Eike W. Guenther, M. Pluto, Juan Carlos Morales, Manuel López-Puertas, M. Ammler-von Eiff, M. R. Zapatero Osorio, R. G. Ulbrich, Otmar Stahl, M. López del Fresno, Emilio Marfil, Reinhard Mundt, Lluis Gesa, Evangelos Nagel, Werner Laun, Josep Colomé, Francesc Vilardell, M. C. Cárdenas Vázquez, J. F. López Salas, Jose A. Caballero, M. Blümcke, A. Ramón, Aviv Ofir, E. de Guindos, Ana Pérez-Calpena, S. Pedraz, Ralf Launhardt, Rainer Lenzen, A. Claret, Sabine Reffert, U. Lemke, Luigi Mancini, J. B. P. Strachan, F. J. Alonso-Floriano, M. A. C. Perryman, Fei Yan, Mathias Zechmeister, Ernesto Sánchez-Blanco, Vianak Naranjo, A. Klutsch, Lev Tal-Or, M. Fernandez, J. Guàrdia, F. Hernández Hernando, Ulrich Grözinger, Walter Seifert, V. Gómez Galera, Luisa Lara, R. P. Hedrosa, Rafael Rebolo, A. Guijarro, E. de Juan, A. Sánchez-López, Rafael Luque, M. Brinkmöller, Paula Sarkis, J. Stürmer, Ovidio Rabaza, J. I. González Hernández, C. del Burgo, A. Rosich, Andreas Schweitzer, D. Montes, Miguel Abril, M. E. Moreno-Raya, H. J. Hagen, S. Grohnert, Birgit Fuhrmeister, P. Redondo, F. F. Bauer, E. Rodriguez, Ralf Klein, R. Antona, A. Garcia-Piquer, J. Cano, Trifon Trifonov, A. Moya, Ansgar Reiners, Jorge Sanz-Forcada, Peter H. Hauschildt, E. Solano, J. Winkler, Manuel Perger, R. Hernández Arabí, Ignasi Ribas, C. J. Marvin, Th. Henning, V. Wolthoff, D. Maroto Fernández, Juan Gutiérrez-Soto, M. Cortés-Contreras, Eduardo L. Martín, Hugo M. Tabernero, Max Planck Society, Consejo Superior de Investigaciones Científicas (España), European Commission, Ministerio de Economía y Competitividad (España), Ministry of Science, Research and Art Baden-Württemberg, German Research Foundation, Junta de Andalucía, Universidad Complutense de Madrid, Ministerio de Ciencia, Innovación y Universidades (España), Comisión Nacional de Investigación Científica y Tecnológica (Chile), German Centre for Air and Space Travel, European Research Council, Universidad de Alicante. Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal, and Astrofísica Estelar (AE)
- Subjects
Astrofísica ,010504 meteorology & atmospheric sciences ,FOS: Physical sciences ,Astrophysics ,Stars: late-type ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Stellar classification ,7. Clean energy ,01 natural sciences ,law.invention ,Telescope ,Settore FIS/05 - Astronomia e Astrofisica ,Planet ,law ,low-mass [Stars] ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,Stars: low-mass ,010303 astronomy & astrophysics ,Spectrograph ,Solar and Stellar Astrophysics (astro-ph.SR) ,Astrophysics::Galaxy Astrophysics ,0105 earth and related environmental sciences ,Astronomía y Astrofísica ,Earth and Planetary Astrophysics (astro-ph.EP) ,Physics ,Near-infrared spectroscopy ,Stars: rotation ,Astronomy and Astrophysics ,Atlases ,Catalogues ,Exoplanet ,Infrared: stars ,Radial velocity ,Astronomía ,rotation [Stars] ,Stars ,Astrophysics - Solar and Stellar Astrophysics ,13. Climate action ,Space and Planetary Science ,late-type [Stars] ,stars [Infrared] ,Astrophysics::Earth and Planetary Astrophysics ,Catalogs ,Astrophysics - Earth and Planetary Astrophysics - Abstract
The CARMENES radial velocity (RV) survey is observing 324 M dwarfs to search for any orbiting planets. In this paper, we present the survey sample by publishing one CARMENES spectrum for each M dwarf. These spectra cover the wavelength range 520¿1710 nm at a resolution of at least R >80 000, and we measure its RV, H¿ emission, and projected rotation velocity. We present an atlas of high-resolution M-dwarf spectra and compare the spectra to atmospheric models. To quantify the RV precision that can be achieved in low-mass stars over the CARMENES wavelength range, we analyze our empirical information on the RV precision from more than 6500 observations. We compare our high-resolution M-dwarf spectra to atmospheric models where we determine the spectroscopic RV information content, Q, and signal-to-noise ratio. We find that for all M-type dwarfs, the highest RV precision can be reached in the wavelength range 700¿900 nm. Observations at longer wavelengths are equally precise only at the very latest spectral types (M8 and M9). We demonstrate that in this spectroscopic range, the large amount of absorption features compensates for the intrinsic faintness of an M7 star. To reach an RV precision of 1 m s¿1 in very low mass M dwarfs at longer wavelengths likely requires the use of a 10 m class telescope. For spectral types M6 and earlier, the combination of a red visual and a near-infrared spectrograph is ideal to search for low-mass planets and to distinguish between planets and stellar variability. At a 4 m class telescope, an instrument like CARMENES has the potential to push the RV precision well below the typical jitter level of 3-4 m s-1. © ESO 2018., We thank an anonymous referee for prompt attention and helpful comments that helped to improve the quality of this paper. CARMENES is an instrument for the Centro Astronomico Hispano-Aleman de Calar Alto (CAHA, Almeria, Spain). CARMENES is funded by the German Max-Planck-Gesellschaft (MPG), the Spanish Consejo Superior de Investigaciones Cientificas (CSIC), the European Union through FEDER/ERF FICTS-2011-02 funds, and the members of the CARMENES Consortium (Max-Planck-Institut fur Astronomie, Instituto de Astrofisica de Andalucia, Landessternwarte Konigstuhl, Institut de Ciencies de l'Espai, Insitut fur Astrophysik Gottingen, Universidad Complutense de Madrid, Thuringer Landessternwarte Tautenburg, Instituto de Astrofisica de Canarias, Hamburger Sternwarte, Centro de Astrobiologia and Centro Astronomico Hispano-Aleman), with additional contributions by the Spanish Ministry of Economy, the German Science Foundation through the Major Research Instrumentation Programme and DFG Research Unit FOR2544 >Blue Planets around Red Stars>, the Klaus Tschira Stiftung, the states of Baden-Wurttemberg and Niedersachsen, and by the Junta de Andalucia. This work has made use of the VALD database, operated at Uppsala University, the Institute of Astronomy RAS in Moscow, and the University of Vienna. We acknowledge the following funding programs: European Research Council (ERC-279347), Deutsche Forschungsgemeinschaft (RE 1664/12-1, RE 2694/4-1), Bundesministerium fur Bildung und Forschung (BMBF-05A14MG3, BMBF-05A17MG3), Spanish Ministry of Economy and Competitiveness (MINECO, grants AYA2015-68012-C2-2-P, AYA2016-79425-C3-1,2,3-P, AYA2015-69350-C3-2-P, AYA2014-54348-C03-01, AYA2014-56359-P, AYA2014-54348-C3-2R, AYA2016-79425-C3-3-P and 2013 Ramon y Cajal program RYC-2013-14875), Fondo Europeo de Desarrollo Regional (FEDER, grant ESP2016-80435-C2-1-R, ESP2015-65712-C5-5-R), Generalitat de Catalunya/CERCA programme, Spanish Ministerio de Educacion, Cultura y Deporte, programa de Formacion de Profesorado Universitario (grant FPU15/01476), Deutsches Zentrum fur Luft- und Raumfahrt (grants 50OW0204 and 50OO1501), Office of Naval Research Global (award no. N62909-15-1-2011), Mexican CONACyT grant CB-2012-183007.
- Published
- 2018
7. CARMENES: an overview six months after first light
- Author
-
E. de Juan, Ignasi Ribas, R.-R. Rohloff, D. Benítez, A. Lamert, Th. Henning, P. Rhode, Karl Wagner, Josep Colomé, Sebastian Schafer, M. Cortés-Contreras, R. G. Ulbrich, F. J. Alonso-Floriano, R. Gonzalez Peinado, Simon Tulloch, H. Anwand-Heerwart, Juan Carlos Suárez, Florian Rodler, M. C. Gálvez-Ortiz, Hugo M. Tabernero, A. P. Hatzes, Jesús Aceituno, Birgit Fuhrmeister, Clemens Storz, R. Morales Muñoz, Ana Pérez-Calpena, J. Schiller, M. Llamas, Evangelos Nagel, Mercedes Lopez-Morales, Sabine Reffert, A. Garcia-Piquer, F. F. Bauer, E. Rodriguez, Ulrich Mall, Eike W. Guenther, Holger Mandel, A. Claret, Ralf Klein, Ralf Launhardt, A. Quirrenbach, P. Schöfer, David Barrado, Javier López-Santiago, E. Mirabet, Jorge Sanz-Forcada, Enric Palle, U. Lemke, V. M. Passegger, Stefan Dreizler, Víctor J. S. Béjar, J. Stürmer, C. Rodríguez López, Werner Laun, Grzegorz Nowak, M. Lafarga, Peter H. Hauschildt, E. Solano, J. Winkler, K. F. Huber, Rafael Rebolo, M. Kehr, M. C. Cardenas, D. Galadí, J. F. López Salas, A. Ramón, Manuel Perger, R. Hernández Arabí, E. de Guindos, J. Klüter, M. Tala, A. Rosich, Armin Huber, Paula Sarkis, Miguel Abril, S. Pedraz, V. Gómez Galera, Susana Martín-Ruiz, C. Feiz, C. del Burgo, M. Doellinger, Adrian Kaminski, M. L. García-Vargas, P. Redondo, M. Pluto, D. Montes, Ansgar Reiners, S. Becerril, C. J. Marvin, C. Schmidt, Mathias Zechmeister, Philipp Huke, J. I. González Hernández, I. M. Ferro, D. Maroto Fernández, Walter Seifert, H. W. Rix, Martin Kürster, M. Azzaro, Trifon Trifonov, I. Gallardo, Guillem Anglada-Escudé, Z. M. Berdiñas, M. A. Sánchez Carrasco, A. Pavlov, Sandra V. Jeffers, M. Brinkmöller, J. Helmling, L. F. Sarmiento, W. Xu, Andreas Schweitzer, A. Klutsch, Ulrich Grözinger, J. H. M. M. Schmitt, R. Garrido, H. J. Hagen, H. Magán Madinabeitia, S. Reinhart, L. M. Lara, Richard J. Mathar, Pedro J. Amado, Juan Carlos Morales, Lev Tal-Or, M. Fernandez, J. Guàrdia, F. Hernández Hernando, Johana Panduro, D. Hermann, Otmar Stahl, Luigi Mancini, E. L. Martin, L. Hernández Castaño, Denis Shulyak, M. A. C. Perryman, J. B. P. Strachan, J. L. Lizon, Manuel López-Puertas, M. Ammler-von Eiff, S. Czesla, M. R. Zapatero Osorio, Ernesto Sánchez-Blanco, J. I. Vico Linares, Lluis Gesa, Vianak Naranjo, Jose A. Caballero, M. López del Fresno, Reinhard Mundt, Francesc Vilardell, Aviv Ofir, D. Pérez-Medialdea, E. Herrero, E. Casal, G. Veredas, J. A. Marín Molina, M. Kim, Rainer Lenzen, and Enrique Pérez
- Subjects
Astrofísica ,Physics ,Instrument control ,Astronomy ,First light ,01 natural sciences ,Exoplanet ,law.invention ,Astronomía ,010309 optics ,Telescope ,Observatory ,law ,0103 physical sciences ,Interlock ,010303 astronomy & astrophysics ,Spectrograph ,Data reduction ,Remote sensing - Abstract
The CARMENES instrument is a pair of high-resolution (R greater than or similar to 80, 000) spectrographs covering the wavelength range from 0.52 to 1.71 mu m, optimized for precise radial velocity measurements. It was installed and commissioned at the 3.5 m telescope of the Calar Alto observatory in Southern Spain in 2015. The first large science program of CARMENES is a survey of similar to 300 M dwarfs, which started on Jan 1, 2016. We present an overview of all subsystems of CARMENES (front end, fiber system, visible-light spectrograph, near-infrared spectrograph, calibration units, etalons, facility control, interlock system, instrument control system, data reduction pipeline, data flow, and archive), and give an overview of the assembly, integration, verification, and commissioning phases of the project. We show initial results and discuss further plans for the scientific use of CARMENES.
- Published
- 2016
- Full Text
- View/download PDF
8. CARMENES: The CARMENES instrument control software suite
- Author
-
A. Garcia-Piquer, Miguel Abril, Ignasi Ribas, H. J. Hagen, Francesc Vilardell, R. Morales Muñoz, A. Quirrenbach, Ansgar Reiners, Mauro López del Fresno, J. Schiller, E. de Juan, Jose A. Caballero, Mathias Zechmeister, Walter Seifert, Ll. Gesa, Pedro J. Amado, J. Guàrdia, I. Vico, E. de Guindos, D. Benítez, and Josep Colomé
- Subjects
Schedule ,Instrument control ,Software suite ,business.industry ,Computer science ,Real-time computing ,01 natural sciences ,law.invention ,010309 optics ,Telescope ,Software ,Observatory ,law ,Control system ,0103 physical sciences ,business ,010303 astronomy & astrophysics ,Spectrograph - Abstract
The main goal of the CARMENES instrument is to perform high-accuracy measurements of stellar radial velocities (1 m/s) with long-term stability. CARMENES is installed at the 3.5 m telescope in the Calar Alto Observatory (Spain) and it is equipped with two spectrographs covering from the visible to the near-infrared. We present the software packages that are included in the instrument control layer. The coordination and management of CARMENES is handled by the Instrument Control System (ICS), which is responsible for carrying out the operations of the different subsystems providing a tool to operate the instrument in an integrated manner from low to high user interaction level. The ICS interacts with the following subsystems: the near-infrared (NIR) and visible channels, composed by the detectors and exposure meters; the calibration units; the environment sensors; the front-end electronics; the acquisition and guiding module; the interfaces with telescope and dome; and, finally, the software subsystems for operational scheduling of tasks, data processing, and data archiving. The software control framework and all the software modules and layers for the different subsystems contribute to maximize the scientific return of the instrument. The CARMENES workflow covers from the translation of the survey strategy into a detailed schedule to the data processing routines that extract radial velocity data from the observed targets. The control suite is integrated in the instrument since the end of 2015.
- Published
- 2016
- Full Text
- View/download PDF
9. CARMENES-NIR channel spectrograph cooling system AIV: thermo-mechanical performance of the instrument
- Author
-
J. L. Lizon, Ignasi Ribas, D. Pérez, A. Ramón, A. Quirrenbach, Pedro J. Amado, E. Mirabet, Ansgar Reiners, S. Becerril, I. M. Ferro, C. Cárdenas, M. A. Sánchez-Carrasco, Walter Seifert, J. Herranz, Jose A. Caballero, Miguel Abril, and R. Morales
- Subjects
Physics ,Instrumentation ,02 engineering and technology ,Cryogenics ,021001 nanoscience & nanotechnology ,01 natural sciences ,law.invention ,010309 optics ,Telescope ,law ,Observatory ,0103 physical sciences ,Extremely Large Telescope ,Water cooling ,0210 nano-technology ,Spectrograph ,Remote sensing ,Communication channel - Abstract
CARMENES is the new high-resolution high-stability spectrograph built for the 3.5m telescope at the Calar Alto Observatory (CAHA, Almeria, Spain) by a consortium formed by German and Spanish institutions. This instrument is composed by two separated spectrographs: VIS channel (550-1050 nm) and NIR channel (950- 1700 nm). The NIR-channel spectrograph's responsible is the Instituto de Astrofisica de Andalucia (IAACSIC). It has been manufactured, assembled, integrated and verified in the last two years, delivered in fall 2015 and commissioned in December 2015. One of the most challenging systems in this cryogenic channel involves the Cooling System. Due to the highly demanding requirements applicable in terms of stability, this system arises as one of the core systems to provide outstanding stability to the channel. Really at the edge of the state-of-the-art, the Cooling System is able to provide to the cold mass (~1 Ton) better thermal stability than few hundredths of degree within 24 hours (goal: 0.01K/day). The present paper describes the Assembly, Integration and Verification phase (AIV) of the CARMENES-NIR channel Cooling System implemented at IAA-CSIC and later installation at CAHA 3.5m Telescope, thus the most relevant highlights being shown in terms of thermal performance. The CARMENES NIR-channel Cooling System has been implemented by the IAA-CSIC through very fruitful collaboration and involvement of the ESO (European Southern Observatory) cryo-vacuum department with Jean-Louis Lizon as its head and main collaborator. The present work sets an important trend in terms of cryogenic systems for future E-ELT (European Extremely Large Telescope) large-dimensioned instrumentation in astrophysics.
- Published
- 2016
- Full Text
- View/download PDF
10. CARMENES-NIR channel spectrograph: how to achieve the full AIV at system level of a cryo-instrument in nine months
- Author
-
Ignasi Ribas, M. A. Sánchez-Carrasco, A. Ramón, E. Mirabet, R. Morales, S. Becerril, I. M. Ferro, C. Cárdenas, Pedro J. Amado, A. Quirrenbach, Daniela Pérez, Walter Seifert, Ansgar Reiners, J. A. Caballero Hernández, and Miguel Abril
- Subjects
Computer science ,Real-time computing ,02 engineering and technology ,021001 nanoscience & nanotechnology ,01 natural sciences ,law.invention ,010309 optics ,Telescope ,law ,Observatory ,0103 physical sciences ,System level ,0210 nano-technology ,Spectrograph ,Simulation ,Communication channel - Abstract
CARMENES is the new high-resolution high-stability spectrograph built for the 3.5m telescope at the Calar Alto Observatory (CAHA, Almeria, Spain) by a consortium formed by German and Spanish institutions. This instrument is composed by two separated spectrographs: VIS channel (550-1050 nm) and NIR channel (950- 1700 nm). The NIR-channel spectrograph's responsible institution is the Instituto de Astrofisica de Andalucia, IAA-CSIC. The contouring conditions have led CARMENES-NIR to be a schedule-driven project with a extremely tight plan. The operation start-up was mandatory to be before the end of 2015. This plays in contradiction to the very complex, calm-requiring tasks and development phases faced during the AIV, which has been fully designed and implemented at IAA through a very ambitious, zero-contingency plan. As a large cryogenic instrument, this plan includes necessarily a certain number cryo-vacuum cycles, this factor being the most important for the overall AIV duration. Indeed, each cryo-vacuum cycle of the NIR channel runs during 3 weeks. This plan has therefore been driven to minimize the amount of cryo-vacuum cycles. Such huge effort has led the AIV at system level at IAA lab to be executed in 9 months from start to end -an astonishingly short duration for a large cryogenic, complex instrument like CARMENES NIR- which has been fully compliant with the final deadline of the installation of the NIR channel at CAHA 3.5m telescope. The detailed description of this planning, as well as the way how it was actually performed, is the main aim of the present paper.
- Published
- 2016
- Full Text
- View/download PDF
11. Performance and technical commissioning of an ultra-stable cooling system for a mid-range cryogenic astrophysical instrument (CARMENES-NIR)
- Author
-
R Calvo, J. Herranz, Daniela Pérez, Walter Seifert, E. Mirabet, Ignasi Ribas, R. Morales, J. L. Lizon, Miguel Abril, M. A. Sánchez-Carrasco, A. Ramón, S. Becerril, Pedro J. Amado, I. M. Ferro, C. Cárdenas, Ansgar Reiners, Jose A. Caballero, and A. Quirrenbach
- Subjects
010309 optics ,Materials science ,business.industry ,0103 physical sciences ,Water cooling ,02 engineering and technology ,Aerospace engineering ,021001 nanoscience & nanotechnology ,0210 nano-technology ,business ,01 natural sciences - Published
- 2017
- Full Text
- View/download PDF
12. The recent seismo-volcanic activity at Deception Island volcano
- Author
-
Enrique Carmona, Carmen Martinez-Arevalo, Jesús M. Ibáñez, Javier Almendros, and Miguel Abril
- Subjects
Seismometer ,geography ,Vulcanian eruption ,geography.geographical_feature_category ,Aquifer ,Induced seismicity ,Oceanography ,Seismic analysis ,Volcano ,Magma ,Caldera ,Seismology ,Geology - Abstract
This paper reviews the recent seismic studies carried out at Deception Island, South Shetland Islands, Antarctica, which was monitored by the Argentinean and Spanish Antarctic Programs since 1986. Several types of seismic network have been deployed temporarily during each Antarctic summer. These networks have consisted of a variety of instruments, including radio-telemetered stations, autonomous digital seismic stations, broadband seismometers, and seismic arrays. We have identified two main types of seismic signals generated by the volcano, namely pure seismo-volcanic signals, such as volcanic tremor and long-period (LP) events, and volcano-tectonic (VT) earthquakes. Their temporal distributions are far from homogeneous. Volcanic tremors and LP events usually occur in seismic swarms lasting from a few hours to some days. The number of LP events in these swarms is highly variable, from a background level of less than 30/day to a peak activity of about 100 events/h. The occurrence of VT earthquakes is even more irregular. Most VT earthquakes at Deception Island have been recorded during two intense seismic crises, in 1992 and 1999, respectively. Some of these VT earthquakes were large enough to be felt by researchers working on the island. Analyses of both types of seismic events have allowed us to derive source locations, establish seismic source models, analyze seismic attenuation, calculate the energy and stress drop of the seismic sources, and relate the occurrence of seismicity to the volcanic activity. Pure seismo-volcanic signals are modelled as the consequence of hydrothermal interactions between a shallow aquifer and deeper hot materials, resulting in the resonance of fluid-filled fractures. VT earthquakes constitute the brittle response to changes in the distribution of stress in the volcanic edifice. The two VT seismic series are probably related to uplift episodes due to deep injections of magma that did not reach the surface. This evidence, however, indicates the high potential for future volcanic eruptions at Deception Island.
- Published
- 2003
- Full Text
- View/download PDF
13. CARMENES ultra-stable cooling system: very promising results
- Author
-
Stefan Dreizler, A. Quirrenbach, D. Pérez, Ignasi Ribas, Miguel Abril, E. Mirabet, Jose A. Caballero, Ansgar Reiners, M. A. Sánchez Carrasco, Walter Seifert, Pedro J. Amado, R. Morales, P. Carvas, M. C. Cárdenas, S. Becerril, J. L. Lizon, and E. Rodriguez
- Subjects
Optics ,Materials science ,business.industry ,Nuclear engineering ,Flow (psychology) ,Heat exchanger ,Water cooling ,Radiative transfer ,Cryogenics ,Atmospheric temperature range ,Liquid nitrogen ,business ,Spectrograph - Abstract
CARMENES is a high resolution spectrograph to detect planets through the variation of radial velocity, destined for the Calar Alto Observatory in Almeria, Spain. The optical bench has a working temperature of 140K with a 24 hours stability of ±0,1K; goal ±0,01K. It is enclosed with a radiation shield actively cooled with thermalized nitrogen gas that flows through strategically positioned heat exchangers to remove its radiative load. The cooling system has an external preparation unit (N2GPU), which provides the nitrogen gas through actively vaporizing liquid nitrogen with heating resistances and a three stage circuit flow, each one controlled by an independent PID. Since CARMENES is still in the construction phase, a dedicated test facility has been built in order to simulate the instrument and correctly establish the N2GPU parameters. Furthermore, the test facility allows a wide range of configurations set-ups, which enables a full characterization of the N2GPU and the cooling system. The N2GPU has been designed to offer a wide temperature range of thermally stabilized nitrogen gas flow, which apart from CARMENES could also be used to provide ultra-high thermal stability in other cryogenic instruments. The present paper shows the testing of the cooling performance, the hardware used and the very promising results obtained.
- Published
- 2014
- Full Text
- View/download PDF
14. CARMENES Instrument Overview
- Author
-
Mercedes Lopez-Morales, F. F. Bauer, Javier López-Santiago, Johana Panduro, E. Mirabet, M. Fernandez, J. Guàrdia, Ana Pérez-Calpena, H. Martínez-Rodríguez, Pedro J. Amado, P. Rhode, M. Kehr, Ansgar Reiners, Mauro López del Fresno, K. F. Huber, E. de Juan, Otmar Stahl, R. G. Ulbrich, David Barrado, M. A. C. Perryman, Enric Palle, Cristina Rodríguez-López, Víctor J. S. Béjar, J. Stürmer, R.-R. Rohloff, D. Benítez, A. Garcia-Piquer, J. Helmling, R. Antona Jiménez, E. Rodríguez-Pérez, B. López Martí, Clemens Storz, Josep Colomé, G. Holgado, D. Galadí, C. Feiz, Sebastian Schafer, W. Xu, R. Morales Muñoz, Ulrich Mall, Werner Laun, A. Ramón, E. de Guindos, R. Garrido, Simon Tulloch, F. J. Alonso-Floriano, A. P. Hatzes, Jesús Aceituno, J. I. González Hernández, S. Dreizler, C. Schmidt, V. Gómez Galera, C. J. Marvin, A. Rosich, A. Claret, Juan Carlos Morales, Mathias Zechmeister, J. H. M. M. Schmitt, Juan Carlos Suárez, S. Reinhardt, Walter Seifert, Rainer Lenzen, C. del Burgo, M. Doellinger, Miguel Abril, Florian Rodler, H. W. Rix, D. Montes, V. M. Passegger, Eike W. Guenther, M. C. Gálvez-Ortiz, Ernesto Sánchez-Blanco, P. Redondo, M. L. García-Vargas, S. Becerril, Holger Mandel, E. González Álvarez, A. Moya, H. Anwand-Heerwart, Vianak Naranjo, Martin Kürster, A. Quirrenbach, Susana Martín-Ruiz, J. Schiller, D. Hidalgo, M. Pluto, D. Hermann, A. Klutsch, D. Pérez Medialdea, Rafael Rebolo, Armin Huber, J. L. Lizon, M. Ammler-von Eiff, E. Rodriguez, M. R. Zapatero Osorio, M. Azzaro, A. Lamert, Guillem Anglada-Escudé, M. A. Sánchez Carrasco, Ralf Klein, Aviv Ofir, Karl Wagner, H. J. Hagen, Eduardo L. Martín, Z. M. Berdiñas, Sandra V. Jeffers, R. Oreiro, L. F. Sarmiento, M. C. Cárdenas, U. Lemke, Ulrich Grözinger, Sabine Reffert, Richard J. Mathar, Jorge Sanz-Forcada, Peter H. Hauschildt, E. Solano, J. Winkler, Manuel Perger, Ignasi Ribas, Th. Henning, S. Lalitha, Juan Gutiérrez-Soto, M. Cortés-Contreras, Lluis Gesa, Jose A. Caballero, L. Hernández Castaño, F. J. Abellán de Paco, E. Herrero, G. Veredas, E. Casal, Viki Joergens, Reinhard Mundt, and S. Czesla
- Subjects
Physics ,Astrofísica ,business.industry ,Cassegrain reflector ,Dichroic glass ,Stellar classification ,Exoplanet ,law.invention ,Telescope ,Astronomía ,Optics ,Observatory ,law ,Spectral resolution ,business ,Spectrograph - Abstract
This paper gives an overview of the CARMENES instrument and of the survey that will be carried out with it during the first years of operation. CARMENES (Calar Alto high-Resolution search for M dwarfs with Exoearths with Near-infrared and optical Echelle Spectrographs) is a next-generation radial-velocity instrument under construction for the 3.5m telescope at the Calar Alto Observatory by a consortium of eleven Spanish and German institutions. The scientific goal of the project is conducting a 600-night exoplanet survey targeting ∽ 300 M dwarfs with the completed instrument. The CARMENES instrument consists of two separate echelle spectrographs covering the wavelength range from 0.55 to 1.7 μm at a spectral resolution of R = 82,000, fed by fibers from the Cassegrain focus of the telescope. The spectrographs are housed in vacuum tanks providing the temperature-stabilized environments necessary to enable a 1 m/s radial velocity precision employing a simultaneous calibration with an emission-line lamp or with a Fabry-Perot etalon. For mid-M to late-M spectral types, the wavelength range around 1.0 μm (γ band) is the most important wavelength region for radial velocity work. Therefore, the efficiency of CARMENES has been optimized in this range. The CARMENES instrument consists of two spectrographs, one equipped with a 4k x 4k pixel CCD for the range 0.55 -1.05 μm, and one with two 2k x 2k pixel HgCdTe detectors for the range from 0.95 -1.7 μm. Each spectrograph will be coupled to the 3.5m telescope with two optical fibers, one for the target, and one for calibration light. The front end contains a dichroic beam splitter and an atmospheric dispersion corrector, to feed the light into the fibers leading to the spectrographs. Guiding is performed with a separate camera; on-axis as well as off-axis guiding modes are implemented. Fibers with octagonal cross-section are employed to ensure good stability of the output in the presence of residual guiding errors. The fibers are continually actuated to reduce modal noise. The spectrographs are mounted on benches inside vacuum tanks located in the coude laboratory of the 3.5m dome. Each vacuum tank is equipped with a temperature stabilization system capable of keeping the temperature constant to within ±0.01ºC over 24 hours. The visible-light spectrograph will be operated near room temperature, while the near-IR spectrograph will be cooled to ∽ 140 K. The CARMENES instrument passed its final design review in February 2013. The MAIV phase is currently ongoing. First tests at the telescope are scheduled for early 2015. Completion of the full instrument is planned for the fall of 2015. At least 600 useable nights have been allocated at the Calar Alto 3.5m Telescope for the CARMENES survey in the time frame until 2018. A data base of M stars (dubbed CARMENCITA) has been compiled from which the CARMENES sample can be selected. CARMENCITA contains information on all relevant properties of the potential targets. Dedicated imaging, photometric, and spectroscopic observations are underway to provide crucial data on these stars that are not available in the literature.
- Published
- 2014
15. CARMENES. I: instrument and survey overview
- Author
-
Rainer Ulbrich, Thomas Henning, Susana Martín-Ruiz, Jorge Sanz-Forcada, A. Klutsch, Rafael Morales Muñoz, David Barrado y Navascués, Martin Kürster, Enrique de Guindos, Guillem Anglada-Escudé, M. Pluto, Eike W. Guenther, Jean-Louis Lizon, Ovidio Rabaza, Cristina López, Sabine Reffert, Ralf-Reiner Rohloff, E. Herrero, Peter H. Hauschildt, E. Solano, Johannes Winkler, Rainer Lenzen, Clemens Storz, Miguel A. Sánchez Carrasco, Carlos del Burgo, Klaus Huber, Jesús Aceituno, H. Anwand-Heerwart, Regina Antona Jiménez, Maria Rosa Zapatero Osorio, Ansgar Reiners, C. Feiz, Ignasi Ribas, Otmar Stahl, D. Galadí, Emilio Rodríguez Pérez, E. Rodriguez, Ricardo Dorda, Werner Laun, Petra Rhode, A. Ramón, Jürgen H. M. M. Schmitt, S. Lalitha, W. Xu, Juan Gutiérrez-Soto, Hans Hagen, Javier Alonso-Floriano, Matilde Fernández, M. Cortés-Contreras, J. Guàrdia, A. Moya, Concepcion Cardenas, Reinhard Mundt, U. Lemke, Javier López-Santiago, Ernesto Sánchez-Blanco, Enrique de Juan, Mercedes Lopez-Morales, Sebastian Schafer, Juan Carlos Suárez, Florian Rodler, Viki Joergens, D. Montes, A. Rodríguez Trinidad, Jörg Schiller, Julian Stürmer, Vianak Naranjo, Karl Wagner, Andreas Quirrenbach, Artie P. Hatzes, Ulrich Thiele, Rafael Rebolo, R. Oreiro, S. Czesla, Miguel Abril, Stefan Dreizler, Eduardo L. Martín, Jose A. Caballero, Antonio Claret, Josep Colomé, Michaela Doellinger, Jonay I. González Hernández, Armin Huber, Pedro J. Amado, Juan Carlos Morales, Hans-Walter Rix, Mauro López del Fresno, Mathias Zechmeister, Walter Seifert, S. Becerril, Eduard Mirabet, V. J. S. Béjar, M. Kehr, J. Helmling, R. Garrido, Daniel Benitez, C. Schmidt, Sandra V. Jeffers, Matthias Ammler-von Eiff, David Pérez Medialdea, Ulrich Mall, Manuela Vidal-Dasilva, and Holger Mandel
- Subjects
Physics ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy ,Cassegrain reflector ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,Exoplanet ,law.invention ,Telescope ,Observatory ,law ,Planet ,Astrophysics::Solar and Stellar Astrophysics ,Terrestrial planet ,Astrophysics::Earth and Planetary Astrophysics ,Spectral resolution ,Circumstellar habitable zone ,Astrophysics::Galaxy Astrophysics - Abstract
CARMENES (Calar Alto high-Resolution search for M dwarfs with Exo-earths with Near-infrared and optical Echelle Spectrographs) is a next-generation instrument for the 3.5m telescope at the Calar Alto Observatory, built by a consortium of eleven Spanish and German institutions. The CARMENES instrument consists of two separate echelle spectrographs covering the wavelength range from 0.55 μm to 1.7 μm at a spectral resolution of R = 82, 000, fed by fibers from the Cassegrain focus of the telescope. Both spectrographs are housed in temperature-stabilized vacuum tanks, to enable a long-term 1 m/s radial velocity precision employing a simultaneous calibration with Th-Ne and U-Ne emission line lamps. CARMENES has been optimized for a search for terrestrial planets in the habitable zones (HZs) of low-mass stars, which may well provide our first chance to study environments capable of supporting the development of life outside the Solar System. With its unique combination of optical and near-infrared ´echelle spectrographs, CARMENES will provide better sensitivity for the detection of low-mass planets than any comparable instrument, and a powerful tool for discriminating between genuine planet detections and false positives caused by stellar activity. The CARMENES survey will target 300 M dwarfs in the 2014 to 2018 time frame.
- Published
- 2012
- Full Text
- View/download PDF
16. CARMENES. IV: instrument control software
- Author
-
Ignasi Ribas, Miguel A. Sánchez Carrasco, Andreas Quirrenbach, Pedro J. Amado, Jose A. Caballero, R. Morales, D. Galadí-Enríquez, Josep Colomé, Miguel Abril, H. J. Hagen, Walter Seifert, Holger Mandel, and J. Guàrdia
- Subjects
Instrument control ,Application programming interface ,business.industry ,Computer science ,Interface (computing) ,Computer programming ,law.invention ,Telescope ,Software ,law ,Observatory ,Embedded system ,Control system ,business ,Spectrograph ,Computer hardware - Abstract
The overall purpose of the CARMENES instrument is to perform high-precision measurements of radial velocities of late-type stars with long-term stability. CARMENES will be installed in 2014 at the 3.5 m telescope in the German- Spanish Astronomical Center at Calar Alto observatory (CAHA, Spain) and will be equipped with two spectrographs in the near-infrared and visible windows. The technology involved in such instrument represents a challenge at all levels. The instrument coordination and management is handled by the Instrument Control System (ICS), which is responsible of carrying out the operations of the different subsystems and providing a tool to operate the instrument from low to high user interaction level. The main goal of the ICS and the CARMENES control layer architecture is to maximize the instrument efficiency by reducing time overheads and by operating it in an integrated manner. The ICS implements the CARMENES operational design. A description of the ICS architecture and the application programming interfaces for low- and high-level communication is given. Internet Communications Engine is the technology selected to implement most of the interface protocols.
- Published
- 2012
- Full Text
- View/download PDF
17. CARMENES (III): an innovative and challenging cooling system for an ultra-stable NIR spectrograph
- Author
-
Jose A. Caballero, J.-L. Lizon, M. A. Sánchez-Carrasco, Pedro J. Amado, D. Pérez, S. Becerril, J. Herranz, Ignasi Ribas, E. Mirabet, C. Cárdenas, R. Morales, Ansgar Reiners, A. Ramón, R. Antona, Holger Mandel, A. Quirrenbach, Walter Seifert, Miguel Abril, and E. Rodriguez
- Subjects
Physics ,Optics ,business.industry ,Shield ,Heat exchanger ,Near-infrared spectroscopy ,Thermal ,Water cooling ,Cryogenics ,business ,Spectrograph ,Exoplanet - Abstract
The CARMENES project, which is currently at FDR stage, is a last-generation exoplanet hunter instrument to be installed in the Calar Alto Observatory by 2014. It is split into two different spectrographs: one works within the visual range while the other does it in the NIR range. Both channels need to be extremely stable in terms of mechanical and thermal behavior. Nevertheless, due to the operation temperature of the NIR spectrograph, the thermal stability requirement (±0.07 K in 24 hours; ±0.01 K (goal)) becomes actually a major challenge. The solution here proposed consists of a system that actively cools a shield enveloping the optical bench. Thus, the instability produced on the shield temperature is further damped on the optical bench due to the high mass of the latter, as well as the high thermal decoupling between both components, the main heat exchange being produced by radiation. This system -which is being developed with the active collaboration and advice of ESO (Jean-Louis Lizon)- is composed by a previous unit which produces a stable flow of nitrogen gas. The flow so produced goes into the in-vacuum circuitry of the NIR spectrograph and removes the radiative heat load incoming to the radiation shield by means of a group of properly dimensioned heat exchangers. The present paper describes and summarizes the cooling system designed for CARMENES NIR as well as the analyses implemented.
- Published
- 2012
- Full Text
- View/download PDF
18. CARMENES: Calar Alto high-resolution search for M dwarfs with exo-earths with a near-infrared Echelle spectrograph
- Author
-
J. Helmling, F. Rodler, A. Rodríguez Trinidad, R. Garrido, G. Wiedemann, Stefan Dreizler, Víctor J. S. Béjar, Karl Wagner, F. Gutiérrez-Soto, Ignasi Ribas, E. Herrero, S. Becerril, E. Rodriguez, Andrés Moya, Cristina Afonso, Th. Henning, A. Böhm, W. Xu, Walter Seifert, Miguel Abril, Johny Setiawan, Rainer Lenzen, Ernesto Sánchez-Blanco, Eric Martin, Jacob L. Bean, Ovidio Rabaza, M. C. Cárdenas, Vianak Naranjo, Reinhard Mundt, Enrique Solano, E. Mirabet, J. I. González Hernández, M. A. Sánchez Carrasco, Clemens Storz, D. Barrado y Navascués, A. Claret, R. Morales Muñoz, R.-R. Rohloff, C. Schmidt, Ansgar Reiners, Martin Kürster, Josep Colomé, M. R. Zapatero Osorio, M. Fernandez, J. Guàrdia, Sabine Reffert, C. del Burgo, Holger Mandel, D. Galadí, Juan Carlos Suárez, Pedro J. Amado, X. Francisco, U. Thiele, A. Quirrenbach, Juan Carlos Morales, Otmar Stahl, Eike W. Guenther, Werner Laun, A. Ramón, Ulrich Mall, L. P. Costillo, D. Montes, Susana Martín-Ruiz, Rafael Rebolo, A. P. Hatzes, Jesús Aceituno, Jose A. Caballero, and Viki Joergens
- Subjects
Physics ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy ,Cassegrain reflector ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,01 natural sciences ,Exoplanet ,law.invention ,010309 optics ,Telescope ,Radial velocity ,Stars ,law ,Observatory ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,Spectral resolution ,010303 astronomy & astrophysics ,Spectrograph ,Astrophysics::Galaxy Astrophysics - Abstract
CARMENES (Calar Alto high-Resolution search for M dwarfs with Exo-earths with Near-infrared and optical Echelle Spectrographs) is a next-generation instrument to be built for the 3.5m telescope at the Calar Alto Observatory by a consortium of Spanish and German institutions. Conducting a five-year exoplanet survey targeting ~ 300 M stars with the completed instrument is an integral part of the project. The CARMENES instrument consists of two separate spectrographs covering the wavelength range from 0.52 to 1.7 μm at a spectral resolution of R = 85, 000, fed by fibers from the Cassegrain focus of the telescope. The spectrographs are housed in a temperature-stabilized environment in vacuum tanks, to enable a 1m/s radial velocity precision employing a simultaneous ThAr calibration.
- Published
- 2010
- Full Text
- View/download PDF
19. 20 razones para amar la ingeniería
- Author
-
Miguel Abril Mar, Patricia Martínez Lope, Miguel Abril Mar, Miguel Abril Mar, Patricia Martínez Lope, and Miguel Abril Mar
- Abstract
20 razones para amar la ingeniería es un libro dedicado a las personas que sienten una pasión vocacional por la ingeniería, pero también a todo aquel que se dedique a esta carrera. Estructurado en 21 capítulos y escrito en un tono humorístico y cercano, este libro es un alegato en favor de la ingeniería y del amor al conocimiento y la recursividad como formas de utilizar las técnicas adecuadas para construir un mundo mejor. Con una especial atención a las mujeres que quieran dedicarse a esta rama.
20. 20 razones para amar la ingeniería
- Author
-
Miguel Abril Mar, Patricia Martínez Lope, Miguel Abril Mar, Miguel Abril Mar, Patricia Martínez Lope, and Miguel Abril Mar
- Abstract
20 razones para amar la ingeniería es un libro dedicado a las personas que sienten una pasión vocacional por la ingeniería, pero también a todo aquel que se dedique a esta carrera. Estructurado en 21 capítulos y escrito en un tono humorístico y cercano, este libro es un alegato en favor de la ingeniería y del amor al conocimiento y la recursividad como formas de utilizar las técnicas adecuadas para construir un mundo mejor. Con una especial atención a las mujeres que quieran dedicarse a esta rama.
21. The CARMENES search for exoplanets around M dwarfs. First visual-channel radial-velocity measurements and orbital parameter updates of seven M-dwarf planetary systems
- Author
-
E. de Juan, Ralf Launhardt, M. Zechmeister, P. Rhode, Birgit Fuhrmeister, E. Díez-Alonso, Rafael Luque, H. J. Hagen, David Barrado, H. W. Rix, Ignasi Ribas, J. F. López Salas, L. M. Lara, Enric Palle, Stefan Dreizler, Cristina Rodríguez-López, Víctor J. S. Béjar, F. F. Bauer, Paula Sarkis, J. Stürmer, C. J. Marvin, Ovidio Rabaza, J. I. González Hernández, V. Wolthoff, Grzegorz Nowak, Jose Antonio Pascual, P. Schöfer, D. Maroto Fernández, Richard J. Mathar, Juan Gutiérrez-Soto, M. Cortés-Contreras, A. Claret, A. Kaminski, S. Grohnert, M. Lafarga, Walter Seifert, A. Guijarro, Susana Martín-Ruiz, I. Hermelo, A. Rosich, S. Sadegi, W. Xu, Holger Mandel, C. del Burgo, S. V. Jeffers, H. Magán Madinabeitia, Jorge Sanz-Forcada, M. Pluto, R.-R. Rohloff, D. Benítez, J. Klüter, M. Tala, Eike W. Guenther, D. Galadí-Enríquez, D. Montes, Ana Pérez-Calpena, Josep Colomé, Peter H. Hauschildt, M. Brinkmöller, Werner Laun, C. Feiz, A. Pavlov, E. Solano, J. Winkler, Eduardo L. Martín, Hugo M. Tabernero, U. Lemke, Ulrich Mall, Andreas Schweitzer, Manuel Perger, R. Hernández Arabí, Miguel Abril, A. Ramón, E. de Guindos, L. F. Sarmiento, Simon Tulloch, Karl Wagner, S. Pedraz, Fei Yan, J. B. P. Strachan, R. P. Hedrosa, A. P. Hatzes, Jesús Aceituno, P. Redondo, Guillem Anglada-Escudé, Johana Panduro, Rafael Rebolo, R. Oreiro, Philipp Huke, A. Sánchez-López, E. Rodriguez, E. Herrero, Evangelos Nagel, V. Gómez Galera, V. M. Passegger, Ralf Klein, M. E. Moreno-Raya, Otmar Stahl, H. Anwand-Heerwart, M. Azzaro, E. Casal, Luigi Mancini, M. A. C. Perryman, M. A. Sánchez Carrasco, J. Schiller, J. H. M. M. Schmitt, S. Reinhardt, M. Lampón, Z. M. Berdiñas, B. Arroyo-Torres, A. Klutsch, Ulrich Grözinger, S. Czesla, J. I. Vico Linares, M. J. López-González, M. López del Fresno, Reinhard Mundt, Sebastian Schafer, L. Hernández Castaño, Juan Carlos Suárez, Florian Rodler, D. Baroch, Lluis Gesa, Jose A. Caballero, M. Kürster, M. Blümcke, Emilio Marfil, Gilles Bergond, G. Veredas, C. Cifuentes, J. A. Marín Molina, F. J. Alonso-Floriano, Ernesto Sánchez-Blanco, S. Becerril, I. M. Ferro, Vianak Naranjo, Javier López-Santiago, E. Mirabet, J. Helmling, E. N. Johnson, Ansgar Reiners, R. Antona, M. L. García Vargas, A. Garcia-Piquer, Pedro J. Amado, A. Rodríguez Trinidad, J. Cano, M. Kim, Juan Carlos Morales, Trifon Trifonov, Lisa Nortmann, Andreas Quirrenbach, A. Moya, Th. Henning, Lev Tal-Or, M. Fernandez, J. Guàrdia, F. Hernández Hernando, Manuel López-Puertas, M. Ammler-von Eiff, M. R. Zapatero Osorio, Francesc Vilardell, M. C. Cárdenas Vázquez, Aviv Ofir, Rainer Lenzen, R. González-Peinado, Sabine Reffert, D. Pérez Medialdea, Armin Huber, Max Planck Society, Consejo Superior de Investigaciones Científicas (España), European Commission, Ministerio de Economía y Competitividad (España), Ministry of Science, Research and Art Baden-Württemberg, German Research Foundation, Junta de Andalucía, Universidad Complutense de Madrid, Ministerio de Ciencia, Innovación y Universidades (España), Comisión Nacional de Investigación Científica y Tecnológica (Chile), and German Centre for Air and Space Travel
- Subjects
Astrofísica ,FOS: Physical sciences ,Context (language use) ,Stars: late-type ,Astrophysics ,7. Clean energy ,01 natural sciences ,Settore FIS/05 - Astronomia e Astrofisica ,low-mass [Stars] ,Planet ,0103 physical sciences ,Stars: low-mass ,010303 astronomy & astrophysics ,Earth and Planetary Astrophysics (astro-ph.EP) ,Orbital elements ,Physics ,Planets and satellites: dynamical evolution and stability ,010308 nuclear & particles physics ,Astronomy and Astrophysics ,Planetary system ,dynamical evolution and stability [Planets and satellites] ,Exoplanet ,Radial velocity ,Astronomía ,Planetary systems ,Stars ,13. Climate action ,Space and Planetary Science ,late-type [Stars] ,Terrestrial planet ,Astrophysics - Earth and Planetary Astrophysics - Abstract
The appendix tables are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/609/A117, Context. The main goal of the CARMENES survey is to find Earth-mass planets around nearby M-dwarf stars. Seven M dwarfs included in the CARMENES sample had been observed before with HIRES and HARPS and either were reported to have one short period planetary companion (GJ 15 A, GJ 176, GJ 436, GJ 536 and GJ 1148) or are multiple planetary systems (GJ 581 and GJ 876). Aims. We aim to report new precise optical radial velocity measurements for these planet hosts and test the overall capabilities of CARMENES. Methods. We combined our CARMENES precise Doppler measurements with those available from HIRES and HARPS and derived new orbital parameters for the systems. Bona-fide single planet systems were fitted with a Keplerian model. The multiple planet systems were analyzed using a self-consistent dynamical model and their best fit orbits were tested for long-term stability. Results. We confirm or provide supportive arguments for planets around all the investigated stars except for GJ 15 A, for which we find that the post-discovery HIRES data and our CARMENES data do not show a signal at 11.4 days. Although we cannot confirm the super-Earth planet GJ 15 Ab, we show evidence for a possible long-period (P = 7030 d) Saturn-mass (msini = 51.8M) planet around GJ 15 A. In addition, based on our CARMENES and HIRES data we discover a second planet around GJ 1148, for which we estimate a period P = 532.6 days, eccentricity e = 0.342 and minimum mass msini = 68.1M. Conclusions. The CARMENES optical radial velocities have similar precision and overall scatter when compared to the Doppler measurements conducted with HARPS and HIRES. We conclude that CARMENES is an instrument that is up to the challenge of discovering rocky planets around low-mass stars.© ESO, 2018., CARMENES is an instrument for the Centro Astronomico Hispano-Aleman de Calar Alto (CAHA, Almeria, Spain). CARMENES is funded by the German Max-Planck-Gesellschaft (MPG), the Spanish Consejo Superior de Investigaciones Cientificas (CSIC), the European Union through FEDER/ERF FICTS-2011-02 funds, and the members of the CARMENES Consortium (Max-Planck-Institut fur Astronomie, Instituto de Astrofisica de Andalucia, Landessternwarte Konigstuhl, Institut de Ciencies de l'Espai, Insitut fur Astrophysik Gottingen, Universidad Complutense de Madrid, Thuringer Landessternwarte Tautenburg, Instituto de Astrofisica de Canarias, Hamburger Sternwarte, Centro de Astrobiologia and Centro Astronomico Hispano-Aleman), with additional contributions by the Spanish Ministry of Economy, the German Science Foundation (DFG), the Klaus Tschira Stiftung, the states of Baden-Wurttemberg and Niedersachsen, the DFG Research Unit FOR2544 >Blue Planets around Red Stars>, and by the Junta de Andalucia. This work has made use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement. This work used the Systemic Console package (Meschiari et al. 2009) for cross-checking our Keplerian and Dynamical fits and the python package astroML (VanderPlas et al. 2012) for the calculation of the GLS periodogram. The IEEC-CSIC team acknowledges support by the Spanish Ministry of Economy and Competitiveness (MINECO) and the Fondo Europeo de Desarrollo Regional (FEDER) through grant ESP2016-80435-C2-1-R, as well as the support of the Generalitat de Catalunya/CERCA programme. The IAA-CSIC team acknowledges support by the Spanish Ministry of Economy and Competitiveness (MINECO) through grants AYA2014-54348-C03-01 and AYA2016-79425-C3-3-P as well as FEDER funds. The UCM team acknowledges support by the Spanish Ministry of Economy and Competitiveness (MINECO) from projects AYA2015-68012-C2-2-P and AYA2016-79425- C3-1,2,3-P and the Spanish Ministerio de Educacion, Cultura y Deporte, programa de Formacion de Profesorado Universitario, under grant FPU15/01476. T. T. and M.K. thank to Jan Rybizki for the very helpful discussion in the early phases of this work. V.J.S.B. is supported by grant AYA2015-69350-C3-2-P from the Spanish Ministry of Economy and Competiveness (MINECO). J.C.S. acknowledges funding support from Spanish public funds for research under project ESP2015-65712-C5-5-R (MINECO/FEDER), and under Research Fellowship program >Ramon y Cajal> with reference RYC2012-09913 (MINECO/FEDER). The contributions of M.A. were supported by DLR (Deutsches Zentrum fur Luft- und Raumfahrt) through the grants 50OW0204 and 50OO1501. J.L.-S. acknowledges the Office of Naval Research Global (award No. N62909-15- 1-2011) for support. C.d.B. acknowledges that this work has been supported by Mexican CONACyT research grant CB-2012-183007 and the Spanish Ministry of Economy and Competitivity through projects AYA2014-54348-C3-2-R. J.I.G.H., and R.R. acknowledge financial support from the Spanish Ministry project MINECO AYA2014-56359-P. J.I.G.H. also acknowledges financial support from the Spanish MINECO under the 2013 Ramon y Cajal program MINECO RYC-2013-14875. V. Wolthoff acknowledges funding from the DFG Research Unit FOR2544 >Blue Planets around Red Stars>, project No. RE 2694/4-1.We thank the anonymous referee for the excellent comments that helped to improve the quality of this paper.
22. The CARMENES search for exoplanets around M dwarfs - HD 147379b: A nearby Neptune in the temperate zone of an early-M dwarf
- Author
-
Lluis Gesa, A. Lamert, Jose A. Caballero, Fei Yan, M. Blümcke, Karl Wagner, J. H. M. M. Schmitt, E. de Juan, E. Casal, V. Gómez Galera, Simon Tulloch, R. Oreiro, David Barrado, P. Schöfer, M. Lampón, Eike W. Guenther, A. P. Hatzes, Jesús Aceituno, A. Rosich, Rainer Lenzen, Enric Palle, Stefan Dreizler, Cristina Rodríguez-López, Víctor J. S. Béjar, B. Arroyo-Torres, H. Anwand-Heerwart, U. Lemke, J. B. P. Strachan, Miguel Abril, J. Schiller, J. Helmling, Evangelos Nagel, M. Lafarga, E. N. Johnson, Walter Seifert, R. P. Hedrosa, Rafael Rebolo, A. Guijarro, Sebastian Schafer, C. del Burgo, J. Klüter, M. Tala, S. Czesla, M. E. Moreno-Raya, A. Sánchez-López, Grzegorz Nowak, D. Montes, F. Labarga, L. Hernández Castaño, Juan Carlos Suárez, A. Claret, Ulrich Mall, J. F. López Salas, J. I. Vico Linares, E. Herrero, Florian Rodler, Manuel López-Puertas, M. Ammler-von Eiff, D. Baroch, Philipp Huke, R. González-Peinado, C. Feiz, M. J. López-González, S. V. Jeffers, S. Becerril, H. Magán Madinabeitia, I. M. Ferro, M. Brinkmöller, P. Rhode, M. R. Zapatero Osorio, I. Hermelo, Francesc Vilardell, C. J. Marvin, Ralf Launhardt, Gilles Bergond, M. López del Fresno, Reinhard Mundt, M. Zechmeister, Jorge Sanz-Forcada, M. C. Cárdenas Vázquez, G. Veredas, D. Pérez Medialdea, Aviv Ofir, Andreas Schweitzer, Armin Huber, Ansgar Reiners, R. Antona, A. Garcia-Piquer, Ana Pérez-Calpena, D. Maroto Fernández, D. Galadí-Enríquez, S. Reinhart, R. G. Ulbrich, H. W. Rix, Javier López-Santiago, E. Mirabet, C. Cifuentes, Johana Panduro, L. M. Lara, J. A. Marín Molina, A. Pavlov, M. Azzaro, M. A. Sánchez Carrasco, Susana Martín-Ruiz, Birgit Fuhrmeister, V. M. Passegger, A. Kaminski, M. Pluto, Richard J. Mathar, F. F. Bauer, Otmar Stahl, L. F. Sarmiento, Z. M. Berdiñas, Eduardo L. Martín, Hugo M. Tabernero, A. Rodríguez Trinidad, M. Kim, Peter H. Hauschildt, E. Solano, J. Winkler, Manuel Perger, R. Hernández Arabí, J. Cano, Lisa Nortmann, Andreas Quirrenbach, Trifon Trifonov, A. Klutsch, Ulrich Grözinger, S. Sadegi, Luigi Mancini, A. Moya, Holger Mandel, Ovidio Rabaza, Werner Laun, M. A. C. Perryman, J. I. González Hernández, W. Xu, F. J. Alonso-Floriano, A. Ramón, Ignasi Ribas, Ernesto Sánchez-Blanco, E. de Guindos, S. Pedraz, Vianak Naranjo, Sabine Reffert, M. Kürster, V. Wolthoff, H. J. Hagen, Emilio Marfil, Juan Gutiérrez-Soto, E. Díez-Alonso, M. Cortés-Contreras, Jose Antonio Pascual, Guillem Anglada-Escudé, Rafael Luque, Paula Sarkis, J. Stürmer, P. Redondo, S. Grohnert, E. Rodriguez, Ralf Klein, R.-R. Rohloff, D. Benítez, Josep Colomé, Th. Henning, Lev Tal-Or, M. Fernandez, J. Guàrdia, F. Hernández Hernando, M. L. García Vargas, Pedro J. Amado, Juan Carlos Morales, Max Planck Society, Consejo Superior de Investigaciones Científicas (España), European Commission, Ministerio de Economía y Competitividad (España), Ministry of Science, Research and Art Baden-Württemberg, Comisión Nacional de Investigación Científica y Tecnológica (Chile), German Centre for Air and Space Travel, European Research Council, and Ministerio de Ciencia, Innovación y Universidades (España)
- Subjects
Rotation period ,Stars: activity ,Astrofísica ,010504 meteorology & atmospheric sciences ,media_common.quotation_subject ,FOS: Physical sciences ,Astrophysics ,Stars: late-type ,01 natural sciences ,Planets and satellites: individual: HD 147379 b ,Settore FIS/05 - Astronomia e Astrofisica ,Neptune ,Planet ,low-mass [Stars] ,0103 physical sciences ,Stars: low-mass ,Eccentricity (behavior) ,individual: HD 147379 [Stars] ,010303 astronomy & astrophysics ,Solar and Stellar Astrophysics (astro-ph.SR) ,0105 earth and related environmental sciences ,media_common ,Physics ,Earth and Planetary Astrophysics (astro-ph.EP) ,Stars: rotation ,Stars: individual: HD 147379 ,Astronomy and Astrophysics ,Exoplanet ,individual: HD147379 [Stars] ,Radial velocity ,Astronomía ,rotation [Stars] ,Astrophysics - Solar and Stellar Astrophysics ,Space and Planetary Science ,late-type [Stars] ,individual: HD147379 b [Planets and satellites] ,individual: HD 147379 b [Planets and satellites] ,activity [Stars] ,Astrophysics - Earth and Planetary Astrophysics - Abstract
We report on the first star discovered to host a planet detected by radial velocity (RV) observations obtained within the CARMENES survey for exoplanets around M dwarfs. HD 147379 (V = 8.9 mag, M = 0.58 ± 0.08 M⊙), a bright M0.0 V star at a distance of 10.7 pc, is found to undergo periodic RV variations with a semi-amplitude of K = 5.1 ± 0.4 m s−1 and a period of P = 86.54 ± 0.06 d. The RV signal is found in our CARMENES data, which were taken between 2016 and 2017, and is supported by HIRES/Keck observations that were obtained since 2000. The RV variations are interpreted as resulting from a planet of minimum mass mP sin i = 25 ± 2 M⊕, 1.5 times the mass of Neptune, with an orbital semi-major axis a = 0.32 au and low eccentricity (e < 0.13). HD 147379 b is orbiting inside the temperate zone around the star, where water could exist in liquid form. The RV time-series and various spectroscopic indicators show additional hints of variations at an approximate period of 21.1 d (and its first harmonic), which we attribute to the rotation period of the star., FEDER/ERF FICTS-2011-02 funds, Major Research Instrumentation Programme and DFG Research Unit FOR2544 “Blue Planets around Red Stars, European Research Council (ERC-279347), Deutsche Forschungsgemeinschaft (RE 1664/12-1, RE 2694/4-1), Bundesministerium für Bildung und Forschung (BMBF-05A14MG3, BMBF-05A17MG3), Spanish Ministry of Economy and Competitiveness (MINECO, grants AYA2015-68012-C2-2-P, AYA2016-79425-C3-1,2,3-P, AYA2015-69350-C3-2-P, AYA2014-54348-C03- 01, AYA2014-56359-P, AYA2014-54348-C3-2-R, AYA2016-79425-C3-3-P and 2013 Ramòn y Cajal program RYC-2013-14875), Fondo Europeo de Desarrollo Regional (FEDER, grant ESP2016-80435-C2-1-R, ESP2015-65712-C5- 5-R), Generalitat de Catalunya/CERCA programme, Spanish Ministerio de Educación, Cultura y Deporte, programa de Formación de Profesorado Universitario (grant FPU15/01476), Deutsches Zentrum für Luft- und Raumfahrt (grants 50OW0204 and 50OO1501), Office of Naval Research Global (award no. N62909-15-1-2011), Mexican CONACyT grant CB-2012-183007.
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.