1. Correcting directional dark field x-ray imaging artefacts using position dependent image deblurring and attenuation removal
- Author
-
Michelle K. Croughan, David M. Paganin, Samantha J. Alloo, Jannis N. Ahlers, Ying Ying How, Stephanie A. Harker, and Kaye S. Morgan
- Subjects
X-ray ,Directional dark-field ,Image restoration ,Phase retrieval ,Medicine ,Science - Abstract
Abstract In recent years, a novel x-ray imaging modality has emerged that reveals unresolved sample microstructure via a “dark-field image”, which provides complementary information to conventional “bright-field” images, such as attenuation and phase-contrast modalities. This x-ray dark-field signal is produced by unresolved microstructures scattering the x-ray beam resulting in localised image blur. Dark-field retrieval techniques extract this blur to reconstruct a dark-field image. Unfortunately, the presence of non-dark-field blur such as source-size blur or the detector point-spread-function can affect the dark-field retrieval as they also blur the experimental image. In addition, dark-field images can be degraded by the artefacts induced by large intensity gradients from attenuation and propagation-based phase contrast, particularly around sample edges. By measuring any non-dark-field blurring across the image plane and removing it from experimental images, as well as removing attenuation and propagation-based phase contrast, we show that a directional dark-field image can be retrieved with fewer artefacts and more consistent quantitative measures. We present the details of these corrections and provide “before and after” directional dark-field images of samples imaged at a synchrotron source. This paper utilises single-grid directional dark-field imaging, but these corrections have the potential to be broadly applied to other x-ray imaging techniques.
- Published
- 2024
- Full Text
- View/download PDF