Neurons recorded in behaving animals often do not discernibly respond to sensory input and are not overtly task-modulated. These non-classically responsive neurons are difficult to interpret and are typically neglected from analysis, confounding attempts to connect neural activity to perception and behavior. Here, we describe a trial-by-trial, spike-timing-based algorithm to reveal the coding capacities of these neurons in auditory and frontal cortex of behaving rats. Classically responsive and non-classically responsive cells contained significant information about sensory stimuli and behavioral decisions. Stimulus category was more accurately represented in frontal cortex than auditory cortex, via ensembles of non-classically responsive cells coordinating the behavioral meaning of spike timings on correct but not error trials. This unbiased approach allows the contribution of all recorded neurons – particularly those without obvious task-related, trial-averaged firing rate modulation – to be assessed for behavioral relevance on single trials., eLife digest Neurons encode information in the form of electrical signals called spikes. Certain neurons increase the rate at which they produce spikes under specific circumstances, e.g., whenever an animal hears a particular sound. These neurons are said to be 'classically responsive'. But not all neurons behave in this way. Others produce spikes at a variable rate that does not obviously relate to the animal's behavior. These neurons are said to be 'non-classically responsive'. They are often omitted from analyses, despite typically outnumbering their classically responsive counterparts. So, what are these neurons doing? To find out, Insanally et al. trained rats to respond to sounds. The animals learned to poke their nose into a window whenever they heard a specific tone, and to avoid responding whenever they heard any other tone. As the rats performed the task, Insanally et al. recorded from neurons in two areas of the brain, the frontal cortex and the auditory cortex. A computer then analyzed the activity of individual neurons during each trial. As expected, the firing rate of non-classically responsive cells did not relate to the animals' behavior. But the timing of this firing did. The interval between spikes contained information about which tone the animals had heard and/or how they had responded. The cells worked together in groups to encode this information. Over the course of each trial, every neuron in the group varied the interval between its spikes. Eventually, the group reached a consensus, with all neurons using the same interval to represent information relevant to the task. Groups of neurons in the frontal cortex encoded more information about the category of the tone than those in the auditory cortex. By including all neurons – both classically and non-classically responsive – this model offers a more comprehensive view of how neural activity relates to behavior. This may in turn help us understand the variable and complex neural activity seen in people with sensory and cognitive disorders.