77 results on '"Michel Latteux"'
Search Results
2. Languages Defined by Generalized Equality Sets.
- Author
-
Vesa Halava, Tero Harju, Hendrik Jan Hoogeboom, and Michel Latteux
- Published
- 2003
- Full Text
- View/download PDF
3. Synchronized Shuffle and Regular Languages.
- Author
-
Michel Latteux and Yves Roos
- Published
- 1999
4. Iterated Length-Preserving Rational Transductions.
- Author
-
Michel Latteux, David Simplot, and Alain Terlutte
- Published
- 1998
- Full Text
- View/download PDF
5. Constructing Sequential Bijections.
- Author
-
Christophe Prieur 0002, Christian Choffrut, and Michel Latteux
- Published
- 1997
- Full Text
- View/download PDF
6. Variable-Length Maximal Codes.
- Author
-
Véronique Bruyère and Michel Latteux
- Published
- 1996
- Full Text
- View/download PDF
7. A Decidability Result about Convex Polyominoes.
- Author
-
Danièle Beauquier, Michel Latteux, and Karine Slowinski
- Published
- 1992
- Full Text
- View/download PDF
8. On Computational Power of Weighted Finite Automata.
- Author
-
Denis Derencourt, Juhani Karhumäki, Michel Latteux, and Alain Terlutte
- Published
- 1992
- Full Text
- View/download PDF
9. Decomposition of Partial Commutations.
- Author
-
Mireille Clerbout, Michel Latteux, and Yves Roos
- Published
- 1990
- Full Text
- View/download PDF
10. Rational omega-Transductions.
- Author
-
Michel Latteux and Erick Timmerman
- Published
- 1990
- Full Text
- View/download PDF
11. On prefixal one-rule string rewrite systems
- Author
-
Yves Roos, Michel Latteux, Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL), and Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)
- Subjects
General Computer Science ,Computer science ,One-rule string rewrite system ,Context-free language ,0102 computer and information sciences ,02 engineering and technology ,Context free language ,16. Peace & justice ,01 natural sciences ,[INFO.INFO-CL]Computer Science [cs]/Computation and Language [cs.CL] ,Theoretical Computer Science ,Decidability ,Prefix ,Algebra ,TheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGES ,010201 computation theory & mathematics ,Computer Science::Logic in Computer Science ,0202 electrical engineering, electronic engineering, information engineering ,Computer Science::Programming Languages ,020201 artificial intelligence & image processing ,Computer Science::Formal Languages and Automata Theory - Abstract
International audience; Prefixal one-rule string rewrite systems are one-rule string rewrite systems for which the left-hand side of the rule is a prefix of the right-hand side of the rule. String rewrite systems induce a transformation over languages: from a starting word, one can associate all its descendants. We prove, in this work, that the transformation induced by a prefixal one-rule rewrite system always transforms a finite language into a context-free language, a property that is surprisingly not satisfied by arbitrary one-rule rewrite systems. We also give here a decidable characterization of the prefixal one-rule rewrite systems whose induced transformation is a rational transduction.
- Published
- 2019
12. Parikh-Bounded Languages.
- Author
-
Meera Blattner and Michel Latteux
- Published
- 1981
- Full Text
- View/download PDF
13. On the Composition of Morphisms and Inverse Morphisms.
- Author
-
Michel Latteux and Jeannine Leguy
- Published
- 1983
- Full Text
- View/download PDF
14. Substitution of Bounded Rational Cone
- Author
-
Joffroy Beauquier and Michel Latteux
- Published
- 1982
- Full Text
- View/download PDF
15. Rational Cones and Commutations.
- Author
-
Michel Latteux
- Published
- 1988
- Full Text
- View/download PDF
16. Une propriete de la famille GRE.
- Author
-
Michel Latteux and Jeannine Leguy
- Published
- 1979
17. Sur deux langages linéaires.
- Author
-
Michel Latteux
- Published
- 1979
- Full Text
- View/download PDF
18. Quelques propriétés des langages à un Comptuer.
- Author
-
Michel Latteux
- Published
- 1981
- Full Text
- View/download PDF
19. Extension of the decidability of the marked PCP to instances with unique blocks
- Author
-
Michel Latteux, Juhani Karhumäki, Tero Harju, and Vesa Halava
- Subjects
Discrete mathematics ,Class (set theory) ,General Computer Science ,Existential quantification ,010102 general mathematics ,Marked morphism ,Decidability ,0102 computer and information sciences ,Extension (predicate logic) ,01 natural sciences ,Infinite Post Correspondence Problem ,Theoretical Computer Science ,Combinatorics ,Post correspondence problem ,Morphism ,010201 computation theory & mathematics ,Post Correspondence Problem ,Uniqueness ,0101 mathematics ,Unique continuation ,Unique block ,Word (group theory) ,Computer Science(all) ,Mathematics - Abstract
In the Post Correspondence Problem (PCP) an instance (h,g) consists of two morphisms h and g, and the problem is to determine whether or not there exists a nonempty word w such that h(w)=g(w). Here we prove that the PCP is decidable for instances with unique blocks using the decidability of the marked PCP. Also, we show that it is decidable whether an instance satisfying the uniqueness condition for continuations has an infinite solution. These results establish a new and larger class of decidable instances of the PCP, including the class of marked instances.
- Published
- 2007
20. A Canonical Automaton for One-Rule Length-Preserving String Rewrite Systems
- Author
-
Yves Roos, Michel Latteux, Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL), and Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Discrete mathematics ,TheoryofComputation_COMPUTATIONBYABSTRACTDEVICES ,Levenshtein automaton ,Continuous automaton ,rational transduction ,ACM: F.: Theory of Computation/F.4: MATHEMATICAL LOGIC AND FORMAL LANGUAGES/F.4.3: Formal Languages ,Timed automaton ,Pushdown automaton ,Büchi automaton ,Computer Science Applications ,Theoretical Computer Science ,Combinatorics ,TheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGES ,Computational Theory and Mathematics ,[INFO.INFO-FL]Computer Science [cs]/Formal Languages and Automata Theory [cs.FL] ,Deterministic automaton ,Probabilistic automaton ,String rewrite system ,ACM: F.: Theory of Computation/F.4: MATHEMATICAL LOGIC AND FORMAL LANGUAGES/F.4.2: Grammars and Other Rewriting Systems ,automaton ,Two-way deterministic finite automaton ,Computer Science::Formal Languages and Automata Theory ,Information Systems ,Mathematics - Abstract
International audience; In this work, we use rearrangements in rewriting positions sequence in order to study precisely the structure of the derivations in one-rule length-preserving string rewrite systems. That yields to the definition of a letter-to-letter transducer that computes the relation induced by a one-rule length-preserving string rewrite system. This transducer can be seen as an automaton over an alphabet A x A. We prove that this automaton is finite if and only if the corresponding relation is rational. We also identify a sufficient condition for the context-freeness of the language L recognized by this automaton and, when this condition is satisfied, we construct a pushdown automaton that recognizes L.
- Published
- 2015
21. Equality sets for recursively enumerable languages
- Author
-
Tero Harju, Hendrik Jan Hoogeboom, Michel Latteux, and Vesa Halava
- Subjects
Discrete mathematics ,General Mathematics ,Recursively enumerable set ,Of the form ,Computer Science Applications ,Combinatorics ,Post correspondence problem ,Recursively enumerable language ,Morphism ,Mathematics Subject Classification ,Maximal set ,Language family ,Software ,Mathematics - Abstract
We consider shifted equality sets of the form EG(a, g1 ,g 2 )= {w | g1(w )= ag2(w)} ,w hereg1 and g2 are nonerasing morphisms and a is a letter. We are interested in the family consisting of the languages h(EG(J)), where h is a coding and EG(J )i s as hifted equality set. We prove several closure properties for this family. More- over, we show that every recursively enumerable language L ⊆ A ∗ is a projection of a shifted equality set, that is, L = πA(EG(a, g1 ,g 2)) for some (nonerasing) morphisms g1 and g2 and a letter a ,w hereπA deletes the letters not in A. Then we deduce that recursively enumerable star languages coincide with the projections of equality sets. Mathematics Subject Classification. 03D25, 68Q45.
- Published
- 2005
22. Equality sets of prefix morphisms and regular star languages
- Author
-
Tero Harju, Michel Latteux, and Vesa Halava
- Subjects
Discrete mathematics ,Abstract family of languages ,Prefix grammar ,Star (graph theory) ,Computer Science Applications ,Theoretical Computer Science ,Combinatorics ,Prefix ,Morphism ,Projection (mathematics) ,Regular language ,Signal Processing ,Formal language ,Information Systems ,Mathematics - Abstract
We consider equality sets of prefix morphisms, that is, sets E(g"1,g"2)={w|g"1(w)=g"2(w)}, where g"1 and g"2 are prefix morphisms. Recall that a morphism g is prefix if, for all different letters a and b, g(a) is not a prefix of g(b). We prove a rather surprising equality on families of languages, namely, that the family of regular star languages coincides with the family of languages of form @p"A(E(g"1,g"2)) for some prefix morphisms g"1 and g"2, and a projection @p"A which deletes the letters not in A.
- Published
- 2005
23. Mixed languages
- Author
-
Luc Boasson, Jean Berstel, Michel Latteux, Laboratoire d'Informatique Gaspard-Monge (LIGM), Centre National de la Recherche Scientifique (CNRS)-Fédération de Recherche Bézout-ESIEE Paris-École des Ponts ParisTech (ENPC)-Université Paris-Est Marne-la-Vallée (UPEM), Laboratoire d'informatique Algorithmique : Fondements et Applications (LIAFA), Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Informatique Fondamentale de Lille (LIFL), Université de Lille, Sciences et Technologies-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lille, Sciences Humaines et Sociales-Centre National de la Recherche Scientifique (CNRS), and Université Paris-Est Marne-la-Vallée (UPEM)-École des Ponts ParisTech (ENPC)-ESIEE Paris-Fédération de Recherche Bézout-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Synchronized product ,General Computer Science ,0102 computer and information sciences ,[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM] ,01 natural sciences ,Theoretical Computer Science ,Decidability ,Combinatorics ,Formal languages ,030507 speech-language pathology & audiology ,03 medical and health sciences ,Projection (mathematics) ,Regular language ,010201 computation theory & mathematics ,Product (mathematics) ,Formal language ,0305 other medical science ,Commutative property ,Word (group theory) ,Mixing (physics) ,Computer Science(all) ,Theory of traces ,Mathematics - Abstract
Let T=A∪B∪C be an alphabet that is partitioned into three subalphabets. The mixing product of a word g over A∪B and of a word d over A∪C is the set of words w over T such that its projection onto A∪B gives g and its projection onto A∪C gives d.Let R be a regular language over T such that xbcy is in R if and only if xcby is in R for any two letters b in B and c in C. In other words, R is commutative over B and C. Is this property “structural” in the sense that R can then be obtained as a mixing product of a regular language over A∪B and of a regular language over A∪C?This question has a rather easy answer, but there are many cases where the answer is negative. A more interesting question is whether R can be represented as a finite union of mixed products of regular languages. For the moment, we do not have an answer to this question. However, we prove that it is decidable whether, for a given k, the language R is a union of at most k mixed products of regular languages.RésuméSoit T=A∪B∪C un alphabet partitionné en trois sous-alphabets. Le mélange d’un mot g sur A∪B et d’un mot d sur A∪C est l’ensemble des mots w sur T dont la projection sur A∪B donne le mot g et sur A∪C donne le mot d.Soit R un langage rationnel sur T tel que xbcy est dans R si et seulement si xcby est dans R pour deux lettres quelconques b∈B et c∈C. En d’autres termes, R est commutatif sur B et C. Est-ce que cette propriété est “structurelle”, c’est-à-dire peut-on alors obtenir R comme mélange d’un langage rationnel sur A∪B et d’un langage rationnel sur A∪C?Cette question a une réponse plutôt facile, mais il existe de trop nombreux cas où la réponse est négative. Une question plus intéressante est de savoir si on peut représenter R comme une union finie de mélanges de langages rationnels. Pour l’instant, nous n’avons pas de réponse à cette question. En revanche, nous montrons qu’il est décidable, pour un entier k donné, si R est union d’au plus k mélanges de langages rationnels.
- Published
- 2005
24. Commutation with Ternary Sets of Words
- Author
-
Ion Petre, Michel Latteux, and Juhani Karhumäki
- Subjects
Combinatorics ,Discrete mathematics ,Set (abstract data type) ,Conjecture ,Computational Theory and Mathematics ,Theory of computation ,Of the form ,Commutation ,Ternary operation ,Centralizer and normalizer ,Theoretical Computer Science ,Mathematics - Abstract
We prove that for any nonperiodic set of words F \subseteq Σ+ with at most three elements, the centralizer of F, i.e., the largest set commuting with F, is F*. Moreover, any set X commuting with F is of the form X = FI, for some I \subseteq ℕ. A boundary point is thus established, as these results do not hold for all languages with at least four words. This solves a conjecture of Karhumaki and Petre, and provides positive answers to special cases of some intriguing questions on commutation of languages, raised by Ratoandromanana and Conway.
- Published
- 2005
25. One-rule length-preserving rewrite systems and rational Transductions
- Author
-
Yves Roos, Michel Latteux, Laboratoire d'Informatique Fondamentale de Lille (LIFL), and Université de Lille, Sciences et Technologies-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lille, Sciences Humaines et Sociales-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Discrete mathematics ,Combinatorics ,Transduction (machine learning) ,Conjecture ,[INFO.INFO-FL]Computer Science [cs]/Formal Languages and Automata Theory [cs.FL] ,If and only if ,General Mathematics ,ACM: F.: Theory of Computation/F.4: MATHEMATICAL LOGIC AND FORMAL LANGUAGES/F.4.3: Formal Languages/F.4.3.2: Classes defined by resource-bounded automata ,Software ,ACM: F.: Theory of Computation/F.4: MATHEMATICAL LOGIC AND FORMAL LANGUAGES/F.4.2: Grammars and Other Rewriting Systems/F.4.2.4: Thue systems ,Computer Science Applications ,Mathematics - Abstract
International audience; We address the problem to know whether the relation induced by a one-rule length-preserving rewrite system is rational. We partially answer to a conjecture of Éric Lilin who conjectured in 1991 that a one-rule length-preserving rewrite system is a rational transduction if and only if the left-hand side u and the right-hand side v of the rule of the system are not quasi-conjugate or are equal, that means if u and v are distinct, there do not exist words x, y and z such that u=xyz and v=zyx. We prove the only if part of this conjecture and identify two non trivial cases where the if part is satisfied.; Nous étudions le problème de la caractérisation des systèmes de réécriture à une règle préservant les longueurs pour lesquels la relation re réécriture associée est rationnelle. Nous répondons partiellement à une conjecture d'Éric Lilin de 1991 stipulant qu'un système de réécriture à une règle préservant les longueurs est une transduction rationnelle si et seulement si la partie gauche u et la partie droite v de l'unique règle de réécriture du système ne sont pas quasi-conjugués ou u et v sont égaux, c'est à dire que si u et v sont différents, il n'existe pas trois mots x, y et z tels que u = xyz et v = zyx. Nous montrons que la condition est nécessaire et nous identifions deux cas significatifs pour lesquels la condition est suffisante.
- Published
- 2014
26. The meet operation in the lattice of codes
- Author
-
Véronique Bruyère, Michel Latteux, and Denis Derencourt
- Subjects
Combinatorics ,General Computer Science ,Lattice (order) ,Free monoid ,Mathematics ,Theoretical Computer Science ,Computer Science(all) - Abstract
We study properties of the meet of two rational codes X and Y, defined as the base of the free monoid X∗∩Y∗. We first give several examples of rational maximal codes Xand Y such that their meet is no longer a maximal code. We give a combinatorial characterization of the rational maximal codes X,Y for which the meet is a maximal code. We also show that any rational (maximal or not) code is the meet of two rational maximal codes.
- Published
- 1998
- Full Text
- View/download PDF
27. ON COMPUTATIONAL POWER OF WEIGHTED FINITE AUTOMATA
- Author
-
Alain Terlutte, Juhani Karhumäki, Denis Derencourt, and Michel Latteux
- Subjects
TheoryofComputation_COMPUTATIONBYABSTRACTDEVICES ,Algebra and Number Theory ,Nested word ,Timed automaton ,ω-automaton ,Nonlinear Sciences::Cellular Automata and Lattice Gases ,Theoretical Computer Science ,Algebra ,TheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGES ,Deterministic finite automaton ,Computational Theory and Mathematics ,Continuous spatial automaton ,Automata theory ,Quantum finite automata ,Nondeterministic finite automaton ,Computer Science::Formal Languages and Automata Theory ,Information Systems ,Mathematics - Abstract
Weighted Finite Automata are automata with multiplicities used to compute real functions by reading infinite words. The aim of this paper is to study what kind of functions can be computed by level automata, a particular subclass of WFA. Several results concerning the continuity and the smoothness of these functions are shown. In particular, the only smooth functions that can be obtained are the polynomials. This enables to decide whether a function computed by a level automaton is smooth or not.
- Published
- 1996
28. On One-Rule Grid Semi-Thue Systems
- Author
-
Michel Latteux, Yves Roos, Laboratoire d'Informatique Fondamentale de Lille (LIFL), Université de Lille, Sciences et Technologies-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lille, Sciences Humaines et Sociales-Centre National de la Recherche Scientifique (CNRS), Modeling Tree Structures, Machine Learning, and Information Extraction (MOSTRARE), Université de Lille, Sciences et Technologies-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lille, Sciences Humaines et Sociales-Centre National de la Recherche Scientifique (CNRS)-Université de Lille, Sciences et Technologies-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lille, Sciences Humaines et Sociales-Centre National de la Recherche Scientifique (CNRS)-Inria Lille - Nord Europe, and Institut National de Recherche en Informatique et en Automatique (Inria)
- Subjects
Discrete mathematics ,Algebra and Number Theory ,Existential quantification ,Grid ,Theoretical Computer Science ,Set (abstract data type) ,Loop (topology) ,TheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGES ,Computational Theory and Mathematics ,[INFO.INFO-FL]Computer Science [cs]/Formal Languages and Automata Theory [cs.FL] ,Rewriting ,Computer Science::Formal Languages and Automata Theory ,Information Systems ,Mathematics - Abstract
International audience; The family of one-rule grid semi-Thue systems, introduced by Alfons Geser, is the family of one-rule semi-Thue systems such that there exists a letter c that occurs as often in the left-hand side as the right-hand side of the rewriting rule. We prove that for any one-rule grid semi-Thue system S, the set S(w) of all words obtainable from w using repeatedly the rewriting rule of S is a constructible context-free language. We also prove the regularity of the set Loop(S) of all words that start a loop in a one-rule grid semi-Thue systems S.; La famille des systèmes de semi-Thue à une seule règle "en grille", introduite par Alfons Geser, est la famille des systèmes de réécriture de mots pour lesquels il existe une lettre apparaissant autant de fois dans la partie gauche et dans la partie droite de leur unique règle. Nous prouvons que, pour tout système S de cette famille, l'ensemble S(w) des mots obtenus à partir du mot w en appliquant itérativement la règle de réécriture de S est un langage algébrique constructible. Nous prouvons également que l'ensemble Loop(S) des mots qui sont à l'origine d'une boucle de réécriture pour un systèmes de semi-Thue à une seule règle "en grille" S est un langage régulier.
- Published
- 2012
29. On continuous functions computed by finite automata
- Author
-
Alain Terlutte, Juhani Karhumäki, Denis Derencourt, and Michel Latteux
- Subjects
Finite-state machine ,Continuous function ,General Mathematics ,Applied mathematics ,Point (geometry) ,Derivative ,Construct (python library) ,Algorithm ,Computer Science::Databases ,Computer Science::Formal Languages and Automata Theory ,Software ,Computer Science Applications ,Mathematics - Abstract
Weighted Finite Automata (WFA) can be used to define functions from [0, 1] into R. We give here a method to construct more and more complex WFA computing continuous functions. We give also an example of a continuous function having no derivative at any point, that can be computed with a 4-state WFA
- Published
- 1994
30. Deterministic sequential functions
- Author
-
H. C. M. Kleijn, Tero Harju, and Michel Latteux
- Subjects
Discrete mathematics ,Subsequential limit ,Computer Networks and Communications ,Rational function ,Composition (combinatorics) ,Data structure ,Combinatorics ,Simple (abstract algebra) ,Partial function ,Theory of computation ,Automata theory ,Software ,Information Systems ,Mathematics - Abstract
The simple rational partial functions accepted by generalized sequential machines are shown to coincide with the compositions ℋ ℋP−1 ℋ, where ℋP consists of the prefix codings. The rational functions accepted by generalized sequential machines are proved to coincide with the compositions ℋ ℳℋP−1 ℛ ℋ , where ℳ is the family of endmarkers and ℛ is the family of removals of endmarkers. (The compositions are read from left to right). We also show that ℳ ℋℋP−1 ℋ is the family of the subsequential functions.
- Published
- 1992
31. Compositional representation of rational functions
- Author
-
H. C. M. Kleijn, Tero Harju, and Michel Latteux
- Subjects
Pure mathematics ,General Mathematics ,Calculus ,Representation (systemics) ,Rational function ,Software ,Computer Science Applications ,Mathematics - Abstract
On montre que les fonctions rationnelles coincident avec les compositions de marquages terminaux, morphismes et inverses de morphismes, injectifs. Plus precisement, toute fonction rationnelle τ se represente sous la forme τ=μ m α 1 α 2 −1 α 3 ou μ m est un marquage terminal, α 1 , α 3 sont des morphismes et α 2 est un morphisme injectif
- Published
- 1992
32. Minimal NFA and biRFSA Languages
- Author
-
Michel Latteux, Alain Terlutte, Yves Roos, Laboratoire d'Informatique Fondamentale de Lille (LIFL), Université de Lille, Sciences et Technologies-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lille, Sciences Humaines et Sociales-Centre National de la Recherche Scientifique (CNRS), Modeling Tree Structures, Machine Learning, and Information Extraction (MOSTRARE), Université de Lille, Sciences et Technologies-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lille, Sciences Humaines et Sociales-Centre National de la Recherche Scientifique (CNRS)-Université de Lille, Sciences et Technologies-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lille, Sciences Humaines et Sociales-Centre National de la Recherche Scientifique (CNRS)-Inria Lille - Nord Europe, and Institut National de Recherche en Informatique et en Automatique (Inria)
- Subjects
Theoretical computer science ,Finite-state machine ,General Mathematics ,minimal NFA ,ACM: F.: Theory of Computation/F.4: MATHEMATICAL LOGIC AND FORMAL LANGUAGES/F.4.3: Formal Languages/F.4.3.1: Classes defined by grammars or automata (e.g., context-free languages, regular sets, recursive sets) ,Characterization (mathematics) ,Computer Science Applications ,Automaton ,[INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG] ,Ukkonen's algorithm ,State (computer science) ,Language family ,Arithmetic ,Residual finite state automata ,Software ,Mathematics - Abstract
International audience; In this paper, we define the notion of biRFSA which is a residual finate state automaton (RFSA) whose the reverse is also an RFSA. The languages recognized by such automata are called biRFSA languages. We prove that the canonical RFSA of a biRFSA language is a minimal NFA for this language and that each minimal NFA for this language is a sub-automaton of the canonical RFSA. This leads to a characterization of the family of biRFSA languages. In the second part of this paper, we define the family of biseparable automata. We prove that every biseparable NFA is uniquely minimal among all NFAs recognizing a same language, improving the result of H. Tamm and E. Ukkonen for bideterministic automata.
- Published
- 2009
33. On characterizations of recursively enumerable languages
- Author
-
Paavo Turakainen and Michel Latteux
- Subjects
Discrete mathematics ,Post correspondence problem ,Recursively enumerable language ,Morphism ,Computer Networks and Communications ,Simple (abstract algebra) ,Theory of computation ,Maximal set ,Characterization (mathematics) ,Software ,Information Systems ,Decidability ,Mathematics - Abstract
Geffert has shown that earch recursively enumerable languageL overΣ can be expressed in the formL{h(x) ?1 g(x)?x inΔ +}?Σ * whereΔ is an alphabet andg, h is a pair of morphisms. Our purpose is to give a simple proof for Geffert's result and then sharpen it into the form where both of the morphisms are nonerasing. In our method we modify constructions used in a representation of recursively enumerable languages in terms of equality sets and in a characterization of simple transducers in terms of morphisms. As direct consequences, we get the undecidability of the Post correspondence problem and various representations ofL. For instance,L =?(L 0)?Σ * whereL 0 is a minimal linear language and ? is the Dyck reductionaa???, Aa???.
- Published
- 1990
34. Identification of biRFSA languages
- Author
-
Michel Latteux, Yves Roos, Aurélien Lemay, Alain Terlutte, Laboratoire d'Informatique Fondamentale de Lille (LIFL), Université de Lille, Sciences et Technologies-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lille, Sciences Humaines et Sociales-Centre National de la Recherche Scientifique (CNRS), Modeling Tree Structures, Machine Learning, and Information Extraction (MOSTRARE), Université de Lille, Sciences et Technologies-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lille, Sciences Humaines et Sociales-Centre National de la Recherche Scientifique (CNRS)-Université de Lille, Sciences et Technologies-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lille, Sciences Humaines et Sociales-Centre National de la Recherche Scientifique (CNRS)-Inria Lille - Nord Europe, Institut National de Recherche en Informatique et en Automatique (Inria), Groupement de Recherches et d'Analyse des Pesticides dans les Produits Alimentaires (GRAPPA), DGAL-Institut National de la Recherche Agronomique (INRA), This research was partially supported by Inria (MOSTRARE team)., and Institut National de la Recherche Agronomique (INRA)-DGAL
- Subjects
Discrete mathematics ,Class (set theory) ,Finite-state machine ,TheoryofComputation_COMPUTATIONBYABSTRACTDEVICES ,[INFO.INFO-PL]Computer Science [cs]/Programming Languages [cs.PL] ,General Computer Science ,Learnability ,0102 computer and information sciences ,02 engineering and technology ,01 natural sciences ,Automaton ,Theoretical Computer Science ,Regular inference ,Set (abstract data type) ,TheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGES ,Regular language ,010201 computation theory & mathematics ,Residual languages ,0202 electrical engineering, electronic engineering, information engineering ,Non-deterministic finite automata ,020201 artificial intelligence & image processing ,Nondeterministic finite automaton ,Time complexity ,Mathematics ,Computer Science(all) - Abstract
International audience; The task of identifying a language from a set of its words is not an easy one. For instance, it is not feasible to identify regular languages in the general case. Therefore, looking for subclasses of regular languages that can be identi?ed in this framework is an interesting problem. One of the most classical identi?able classes is the class of reversible languages, introduced by D. Angluin, also called bideterministic languages as they can be represented by deterministic automata (DFA) whose reverse is also deterministic. Residual Finite State Automata (RFSA) on the other hand is a class of non deterministic automata that shares some properties with DFA. In particular, DFA are RFSA and RFSA can be much smaller. We study here learnability of the class of languages that can be represented by biRFSA: RFSA whose reverse are RFSA. We prove that this class is not identi?able in general but we present two subclasses that are learnable, the second one being identi?able in polynomial time.
- Published
- 2006
35. On the composition of morphisms and inverse morphisms
- Author
-
Michel Latteux and Jeannine Leguy
- Subjects
Combinatorics ,Morphism ,Regular language ,Deterministic automaton ,Inverse ,Discrete category ,Mathematics - Abstract
In order to study composition of morphisms and inverse morphisms, we introduce starry transductions t which are, by definition, those verifying: e ∃ t(e) and for all words u, v, t(u) t(v) ⊂t(uv). We show that each starry transduction can be factored with two morphisms and two inverse morphisms. Then, we study some particular starry transductions. So, we prove that each rational substitution can be factored into a single morphism and two inverse morphisms and that each decreasing starry transduction can be factored into a single inverse morphism and two morphisms. That permits us to give an answer to a question posed in [5], by showing that for every rational language R, there exist morphisms h1, h2, h3, g1, g2, g3, such that R=h 3 −1 o h2 o h 1 −1 (a)=g3 o g 2 −1 o g1(a*b).
- Published
- 2006
36. Rational ω-transductions
- Author
-
E. Timmerman and Michel Latteux
- Subjects
Quantitative Biology::Subcellular Processes ,Pure mathematics ,Morphism ,Quantitative Biology::Molecular Networks ,Inverse ,Limit (mathematics) ,Quantitative Biology::Cell Behavior ,Mathematics - Abstract
The rational ω-transductions (defined by F. Gire as bimorphisms) are particular transductions for infinite words. In this paper we give characterizations of these transductions. On the one hand they coincide with the compositions of non erasing and inverse non erasing morphisms, and only three morphisms are necessary. On the other hand they can be defined from bifaithful rational transductions using a limit operation we call adherence.
- Published
- 2005
37. Rational cones and commutations
- Author
-
Michel Latteux
- Subjects
Algebra ,Mathematics::History and Overview ,Algebraic number ,Connection (mathematics) ,Mathematics - Abstract
This survey presents some results concerning total commutations, partial commutations and semi-commutations in connection with the families of rational and algebraic languages and more generaly with (faithful) rational cones.
- Published
- 2005
38. Quelques proprietes des langages a un Compteur
- Author
-
Michel Latteux
- Subjects
Combinatorics ,Existential quantification ,Dyck language ,Pumping lemma for regular languages ,Mathematics - Abstract
We study restricted one counter languages, that is, languages belonging to Rocl, the full trio generated by D1′*, the restricted Dyck language over one pair of parentheses. We show that every generator of Rocl is a bifaithfull one and that there exists a one counter language which dominates the other ones by length preserving rational transduction. Then, we establish that the pumping lemma for linear languages is almost true for restricted one counter languages. At last, we prove that Rocl contains no non-rational AFL and, if Rocl is included in the smallest full AFL containing a full semi-AFL L, then Rocl is included in L. Moreover, if Rocl is included in the smallest full AFL closed under substitution containing a context-free full trio L, then Rocl is included in L.
- Published
- 2005
39. Synchronized Shuffle and Regular Languages
- Author
-
Yves Roos, Michel Latteux, Laboratoire d'Informatique Fondamentale de Lille (LIFL), Université de Lille, Sciences et Technologies-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lille, Sciences Humaines et Sociales-Centre National de la Recherche Scientifique (CNRS), and Roos, Yves
- Subjects
Discrete mathematics ,Morphism ,[INFO.INFO-FL]Computer Science [cs]/Formal Languages and Automata Theory [cs.FL] ,Regular language ,Star (graph theory) ,Representation (mathematics) ,ComputingMilieux_MISCELLANEOUS ,[INFO.INFO-FL] Computer Science [cs]/Formal Languages and Automata Theory [cs.FL] ,Mathematics - Abstract
New representation results for three families of regular languages are stated, using a special kind of shuffle operation, namely the synchronized shuffle. First, it is proved that the family of regular star languages is the smallest family containing the language (a + bc)* and closed under synchronized shuffle and length preserving morphism. The second representation result states that the family of e-free regular languages is the smallest family containing the language (a + bc)*d and closed under synchronized shuffle, union and length preserving morphism. At last, it is proved that Reg is the smallest family containing the two languages (a+ bb)* and a+(ab)+, closed under synchronized shuffle, union and length preserving morphism.
- Published
- 1999
40. Iterated length-preserving rational transductions
- Author
-
Alain Terlutte, David Simplot, and Michel Latteux
- Subjects
Quantitative Biology::Subcellular Processes ,Discrete mathematics ,Regular language ,Iterated function ,Deterministic automaton ,Quantitative Biology::Molecular Networks ,Rational function ,Context-sensitive language ,Quantitative Biology::Cell Behavior ,Mathematics - Abstract
The purpose of this paper is the study of the smallest family of transductions containing length-preserving rational transductions and closed under union, composition and iteration. We give several characterizations of this class using restricted classes of length-preserving transductions, by showing the connections with “context-sensitive transductions” and transductions associated with recognizable picture languages. We also study the class obtained by only using length-preserving rational functions and we show the relations with “deterministic context-sensitive transductions”.
- Published
- 1998
41. Constructing sequential bijections
- Author
-
Christian Choffrut, Christophe Prieur, and Michel Latteux
- Subjects
Combinatorics ,Power series ,Simple (abstract algebra) ,Mathematics::Category Theory ,Free monoid ,State (functional analysis) ,Sequential function ,Bijection, injection and surjection ,Mathematics - Abstract
We state a simple condition on a rational subset X of a free monoid B* for the existence of a sequential function that is a one-to-one mapping of some free monoid A* onto X. As a by-product we obtain new sequential bijections of a free monoid onto another.
- Published
- 1997
42. Figures composées de pixels et monoïde inversif
- Author
-
David Simplot, Michel Latteux, and Denis Robilliard
- Subjects
système de réécriture ,General Mathematics ,68Q45 ,20M18 ,Langages de figures ,Humanities ,monoïde inversif ,Mathematics - Published
- 1997
43. Semi-Commutations
- Author
-
Mireille Clerbout, Michel Latteux, and Yves Roos
- Published
- 1995
44. On computational power of weighted finite automata
- Author
-
Michel Latteux, Alain Terlutte, Denis Derencourt, and Juhani Karhumäki
- Subjects
Discrete mathematics ,TheoryofComputation_COMPUTATIONBYABSTRACTDEVICES ,TheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGES ,Smoothness (probability theory) ,Finite-state machine ,Function (mathematics) ,Nonlinear Sciences::Cellular Automata and Lattice Gases ,Computer Science::Formal Languages and Automata Theory ,Automaton ,Mathematics ,Power (physics) - Abstract
Weighted Finite Automata are automata with multiplicities used to compute real functions by reading infinite words. We study what kind of functions can be computed by level automata, a particular subclass of WFA. Several results concerning the continuity and the smoothness of these functions are shown. In particular, the only smooth functions that can be obtained are the polynomials. This allows to decide whether a function computed by a level automaton is smooth or not.
- Published
- 1992
45. A decidability result about convex polyominoes
- Author
-
Michel Latteux, Karine Slowinski, and Danièle Beauquier
- Subjects
Discrete mathematics ,Polyomino ,Regular language ,Line (geometry) ,Regular polygon ,Unit (ring theory) ,Word (group theory) ,Undecidable problem ,Decidability ,Mathematics - Abstract
A polyomino contour can be represented as a word over a four letter alphabet A. Each letter induces a unit line pointing one of the four directions (right, left, up and down). According to[b], checking whether a rational language R⊂A* contains a polyomino contour word is undecidable. We restrict the problem to convex polyominoes and we prove that, in this case, the problem turns out to be decidable.
- Published
- 1992
46. Mots infinis et langages commutatifs
- Author
-
Michel Latteux
- Subjects
Mathematics - Published
- 1978
47. Indécidabilité de la condition IRS
- Author
-
Jean-Michel Autebert, Michel Latteux, Luc Boasson, and Joffroy Beauquier
- Subjects
Computer science - Published
- 1982
48. A propos du lemme de substitution
- Author
-
Michel Latteux
- Subjects
Combinatorics ,Lemma (mathematics) ,General Computer Science ,Disjoint sets ,Arithmetic ,Mathematics ,Theoretical Computer Science ,Computer Science(all) - Abstract
We establish a new version of the Greibach syntactic lemma regarding substitutions between full trios, namely: Let ℒ 1 be a bifaithful trio, ℒ 2 a full trio, L 1 , L 2 languages over disjoint alphabets. Then L 1 ↑ℒ 2 ∈ℒ 1 □ℒ 2 implies L 1 ∈ℒ 1 or ( L 2 c ) * ∈ℒ 2 .
- Published
- 1981
- Full Text
- View/download PDF
49. Intersections de langages alg�briques born�s
- Author
-
Michel Latteux
- Subjects
Combinatorics ,Discrete mathematics ,Intersection ,Computer Networks and Communications ,Bounded function ,Theory of computation ,Software ,Information Systems ,Mathematics - Abstract
We study the family SLB of morphic images of the intersection of two bounded Context-free languages. In particular, we prove the equality between this family and the family of finite intersection of bounded Context-free languages.
- Published
- 1979
50. Sur les ensembles linéaires
- Author
-
Michel Latteux
- Subjects
Mathematics::K-Theory and Homology ,Mathematics::Category Theory ,General Mathematics ,Mathematics::Representation Theory ,Computer Science::Computers and Society ,Software ,Computer Science Applications - Abstract
Tout ensemble ayant G comme ensemble de periodes est une union finie disjointe d'ensembles lineaires dont les periodes appartiennent a G
- Published
- 1987
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.