1. Scenario-based collision detection using machine learning for highly automated driving systems
- Author
-
Marzana Khatun, Rolf Jung, and Michael Glaß
- Subjects
Lane change scenarios ,highly automated driving systems ,collision detection ,machine learning ,Control engineering systems. Automatic machinery (General) ,TJ212-225 ,Systems engineering ,TA168 - Abstract
Highly Automated Driving (HAD) systems implement new features to improve the performance, safety and comfort of partially or fully automated vehicles. The identification of safety parameters by means of complex systems and the driving environment is a fundamental aspect that require great attention. Therefore, much research has been conducted in the field of collision detection in the development of automated vehicles. However, the development of HAD systems faces the challenge of ensuring zero accidents. For this reason, collision detection in the safety-related concept phase as hazard identification is one of the key research points in HAD system. In this paper, a systematic approach to detect potential collisions for scenario-based hazard analysis of HAD systems is presented by using Multilayer Perceptron (MLP) as a Machine Learning (ML) technique. Moreover, the proposed approach assists in reducing the number of observed scenarios for hazard analysis and risk assessment. Additionally, two simulation-based scenario datasets are examined in the ML model to identify potential hazard scenarios. The results of this study show that MLP can support to detect the collision at safety-related concept phase. Furthermore, this paper contributes to providing arguments and evidence for ML techniques in HAD systems safety by selecting relevant use cases.
- Published
- 2023
- Full Text
- View/download PDF