1. Predicting tobacco risk factors by using social big data
- Author
-
Juyoung Song, Tae Min Song, and Mi Kyung Cheon
- Subjects
Engineering ,business.industry ,Big data ,Advertising ,business ,Demography - Abstract
This study will predict risk factors associated with cigarettes in Korea by analyzing the social big data collected from the internet such as blogs, cafes, and SNSes in Korea, using data mining techniques. The key analysis results are as follows. First, when "raising cigarette price"is mentioned online, the negative group (i.e., the proportion of people holding negative views about smoking) increased from 58.6% to 74.8%, and when "lung cancer" is mentioned, it increased to 73.1%. Second, with regard to cigarettes in general, the positive group (i.e., the proportion of people holding positive views about smoking) decreased by 5.6% after the raising of cigarette prices, while the negative group increased by 6.1%. Third, when policies related to "FCTC, raising cigarette price, non-smoking laws, smoking regulations, non-smoking ads, and nonsmoking business" are more frequently mentioned online, the positive group tended to decrease. Finally, when "non-smoking drugs, non-smoking patches, and non-smoking gums" are more frequently mentioned online, the positive group tended to decrease. However, when "electronic cigarettes and supplements" are more frequently mentioned online, the positive group increased.
- Published
- 2015