1. The host galaxies of radio-loud quasars at z>5 with ALMA
- Author
-
Mazzucchelli, C., Decarli, R., Belladitta, S., Bañados, E., Meyer, R. A., Connor, T., Momjian, E., Rojas-Ruiz, S., Eilers, A. -C., Khusanova, Y., Farina, E. P., Drake, A. B., Walter, F., Wang, F., Onoue, M., and Venemans, B. P.
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
The interaction between radio-jets and quasar host galaxies plays a paramount role in quasar/galaxy co-evolution. However, very little has been known so far about this interaction at very high-z. Here, we present new Atacama Large Millimeter/submillimeter Array (ALMA) observations in Band 7 and Band 3 of six radio-loud quasars' host galaxies at $z > 5$. We recover [CII] 158 $\mu$m line and underlying dust continuum emission at $>2\sigma$ for five sources, while we obtain upper limits for the CO(6-5) emission line and continuum for the remaining source. At the spatial resolution of our observations ($\sim$1.0"-1.4"), we do not recover perturbed/extended morphologies or kinematics, signatures of potential mergers. These galaxies already host large quantities of gas, with [CII]-based star formation rates of $30-400 M_{\odot} $yr$^{-1}$. Building their radio/sub-mm spectral energy distributions (SEDs), we find that in at least four cases the 1mm continuum intensity arises from a combination of synchrotron and dust emission, with an initial estimation of synchrotron contribution at 300 GHz of $\gtrsim$10%. We compare the properties of the sources inspected here with a large collection of radio-quiet sources from the literature, as well as a sample of radio-loud quasars from previous studies, at comparable redshift. We recover a potential mild decrease in $L_{\rm [CII]}$ for the radio-loud sources, which might be due to a suppression of the cool gas emission due to the radio-jets. We do not find any [CII]-emitting companion galaxy candidate around the five radio-loud quasars observed in Band 7: given the depth of our dataset, this result is still consistent with that observed around radio-quiet quasars. Further higher-spatial resolution observations, over a larger frequency range, of high-z radio-loud quasars hosts will allow for a better understanding of the physics of such sources., Comment: 20 pages; 11 figures; accepted for publication in A&A
- Published
- 2024