Güneş enerjisini sayesinde suyun fotokatalitik (FK) olarak parçalanması sonucundahidrojen gazı ve oksijen gazı oluşmaktadır. Fotokatalitik sistemde oksijen evrimreaksiyonu (OER) fotoanot malzeme yüzeyinde ve hidrojen evrim reaksiyonu (HER)fotoanot malzeme yüzeyinde gerçekleşmektedir. Ancak, fotoanot malzemelerin hemOER aktivitesi zayıf olması hem de yük taşıyıcıların verimsiz kullanılması nedeniylepratik kullanımlar için elverişli değildir. Bu yüzden, gün ışığında yüksek verimdeçalışacak bir foto elektrot malzemesi gerekmektedir.FEK sistemlerinde kullanılacak olan ışığa duyarlı elektrot görünür ışık spektrumunaralığında yüksek soğurma özelliğine, yüksek fotoakım yoğunluğuna, yüksek elektronve boşluk hareketliliğine, yüksek yük taşıyıcı ömrüne ve yüksek kimyasal kararlılığasahip olmalıdır. Diğer metal oksit göre bizmut vanadat (BiVO4) malzemesi nispetendar bant boşluğu (Eg = 2.4 eV) ve suyun parçalanması için uygun bant sınırlarına sahipolan n-tipi bir yarı iletkendir. Bu yarı iletkenin sahip olduğu üç faz yapısındanmonoklinik kristal yapısı tetragonal kristal yapısına göre çok güçlü fotokatalitikperformans göstermektedir. Bu özelliklerine rağmen BiVO4 görünür ışıkspektrumunda, zayıf elektron hareketliliği göstermesi, yüklü parçacıkların ayırımınınyetersiz kalması ve elektron-boşluk (e-/h+) çiftlerinin yeniden birleşme olasılığınınolması nedeniyle endüstriyel uygulamak için geliştirilmesi gerekmektedir.Bu tez kapsamında, sol jel yöntemi ile oluşturulan BiVO4 çözeltisi daldırarak kaplamametodu ile flor katkılı kalay oksit (FTO) cam üzerine kaplanmıştır. Sentezlenen BiVO4esaslı kaplamaların fotokatalitik özelliklerinin, optiksel özelliklerinin ve morfolojiközelliklerinin incelenmesini kapsamaktadır. Katkısız BiVO4 filmin fotoakımyoğunluğunu iyileştirmek ve e-/h+yeniden birleşme ihtimalini azaltmak için molibdenkatkısı yapılmıştır.BiVO4 ince filmlerin zamana karşı verdikleri fotoakım değerlerini karşılaştırmak içinKA yöntem ile suyun teorik olarak parçalandığı sabit potansiyel (1,23VRHE )uygulanmıştır. Bu kronoamporemetri deneyi ile BiV0,99O4Mo0,01 numunesi (0,32mAcm-2), saf BiVO4 göre 5 kat daha fazla akım yoğunluğu malzeme yüzeyindengeçtiği ispatlanmıştır. Mo katkılı diğer fotokatalizörler artan Mo oranına ( %0,05,%0,1, %0,2 mol) göre sırasıyla KA deneyinde ölçülen akım yoğunlukları 0,24, 0,19,0,13 mAcm-2'dir.Katkısız ve Mo katkılı BiVO4 filmlerin arayüzünde gerçekleşen yük transfer kinetiğielektrokimyasal empedans spektroskopi (EIS) yapılarak ve düz bant potensiyeleriMott-Schottky (M-S) analizi yapılarak belirlenmiştir. EIS elde edilen Nyquistgrafiğine göre %0,01 mol Mo katkılı numunenin OER reaksiyonuna karşı gösterdiğidirenç, saf BiVO4 numunesine göre daha küçük olması daha iyi polarize edildiğianlamına gelmektedir. Bu numuneni kolay polarize olması OER reaksiyonun gerçekleşmesi için gereken enerjiyi azalttığı için FEK performasını arttırdığıdüşünülmektedir.BiVO4 esaslı sentezlenen tüm malzemelerin Mott-Schottky grafiğindeki eğimin pozitifolmasından dolayı n-tipi bir yarı iletken davranışı gösterdiği görülmektedir. Ayrıca,bu eğimin ne kadar küçük ise yük taşıyıcı konsantrasyonu o derece yüksek olduğunubelirtmektedir.Sentezlenen ince film kaplamaların morfolojik özellikleri belirlemek için yapılanFESEM analizi ile yapıdaki Mo konsantarsyonun artması morfoloji olumsuz yöndeetkilediği görülmektedir. Yapısal karakterizasyonu belirlemek için yapılan XRDanalizi sonucunda sentezlenen numuneler monoklinik fazda olduğu ispat edilmiştir.Numunelerde çok azda olsa dönüşmemiş tetragonal faz olduğu görülmüştür. DRSspektrumundan Kubelka-Munk modeli kullanarak yarı iletkenin enerji bant aralığınıhesaplanmıştır. Mo katkısı artıkça saf BiVO4'ün enerji bant aralığını artırdığıgörülmüştür. The photoelectrochemical is a process that uses sun energy to convert to dissociatewater molecules into hydrogen and oxygen. In this system, the oxygen evolutionreaction (OER) takes place on the photoanode material surface and the hydrogenevolution reaction (HER) takes place on the photoanode material surface. However,both poor OER activity of photoelectrochemical materials and the inefficient use ofcharge carriers on the surface of materials create a barrier for practical use. Thus, photoabsorber materials are required which will operate at high efficiency in daylight.The light sensitive electrode to be used in photoelectrocatalytic systems must havehigh absorption property, high photocurrent density, high electron / gap mobility, highcharge life and high chemical stability in the range of visible light spectrum. Comparedto other metal oxide semiconductors, the bismuth vanadate (BiVO4) material is a ntype semiconductor having a relatively narrow band gap (Eg = 2.4 eV) and band edgepositions suitable for water splitting. BiVO4 has three reported phases includingmonoclinic scheelite, tetragonal scheelite and tetragonal zircon. Energy band gap oftetragonal BiVO4 was as reported 2.9 eV possessing a UV absorption band, whilemonoclinic BiVO4 with a 2.4 eV band gap has a characteristic visible light absorptionband besides the UV band. the monoclinic crystal structure of this semiconductorshows very strong photocatalytic performance compared to tetragonal crystalstructure. Therefore, photocatalytic properties of BiVO4 are a very strong relationshipwith way of preparation and its crystal structure. Only the monoclinic scheelite BiVO4shows very strong photocatalytic performance compared to tetragonal crystalstructure. To achieve monoclinic-scheelite BiVO4 in this thesis, heat treatment waskept to 450°C for 5 hours and then cooled to room conditions for the phase transitionbetween monoclinic scheelite structure and tetragonal scheelite structure of BiVO4.Despite these properties, BiVO4 needs to be developed for industrial application in thevisible light spectrum, due to poor electron mobility, insufficient separation of chargedparticles, and the possibility of electron-hole (e-/h+) recombination.In this thesis, BiVO4 solution formed by sol gel method was coated with fluorine dopedtin oxide (FTO) glass by dip coating method. Additionally, Mo doped BiVO4photoanodes were synthesized by same coating method and the property of Mo dopedBiVO4 on the FEK water splitting was studied. The reason for using the dip coatingmethod is that the method of dip coating for the preparation of industrial surfacephotoanodes is quite simple which concludes deposition a uniform thin film on asubstrate and solidification on the coating subsequently.The characterization of the synthesized samples was made as follows: XRD forstructure properties, FESEM morphological properties, Raman spectroscopy foroptical properties and UV-VIS for calculation of energy band gap the BiVO4based samples. Also, photocatalytic properties were investigated by chronoamperometry, electrochemical impedance spectroscopy and Mott Schottkyanalysis.Molybdenum was added to improve the photocurrent density of the non-doped BiVO4film and to reduce the possibility of e-/ h+recombination. Molybdenum doped BiVO4has five times more photo-current density than pure BiVO4 material and the highestphoto activity value was observed in 0.01% Mo-doped BiVO4 sample. To comparetheir photocurrent responses against time, the constant potential (1,23VRHE), in whichthe water is theoretically splitting, was applied to BiVO4 film. The highestphotocurrent density obtained from BiV0,99O4Mo0,01, BiV0,95O4Mo0,05,BiV0,90O4Mo0,10 and BiV0,80O4Mo0,2 was measured 0,32, 0,24, 0,19 and 0,13 mAcm-2at 1.23VRHE, respectively. The photocurrent values of this film materials wereincreased by the molybdenum doped BiVO4 because Mo acts as shallow donors forexcess electrons form small polarons around reduced V4+ centres. A multitude ofpolarons help charge migrating to an adjacent V5+ site and render potent overlap atlarge scale.According to the result, it was observed that our best photocurrent result was obtainedfrom 0.01 mol% Mo-doped BiVO4 samples. In addition, the charge transfer kineticsperformed at the interface of both pristine BiVO4 and Mo doped BiVO4 films weredetermined by electrochemical impedance spectroscopy (EIS) method and flat bandpotential calculation by Mott-Schottky (M-S) analysis.According to EIS analysis, pristine BiVO4 exhibited less charge transfer resistance soits water splitting properties is low because of poor whole transfer at thesemiconductor/electrolyte interface. When Mo was doped in pristine BiVO4, thecharge transfer resistance value was much lower, so this increasedphotoelectrocatalytic water splitting performance. However, after a critical additionamount of Mo was added to monoclinic BiVO4 structure, the trend of a decrease in itsphotoelectrochemical water splitting performance properties were observed becauseof increasing diameter of semicircle decreasing in the sequence of BiV0,99O4Mo0,01,BiV0,95O4Mo0,05, BiV0,90O4Mo0,10 and BiV0,80O4Mo0,2 under illumination.According to Mott-Schottky analysis, adding amount of Mo doped, plot curvebecomes linear, this show that Mo doped BiVO4 increase in donor concentration.Moreover, flat band potential of pristine and Mo doped BiVO4 was calculated interceptof the tangent at the x-axis, thus flat band potential ranges from 0,1 to 0,03 V. Weobserved that Mo-doped BiVO4 samples demonstrated a higher donor concentration ascompared to pristine BiVO4 film. If the slope of Mott-Schottky plot is positive, it is aproof that BiVO4 shows n-type semiconductor behaviour. The slope of M-S plot waspositive for all synthesized samples, it show that all synthesized BiVO4 based sampleswere n-type semiconductor.When the structural properties were examined by XRD, the BiV0,95O4Mo0,05,BiV0,90O4Mo0,10 and BiV0,80O4Mo0,2 structure was found to be a mixture ofmonoclinic and tetragonal phase, and non-doped BiVO4 both a mixture of monoclinicand tetragonal structure and including Bi2O3 phase. Tetragonal structureBiVO4 reducing effect on photocatalytic activity is known, which was consistent withthe photocatalytic test results. However, 1% Mo-doped BiVO4 was only shown ourbest photocatalytic performance due to matching monoclinic phase peaks ofmonoclinic-scheelite BiVO4 sample.When surface morphology was examined by FE-SEM, with the addition of 0,01% ofMo element, there is apparent change in morphologies, which are composed of closely arranged particles. However, as increasing of Mo concentration, some was broken andgrown into large particles, so morphology change was a decreasing effect onphotoelectrocatalytic performance, which consistent with the chronoamperometry testresults.Energy band gap were calculated via UV-VIS to use Kubelka-Munk function.According to calculations, as the amount of molybdenum increased, the energy bandgap generally increased. However, the sample with the smallest additive (%0,01 Mo)had a reducing energy band gap. Calculated energy band gaps respectively 2,55, 2,522,61, 2,73, 2,74 eV and for BiVO4, BiV0,99O4Mo0,01, BiV0,95O4Mo0,05, BiV0,90O4Mo0,10and BiV0,80O4Mo0,2. The increase in energy band search has a negative effect on theoptical properties and it has been seen in the results of raman analysis.Raman spectroscopy can provide structural morphology. Also, it is research of asensitive method for the investigation of the crystallization, local structure, andelectronic properties of materials. Raman bands of monoclinic scheelite structure ofBiVO4 for all samples were observed around 210, 324, 366, 640, 710, and 826 cm–1.These are the typical vibrational bands of BiVO4. The structural information of BiVO4are obtained by the band centered at 210 cm-1. The asymmetric and symmetricformations of VO4 tetrahedron are given by the bands centered at 324 and 366 cm-1,respectively. The asymmetric stretching vibration of the shorter V–O bond are givenby bands centered at 640 cm–1. The stretching modes of two vibrational modes of VO bonds are determined by the bands centered at 710 and 826 cm-1. It was seen for allsamples that a slight blue shift in chaarcteristic peak at 826cm-1as molybdenum isadded to monoclinic scheelite BiVO4 structure. It can be explained that anincorporation of Mo+6 ions into the BiVO4 crystal lattice so stretching of the V-O bonglength due to Mo+6 ion substitution V+5 ion in the crystal side. Therefore, as amount ofthe molybden increases, the monolinic scheelite structure of BiVO4 is undergoesdeterioration in even worse. It is observed that some characteristic peaks ofBiV0,90O4Mo0,10 and BiV0,80O4Mo0,2 samples are not included in the Raman spectrumand the shift is stronger in BiV0,90O4Mo0,10 and BiV0,80O4Mo0,2 than pristine BiVO4around 826 and 640 cm-1. However, the peak position is found to be at the same pointBiV0,99O4Mo0,01 and pristine BiVO4. This result is parallel to what was observed inUV-VIS diffuse reflectance spectrum.In the summary, light sensitive BiVO4 semiconductor material was addedmolybdenum element in different molar ratios to to examine the changing propertiesof photoelectrochemical, morphological, structure and optical properties. 74