1. Predicting Clearance with Simple and Permeability-Limited Physiologically Based Pharmacokinetic Frameworks: Comparison of Well-Stirred, Dispersion, and Parallel-Tube Liver Models.
- Author
-
Nagar S, Parise R, and Korzekwa K
- Subjects
- Humans, Animals, Pharmaceutical Preparations metabolism, Pharmacokinetics, Protein Binding physiology, Models, Biological, Hepatocytes metabolism, Liver metabolism, Permeability, Microsomes, Liver metabolism, Metabolic Clearance Rate physiology
- Abstract
One-compartment (1C) and permeability-limited models were used to evaluate the ability of microsomal and hepatocyte intrinsic clearances to predict hepatic clearance. Well-stirred (WSM), parallel-tube (PTM), and dispersion (DM) models were evaluated within the liver as well as within whole-body physiologically based pharmacokinetic frameworks. It was shown that a linear combination of well-stirred and parallel-tube average liver blood concentrations accurately approximates dispersion model blood concentrations. Using a flow/permeability-limited model, a large systematic error was observed for acids and no systematic error for bases. A scaling factor that reduced interstitial fluid (ISF) plasma protein binding could greatly decrease the absolute average fold error (AAFE) for acids. Using a 1C model, a scalar to reduce plasma protein binding decreased the microsomal clearance AAFE for both acids and bases. With a permeability-limited model, only acids required this scalar. The mechanism of the apparent increased cytosolic concentrations for acids remains unknown. We also show that for hepatocyte intrinsic clearance in vitro-in vivo correlations (IVIVCs), a 1C model is mechanistically appropriate since hepatocyte clearance should represent the net clearance from ISF to elimination. A relationship was derived that uses microsomal and hepatocyte intrinsic clearance to solve for an active hepatic uptake clearance, but the results were inconclusive. Finally, the PTM model generally performed better than the WSM or DM models, with no clear advantage between microsomes and hepatocytes. SIGNIFICANCE STATEMENT: Prediction of drug clearance from microsomes or hepatocytes remains challenging. Various liver models (e.g., well-stirred, parallel-tube, and dispersion) have been mathematically incorporated into liver as well as whole-body physiologically based pharmacokinetic frameworks. Although the resulting models allow incorporation of pH partitioning, permeability, and active uptake for prediction of drug clearance, including these processes did not improve clearance predictions for both microsomes and hepatocytes., (Copyright © 2024 by The American Society for Pharmacology and Experimental Therapeutics.)
- Published
- 2024
- Full Text
- View/download PDF