6 results on '"Mesich B"'
Search Results
2. Real world clinical feasibility of direct-from-specimen antimicrobial susceptibility testing of clinical specimens with unknown microbial load or susceptibility.
- Author
-
Chen J, Navarro E, Mesich B, Gerstbrein D, Cruz A, Faron ML, and Gau V
- Subjects
- Humans, Feasibility Studies, Microbial Sensitivity Tests, Ampicillin, Anti-Bacterial Agents pharmacology, Anti-Bacterial Agents therapeutic use, Ciprofloxacin pharmacology, Ciprofloxacin therapeutic use
- Abstract
Within healthcare settings, physicians use antibiograms, which offer information on local susceptibility rates, as an aid in selecting empirical antibiotic therapy and avoiding the prescription of potentially ineffective drugs. While antibiograms display susceptibility and resistance data at hospital, city, or region-specific levels and ultimately enable the initiation of antibiogram-based empirical antibiotic treatment, AST reports at the individual patient level and guides treatments away from broad-spectrum antibiotics towards narrower-spectrum antibiotics or the removal of antibiotics entirely. Despite these advantages, AST traditionally requires a 48- to 72-h turn-around; this window of time can be critical for some antimicrobial therapeutic interventions. Herein, we present a direct-from-specimen AST to reduce the time between patient sampling and receipt of lab AST results. The biggest challenge of performing AST directly from unprocessed clinical specimens with an unknown microbial load is aligning the categorical susceptibility report with CLSI reference methods, which start from a fixed inoculum of 0.5 McFarland units prepared using colonies from a sub-culture. In this pilot clinical feasibility study using de-identified remnant specimens collected from MCW, we observed the high and low ends of microbial loads, demonstrating a final categorical agreement of 87.5% for ampicillin, 100% for ciprofloxacin, and 100% for sulfamethoxazole-trimethoprim., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
3. A phase 2 trial of a topical antiseptic bundle in head and neck cancer surgery: Effects on surgical site infection and the oral microbiome.
- Author
-
Zenga J, Atkinson S, Yen T, Massey B, Stadler M, Bruening J, Peppard W, Reuben M, Hayward M, Mesich B, Buchan B, Ledeboer N, Sanchez JL, Fraser R, Lin CW, Holtz ML, Awan M, Wong SJ, Puram SV, and Salzman N
- Subjects
- Humans, Preoperative Care, Surgical Wound Infection chemically induced, Surgical Wound Infection prevention & control, Anti-Infective Agents, Local therapeutic use, Head and Neck Neoplasms surgery, Microbiota
- Abstract
Background: Head and neck cancer (HNC) surgery remains an important component of management but is associated with a high rate of surgical site infection (SSI). We aimed to assess the safety and efficacy of a topical mucosal antiseptic bundle in preventing SSI and evaluate microbial predictors of infection through a genomic sequencing approach., Methods: This study was an open-label, single-arm, single-center, phase 2 trial of a topical mucosal antiseptic bundle in patients with HNC undergoing aerodigestive tract resection and reconstruction. Patients underwent topical preparation of the oral mucosa with povidone-iodine (PI) and chlorhexidine gluconate (CHG) pre- and intra-operatively followed by oral tetracycline ointment every 6 hours for 2 days post-operatively. The primary outcome was change in bacterial bioburden at the oral surgical site. Secondary outcomes included safety, SSI, and microbial predictors of infection., Findings: Of 27 patients screened between January 8, 2021, and May 14, 2021, 26 were enrolled and 25 completed the study. There were no antiseptic-related adverse events. The topical mucosal antiseptic bundle significantly decreased oral bacterial colony-forming units from pre-operative levels (log
10 mean difference 4·03, 95%CI 3·13-4·;92). There were three SSI (12%) within 30 days. In correlative genomic studies, a distinct set of amplicon sequence variants in the post-operative microbiome was associated with SSI. Further, despite no instance of post-operative orocervical fistula, metagenomic sequence mapping revealed the oral cavity as the origin of the infectious organism in two of the three SSI., Interpretation: The bacterial strains which subsequently caused SSI were frequently identified in the pre-operative oral cavity. Accordingly, a topical antiseptic bundle decreased oral bacterial bioburden throughout the peri-operative period and was associated with a low rate of SSI, supporting further study of topical antisepsis in HNC surgery., Funding: Alliance Oncology., Competing Interests: Declaration of interests None., (Copyright © 2022 The Author(s). Published by Elsevier B.V. All rights reserved.)- Published
- 2022
- Full Text
- View/download PDF
4. Multisite Clinical Validation of Isothermal Amplification-Based SARS-CoV-2 Detection Assays Using Different Sampling Strategies.
- Author
-
Desai KT, Alfaro K, Mendoza L, Faron M, Mesich B, Maza M, Dominguez R, Valenzuela A, Acosta CD, Martínez M, Felix JC, Masch R, Smith JS, Gabrilovich S, Wu T, Plump M, Novetsky AP, Einstein MH, Douglas NC, Cremer M, and Wentzensen N
- Subjects
- Humans, Limit of Detection, Mass Screening, Nasopharynx virology, Point-of-Care Systems, RNA, Viral analysis, Reverse Transcriptase Polymerase Chain Reaction methods, Specimen Handling, Viral Load, COVID-19 diagnosis, COVID-19 Nucleic Acid Testing methods, Molecular Diagnostic Techniques methods, Nucleic Acid Amplification Techniques methods, SARS-CoV-2 genetics, SARS-CoV-2 isolation & purification
- Abstract
Isothermal amplification-based tests have been introduced as rapid, low-cost, and simple alternatives to real-time reverse transcriptase PCR (RT-PCR) tests for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection. The clinical performance of two isothermal amplification-based tests (Atila Biosystems iAMP coronavirus disease of 2019 [COVID-19] detection test and OptiGene COVID-19 direct plus RT-loop-mediated isothermal amplification [LAMP] test) was compared with that of clinical RT-PCR assays using different sampling strategies. A total of 1,378 participants were tested across 4 study sites. Compared with standard of care RT-PCR testing, the overall sensitivity and specificity of the Atila iAMP test for detection of SARS-CoV-2 were 76.2% and 94.9%, respectively, and increased to 88.8% and 89.5%, respectively, after exclusion of an outlier study site. Sensitivity varied based on the anatomic site from which the sample was collected. Sensitivity for nasopharyngeal sampling was 65.4% (range across study sites, 52.8% to 79.8%), for midturbinate was 88.2%, for saliva was 55.1% (range across study sites, 42.9% to 77.8%), and for anterior nares was 66.7% (range across study sites, 63.6% to 76.5%). The specificity for these anatomic collection sites ranged from 96.7% to 100%. Sensitivity improved in symptomatic patients (overall, 82.7%) and those with a higher viral load (overall, 92.4% for cycle threshold [ C
T ] of ≤25). Sensitivity and specificity of the OptiGene direct plus RT-LAMP test, which was conducted at a single study site, were 25.5% and 100%, respectively. The Atila iAMP COVID test with midturbinate sampling is a rapid, low-cost assay for detecting SARS-CoV-2, especially in symptomatic patients and those with a high viral load, and could be used to reduce the risk of SARS-CoV-2 transmission in clinical settings. Variation of performance between study sites highlights the need for site-specific clinical validation of these assays before clinical adoption. IMPORTANCE Numerous SARS-CoV-2 detection assays have been developed and introduced into the market under emergency use authorizations (EUAs). EUAs are granted primarily based on small studies of analytic sensitivity and specificity with limited clinical validations. A thorough clinical performance evaluation of SARS-CoV-2 assays is important to understand the strengths, limitations, and specific applications of these assays. In this first large-scale multicentric study, we evaluated the clinical performance and operational characteristics of two isothermal amplification-based SARS-CoV-2 tests, namely, (i) iAMP COVID-19 detection test (Atila BioSystems, USA) and (ii) COVID-19 direct plus RT-LAMP test (OptiGene Ltd., UK), compared with those of clinical RT-PCR tests using different sampling strategies (i.e., nasopharyngeal, self-sampled anterior nares, self-sampled midturbinate, and saliva). An important specific use for these isothermal amplification-based, rapid, low-cost, and easy-to-perform SARS-CoV-2 assays is to allow for a safer return to preventive clinical encounters, such as cancer screening, particularly in low- and middle-income countries that have low SARS-CoV-2 vaccination rates.- Published
- 2021
- Full Text
- View/download PDF
5. Multi-site clinical validation of Isothermal Amplification based SARS-COV-2 detection assays using different sampling strategies.
- Author
-
Desai KT, Alfaro K, Mendoza L, Faron M, Mesich B, Maza M, Dominguez R, Valenzuela A, Acosta CD, Martínez M, Felix JC, Masch R, Gabrilovich S, Plump M, Novetsky AP, Einstein MH, Douglas NC, Cremer M, and Wentzensen N
- Abstract
Background: Isothermal amplification-based tests were developed as rapid, low-cost, and simple alternatives to real-time reverse transcriptase-polymerase chain reaction (RT-PCR) tests for SARS-COV-2 detection., Methods: Clinical performance of two isothermal amplification-based tests (Atila Biosystems iAMP COVID-19 detection test and OptiGene COVID-19 Direct Plus RT-LAMP test) was compared to clinical RT-PCR assays using different sampling strategies. A total of 1378 participants were tested across four study sites., Results: Compared to standard of care RT-PCR testing, the overall sensitivity and specificity of the Atila iAMP test for detection of SARS-CoV-2 were 76.2% and 94.9%, respectively, and increased to 88.8% and 89.5%, respectively, after exclusion of an outlier study site. Sensitivity varied based on the anatomic collected site. Sensitivity for nasopharyngeal was 65.4% (range across study sites:52.8%-79.8%), mid-turbinate 88.2%, saliva 55.1% (range across study sites:42.9%-77.8%) and anterior nares 66.7% (range across study sites:63.6%-76.5%). The specificity for these anatomic collection sites ranged from 96.7% to 100%. Sensitivity improved in symptomatic patients (overall 82.7%) and those with a higher viral load (overall 92.4% for ct≤25). Sensitivity and specificity of the OptiGene Direct Plus RT-LAMP test, conducted at a single study-site, were 25.5% and 100%, respectively., Conclusions: The Atila iAMP COVID test with mid-turbinate sampling is a rapid, low-cost assay for detecting SARS-COV-2, especially in symptomatic patients and those with a high viral load, and could be used to reduce the risk of SARS-COV-2 transmission in clinical settings. Variation of performance between study sites highlights the need for site-specific clinical validation of these assays before clinical adoption.
- Published
- 2021
- Full Text
- View/download PDF
6. Evaluation of NG-Test Carba 5 for Rapid Phenotypic Detection and Differentiation of Five Common Carbapenemase Families: Results of a Multicenter Clinical Evaluation.
- Author
-
Jenkins S, Ledeboer NA, Westblade LF, Burnham CA, Faron ML, Bergman Y, Yee R, Mesich B, Gerstbrein D, Wallace MA, Robertson A, Fauntleroy KA, Klavins AS, Malherbe R, Hsiung A, and Simner PJ
- Subjects
- Animals, France, Sensitivity and Specificity, Sheep, Bacterial Proteins genetics, beta-Lactamases genetics
- Abstract
NG-Test Carba 5 is a rapid in vitro multiplex immunoassay for the phenotypic detection and differentiation of five common carbapenemase families (KPC, OXA-48-like, VIM, IMP, and NDM) directly from bacterial colonies. The assay is simple to perform and has recently received U.S. Food and Drug Administration clearance. A method comparison study was performed at geographically diverse medical centers ( n = 3) in the United States, where 309 Enterobacterales and Pseudomonas aeruginosa isolates were evaluated by NG-Test Carba 5 (NG Biotech, Guipry, France), the Xpert Carba-R assay (Cepheid, Inc., Sunnyvale, CA), the modified carbapenem inactivation method (mCIM), the EDTA-modified carbapenem inactivation method, and disk diffusion with carbapenems. Colonies from tryptic soy agar with 5% sheep blood (blood agar) and MacConkey agar were tested, and the results were compared to those obtained by a composite reference method. Additionally, a fourth medical center performed a medium comparison study by evaluating the performance characteristics of NG-Test Carba 5 from blood, MacConkey, and Mueller-Hinton agars with 110 isolates of Enterobacterales and P. aeruginosa These results were compared to the expected genotypic and mCIM results. For the multicenter method comparison study, the overall positive percent agreement (PPA) and the overall negative percent agreement (NPA) of NG-Test Carba 5 with the composite reference method were 100% for both blood and MacConkey agars. The medium comparison study at the fourth site showed that the PPA ranged from 98.9% to 100% and that the NPA ranged from 95.2% to 100% for blood, MacConkey, and Mueller-Hinton agars. NG-Test Carba 5 accurately detected and differentiated five common carbapenemase families from Enterobacterales and P. aeruginosa colonies on commonly used agar media. The results of this test will support a streamlined laboratory work flow and will expedite therapeutic and infection control decisions., (Copyright © 2020 American Society for Microbiology.)
- Published
- 2020
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.