1. Nuclear factor erythroid 2–related factor 2 (Nrf2) deficiency causes age-dependent progression of female osteoporosis
- Author
-
Yusuke Kubo, Jesus Abraham Herrera Gonzalez, Rainer Beckmann, Marek Weiler, Helda Pahlavani, Mauricio Cruz Saldivar, Katharina Szymanski, Stefanie Rosenhain, Athanassios Fragoulis, Sander Leeflang, Alexander Slowik, Felix Gremse, Michael Wolf, Mohammad Javad Mirzaali, Amir Abbas Zadpoor, Christoph Jan Wruck, Thomas Pufe, Mersedeh Tohidnezhad, and Holger Jahr
- Subjects
Nrf2 ,Fracture resilience ,Bone strength ,Osteoporosis ,Estrogen ,Diseases of the musculoskeletal system ,RC925-935 - Abstract
Abstract Background Nuclear factor erythroid 2–related factor 2 (Nrf2) is a crucial transcription factor for cellular redox homeostasis. The association of Nrf2 with elderly female osteoporotic has yet to be fully described. The aim was to elucidate a potential age-dependent Nrf2 contribution to female osteoporosis in mice. Methods Eighteen female wild type (WT) and 16 Nrf2-knockout (KO) mice were sacrificed at different ages (12 weeks = young mature adult and 90 weeks = old) to analyze their femurs. The morphological properties (trabecular and cortical) were evaluated by micro-computed tomography (μCT) and compared to gold standard histochemistry analysis. The quasi-static compression tests were performed to calculate the mechanical properties of bones. Additionally, the population of bone resorbing cells and aromatase expression by osteocytes was immunohistochemically evaluated and empty osteocyte lacunae was counted in cortical bone. Results Old Nrf2-KO mice revealed a significantly reduced trabecular bone mineral density (BMD), cortical thickness, cortical area, and bone fraction compared to old WT mice, regardless of no significant difference in skeletally mature young adult mice between WT and KO. Specifically, while all old WT mice showed thin metaphyseal trabeculae, trabecular bone was completely absent in 60% of old KO mice. Additionally, old KO mice showed significantly more osteoclast-like cells and fewer aromatase-positive osteocytes than WT mice, whereas the occurrence of empty osteocyte lacunae did not differ between both groups. Nrf2-KO mice further showed an age-dependently reduced fracture resilience compared to age-matched WT mice. Conclusion Our results suggest that chronic Nrf2 loss can lead to age-dependent progression of female osteoporosis.
- Published
- 2022
- Full Text
- View/download PDF