21 results on '"Merlo-Mas, Josep"'
Search Results
2. Application of Quality by Design to the robust preparation of a liposomal GLA formulation by DELOS-susp method
- Author
-
Merlo-Mas, Josep, Tomsen-Melero, Judit, Corchero, José-Luis, González-Mira, Elisabet, Font, Albert, Pedersen, Jannik N., García-Aranda, Natalia, Cristóbal-Lecina, Edgar, Alcaina-Hernando, Marta, Mendoza, Rosa, Garcia-Fruitós, Elena, Lizarraga, Teresa, Resch, Susanne, Schimpel, Christa, Falk, Andreas, Pulido, Daniel, Royo, Miriam, Schwartz, Simó, Jr., Abasolo, Ibane, Pedersen, Jan Skov, Danino, Dganit, Soldevila, Andreu, Veciana, Jaume, Sala, Santi, Ventosa, Nora, and Córdoba, Alba
- Published
- 2021
- Full Text
- View/download PDF
3. Clinical validation of risk scoring systems to predict risk of delayed bleeding after EMR of large colorectal lesions
- Author
-
Albéniz, Eduardo, Gimeno-García, Antonio Zebenzuy, Fraile, María, Ibáñez, Berta, Guarner-Argente, Carlos, Alonso-Aguirre, Pedro, Álvarez, Marco Antonio, Gargallo, Carla Jerusalén, Pellisé, María, Ramos Zabala, Felipe, Herreros de Tejada, Alberto, Nogales, Óscar, Martínez-Ares, David, Múgica, Fernando, de la Peña, Joaquín, Espinós, Jorge, Huerta, Alain, Álvarez, Alberto, Gonzalez-Santiago, Jesús M., Navajas, Francisco, Martínez-Cara, Juan Gabriel, Redondo-Cerezo, Eduardo, Merlo Mas, Josep, Sábado, Fernando, Rivero, Liseth, Saperas, Esteban, Soto, Santiago, Rodríguez-Sánchez, Joaquín, López-Roses, Leopoldo, Rodríguez-Téllez, Manuel, Rullán Iriarte, María, Elosua González, Alfonso, Pardeiro, Remedios, Valdivielso Cortázar, Eduardo, Concepción-Martín, Mar, Huelin Álvarez, Patricia, Colán Hernández, Juan, Cobian, Julyssa, Santiago, José, Jiménez, Alejandra, Remedios, David, López-Viedma, Bartolomé, García, Orlando, Martínez-Alcalá, Felipe, Pérez-Roldán, Francisco, Carbó, Jorge, and Enguita, Mónica
- Published
- 2020
- Full Text
- View/download PDF
4. Engineering pH-Sensitive Stable Nanovesicles for Delivery of MicroRNA Therapeutics
- Author
-
Ministerio de Educación, Cultura y Deporte (España), Ministerio de Economía y Competitividad (España), Ministerio de Ciencia, Innovación y Universidades (España), Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina (España), Matem lo Bitxo, Asociación Española Contra el Cáncer, Generalitat de Catalunya, Boloix, Ariadna [0000-0002-1648-5589], Köber, Mariana [0000-0001-9962-7900], Soriano, Aroa [0000-0001-9659-1471], Masanas, Marc [0000-0002-2249-8554], Segovia, Nathaly [0000-0001-8814-6095], Vargas Nadal, Guillem [0000-0003-4383-1325], Merlo Mas, Josep [0000-0002-3698-6655], Danino, Dganit [0000-0002-9782-4940], Foradada, Laia [0000-0002-0589-4360], Roma, Josep [0000-0001-7692-6123], Toledo, Josep Sánchez de [0000-0002-1034-1920], Gallego, Soledad [0000-0002-4712-9624], Veciana, Jaume [0000-0003-1023-9923], Albertazzi, Lorenzo [0000-0002-6837-0812], Segura, Miguel F. [0000-0003-0916-3618], Ventosa, Nora [0000-0002-8008-4974], Boloix, Ariadna, Feiner-Gracia, Natalia, Köber, Mariana, Repetto, Javier, Pascarella, Rosa, Soriano, Aroa, Masanas, Marc, Segovia, Nathaly, Vargas Nadal, Guillem, Merlo Mas, Josep, Danino, Dganit, Abutbul-Ionita, Inbal, Foradada, Laia, Roma, Josep, Córdoba, Alba, Sala Vergés, Santiago, Toledo, Josep Sánchez de, Gallego, Soledad, Veciana, Jaume, Albertazzi, Lorenzo, Segura, Miguel F., Ventosa, Nora, Ministerio de Educación, Cultura y Deporte (España), Ministerio de Economía y Competitividad (España), Ministerio de Ciencia, Innovación y Universidades (España), Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina (España), Matem lo Bitxo, Asociación Española Contra el Cáncer, Generalitat de Catalunya, Boloix, Ariadna [0000-0002-1648-5589], Köber, Mariana [0000-0001-9962-7900], Soriano, Aroa [0000-0001-9659-1471], Masanas, Marc [0000-0002-2249-8554], Segovia, Nathaly [0000-0001-8814-6095], Vargas Nadal, Guillem [0000-0003-4383-1325], Merlo Mas, Josep [0000-0002-3698-6655], Danino, Dganit [0000-0002-9782-4940], Foradada, Laia [0000-0002-0589-4360], Roma, Josep [0000-0001-7692-6123], Toledo, Josep Sánchez de [0000-0002-1034-1920], Gallego, Soledad [0000-0002-4712-9624], Veciana, Jaume [0000-0003-1023-9923], Albertazzi, Lorenzo [0000-0002-6837-0812], Segura, Miguel F. [0000-0003-0916-3618], Ventosa, Nora [0000-0002-8008-4974], Boloix, Ariadna, Feiner-Gracia, Natalia, Köber, Mariana, Repetto, Javier, Pascarella, Rosa, Soriano, Aroa, Masanas, Marc, Segovia, Nathaly, Vargas Nadal, Guillem, Merlo Mas, Josep, Danino, Dganit, Abutbul-Ionita, Inbal, Foradada, Laia, Roma, Josep, Córdoba, Alba, Sala Vergés, Santiago, Toledo, Josep Sánchez de, Gallego, Soledad, Veciana, Jaume, Albertazzi, Lorenzo, Segura, Miguel F., and Ventosa, Nora
- Abstract
MicroRNAs (miRNAs) are small non-coding endogenous RNAs, which are attracting a growing interest as therapeutic molecules due to their central role in major diseases. However, the transformation of these biomolecules into drugs is limited due to their unstability in the bloodstream, caused by nucleases abundantly present in the blood, and poor capacity to enter cells. The conjugation of miRNAs to nanoparticles (NPs) could be an effective strategy for their clinical delivery. Herein, the engineering of non-liposomal lipid nanovesicles, named quatsomes (QS), for the delivery of miRNAs and other small RNAs into the cytosol of tumor cells, triggering a tumor-suppressive response is reported. The engineered pH-sensitive nanovesicles have controlled structure (unilamellar), size (<150 nm) and composition. These nanovesicles are colloidal stable (>24 weeks), and are prepared by a green, GMP compliant, and scalable one-step procedure, which are all unavoidable requirements for the arrival to the clinical practice of NP based miRNA therapeutics. Furthermore, QS protect miRNAs from RNAses and when injected intravenously, deliver them into liver, lung, and neuroblastoma xenografts tumors. These stable nanovesicles with tunable pH sensitiveness constitute an attractive platform for the efficient delivery of miRNAs and other small RNAs with therapeutic activity and their exploitation in the clinics.
- Published
- 2022
5. Engineering pH-Sensitive Stable Nanovesicles for Delivery of MicroRNA Therapeutics
- Author
-
Boloix, Ariadna, Feiner-Gracia, Natalia, Köber, Mariana, Repetto, Javier, Pascarella, Rosa, Soriano, Aroa, Masanas, Marc, Segovia, Nathaly, Vargas-Nadal, Guillem, Merlo-Mas, Josep, Danino, Dganit, Abutbul-Ionita, Inbal, Foradada, Laia, Roma, Josep, Córdoba, Alba, Sala, Santi, de Toledo, Josep Sánchez, Gallego, Soledad, Veciana, Jaume, Albertazzi, Lorenzo, Segura, Miguel F., Ventosa, Nora, Boloix, Ariadna, Feiner-Gracia, Natalia, Köber, Mariana, Repetto, Javier, Pascarella, Rosa, Soriano, Aroa, Masanas, Marc, Segovia, Nathaly, Vargas-Nadal, Guillem, Merlo-Mas, Josep, Danino, Dganit, Abutbul-Ionita, Inbal, Foradada, Laia, Roma, Josep, Córdoba, Alba, Sala, Santi, de Toledo, Josep Sánchez, Gallego, Soledad, Veciana, Jaume, Albertazzi, Lorenzo, Segura, Miguel F., and Ventosa, Nora
- Abstract
MicroRNAs (miRNAs) are small non-coding endogenous RNAs, which are attracting a growing interest as therapeutic molecules due to their central role in major diseases. However, the transformation of these biomolecules into drugs is limited due to their unstability in the bloodstream, caused by nucleases abundantly present in the blood, and poor capacity to enter cells. The conjugation of miRNAs to nanoparticles (NPs) could be an effective strategy for their clinical delivery. Herein, the engineering of non-liposomal lipid nanovesicles, named quatsomes (QS), for the delivery of miRNAs and other small RNAs into the cytosol of tumor cells, triggering a tumor-suppressive response is reported. The engineered pH-sensitive nanovesicles have controlled structure (unilamellar), size (<150 nm) and composition. These nanovesicles are colloidal stable (>24 weeks), and are prepared by a green, GMP compliant, and scalable one-step procedure, which are all unavoidable requirements for the arrival to the clinical practice of NP based miRNA therapeutics. Furthermore, QS protect miRNAs from RNAses and when injected intravenously, deliver them into liver, lung, and neuroblastoma xenografts tumors. These stable nanovesicles with tunable pH sensitiveness constitute an attractive platform for the efficient delivery of miRNAs and other small RNAs with therapeutic activity and their exploitation in the clinics.
- Published
- 2022
6. Liposomes and its use for enzyme delivery
- Author
-
Ventosa, Leonor, Veciana, Jaume, Royo, Miriam, Tomsen Melero, Judit, Abasolo, Ibane, Schwartz Jr., Simó, Corchero, José Luis, Pulido, Daniel, Cristóbal Lecina, Edgar, González Mira, Elisabet, Sala Vergés, Santiago, Córdoba, Alba, Merlo Mas, Josep, Soldevila, Andreu, Font, Albert, Ventosa, Leonor, Veciana, Jaume, Royo, Miriam, Tomsen Melero, Judit, Abasolo, Ibane, Schwartz Jr., Simó, Corchero, José Luis, Pulido, Daniel, Cristóbal Lecina, Edgar, González Mira, Elisabet, Sala Vergés, Santiago, Córdoba, Alba, Merlo Mas, Josep, Soldevila, Andreu, and Font, Albert
- Abstract
The present invention refers to a liposome comprising: a) a phospholipid; b) cholesterol (chol); c) a conjugate comprising a cholesterol moiety, a polyethylene glycol (PEG) moiety and a peptide moiety comprising a RGD sequence, wherein the PEG moiety is covalently attached to the cholesterol moiety by one end via a bond of the type alkyl ether and is covalently attached to the peptide moiety comprising the RGD sequence by the other end: d) a non-lipid cationic surfactant present in a percentage of less than 30% mol in respect to the total mol of the components of the liposome a), b), c) and d); and e) alpha-galactosidase (GLA) enzyme present in a ratio of micrograms of GLA in respect to the total milligrams of the components of the liposome a), b), c) and d) of between and including 2 to 35. It also refers to a pharmaceutical composition that comprises it and to the liposome or the pharmaceutical composition for use as a medicament, in particular for use in the treatment of Fabry disease. It also refers to a process for the production of the liposome.
- Published
- 2022
7. Liposomal formulations for treating lysosomal storage disorders
- Author
-
Ministerio de Ciencia, Innovación y Universidades (España), European Commission, Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina (España), Tomsen Melero, Judit, Merlo Mas, Josep, Carreño, Aida, Sala Vergés, Santiago, Córdoba, Alba, Veciana, Jaume, González Mira, Elisabet, Ventosa, Nora, Ministerio de Ciencia, Innovación y Universidades (España), European Commission, Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina (España), Tomsen Melero, Judit, Merlo Mas, Josep, Carreño, Aida, Sala Vergés, Santiago, Córdoba, Alba, Veciana, Jaume, González Mira, Elisabet, and Ventosa, Nora
- Abstract
Lysosomal storage disorders (LSD) are a group of rare life-threatening diseases caused by a lysosomal dysfunction, usually due to the lack of a single enzyme required for the metabolism of macromolecules, which leads to a lysosomal accumulation of specific substrates, resulting in severe disease manifestations and early death. There is currently no definitive cure for LSD, and despite the approval of certain therapies, their effectiveness is limited. Therefore, an appropriate nanocarrier could help improve the efficacy of some of these therapies. Liposomes show excellent properties as drug carriers, because they can entrap active therapeutic compounds offering protection, biocompatibility, and selectivity. Here, we discuss the potential of liposomes for LSD treatment and conduct a detailed analysis of promising liposomal formulations still in the preclinical development stage from various perspectives, including treatment strategy, manufacturing, characterization, and future directions for implementing liposomal formulations for LSD.
- Published
- 2022
8. Efficacy of targeted nanoliposomes in reducing globotriaosylceramide (Gb3) accumulation in mouse models of Fabry disease
- Author
-
Moltó-Abad, Marc, primary, Riascos, Zamira-V Díaz, additional, Tomsen-Melero, Judit, additional, González-Mira, Elisabet, additional, Casas, Josefina, additional, Cristóbal-Lecina, Edgar, additional, Font, Albert, additional, Corchero, José Luis, additional, Pulido, Daniel, additional, Soldevila, Andreu, additional, Royo, Miriam, additional, Córdoba, Alba, additional, Merlo-Mas, Josep, additional, Ferrer, Lidia, additional, Sala, Santi, additional, Mancilla-Zamora, Sandra, additional, Llaguno-Munive, Monserrat, additional, Zamora-Pérez, Paula, additional, Garcia-Prats, Belén, additional, Ventosa, Nora, additional, and Abasolo, Ibane, additional
- Published
- 2022
- Full Text
- View/download PDF
9. Engineering pH‐Sensitive Stable Nanovesicles for Delivery of MicroRNA Therapeutics
- Author
-
Boloix, Ariadna, primary, Feiner‐Gracia, Natalia, additional, Köber, Mariana, additional, Repetto, Javier, additional, Pascarella, Rosa, additional, Soriano, Aroa, additional, Masanas, Marc, additional, Segovia, Nathaly, additional, Vargas‐Nadal, Guillem, additional, Merlo‐Mas, Josep, additional, Danino, Dganit, additional, Abutbul‐Ionita, Inbal, additional, Foradada, Laia, additional, Roma, Josep, additional, Córdoba, Alba, additional, Sala, Santi, additional, Toledo, Josep Sánchez, additional, Gallego, Soledad, additional, Veciana, Jaume, additional, Albertazzi, Lorenzo, additional, Segura, Miguel F., additional, and Ventosa, Nora, additional
- Published
- 2021
- Full Text
- View/download PDF
10. Liposomes et leur utilisation pour l'administration d'enzymes
- Author
-
Ventosa, Leonor, Veciana, Jaume, Royo, Miriam, Tomsen Melero, Judit, Abasolo, Ibane, Schwartz Jr., Simó, Corchero, José Luis, Pulido, Daniel, Cristóbal Lecina, Edgar, González Mira, Elisabet, Sala Vergés, Santiago, Córdoba, Alba, Merlo Mas, Josep, Soldevila, Andreu, and Font, Albert
- Abstract
[EN] The present invention refers to a liposome comprising: a) a phospholipid; b) cholesterol (chol); c) a conjugate comprising a cholesterol moiety, a polyethylene glycol (PEG) moiety and a peptide moiety comprising a RGD sequence, wherein the PEG moiety is covalently attached to the cholesterol moiety by one end via a bond of the type alkyl ether and is covalently attached to the peptide moiety comprising the RGD sequence by the other end: d) a non-lipid cationic surfactant present in a percentage of less than 30% mol in respect to the total mol of the components of the liposome a), b), c) and d); and e) alpha-galactosidase (GLA) enzyme present in a ratio of micrograms of GLA in respect to the total milligrams of the components of the liposome a), b), c) and d) of between and including 2 to 35. It also refers to a pharmaceutical composition that comprises it and to the liposome or the pharmaceutical composition for use as a medicament, in particular for use in the treatment of Fabry disease. It also refers to a process for the production of the liposome., [FR] La présente invention concerne un liposome comprenant : a) un phospholipide ; b) cholestérol (chol) ; c) un conjugué comprenant une fraction de cholestérol, une fraction de polyéthylène glycol (PEG) et une fraction peptidique comprenant une séquence RGD, la fraction PEG étant liée de manière covalente à la fraction de cholestérol par une extrémité par l'intermédiaire d'une liaison du type éther alcoylique et étant liée de manière covalente à la fraction peptidique comprenant la séquence RGD par l'autre extrémité : d) un agent tensioactif cationique non lipidique présent dans un pourcentage inférieur à 30% molaire par rapport au total molaire des composants du liposome a), b), c) et d) ; et e) l'enzyme alpha-galactosidase (GLA) présente dans un rapport de microgrammes de GLA par rapport aux milligrammes totaux des composants du liposome a), b), c) et d) de 2 à 35 inclus. L'invention concerne également une composition pharmaceutique qui le comprend et le liposome ou la composition pharmaceutique pour une utilisation comme médicament, en particulier pour une utilisation dans le traitement de la maladie de Fabry. L'invention concerne également un procédé de production du liposome., Consejo Superior de Investigaciones Científicas (CSIC), Consorcio Centro de Investigación Biomédica En Red, Fundació Hospital Universitari Vall D'Hebron - Institut de Recerca, Nanomol Technologies, S.L., Leanbio, A1 Solicitud de patente con informe sobre el estado de la técnica
- Published
- 2021
11. Recombinant Human Epidermal Growth Factor/Quatsome Nanoconjugates: A Robust Topical Delivery System for Complex Wound Healing
- Author
-
Ministerio de Economía y Competitividad (España), European Commission, Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina (España), Generalitat de Catalunya, Ferrer Tasies, Lidia P., Santana, Hector, Cabrera, Ingrid, González Mira, Elisabet, Ballell Hosa, Lídia, Castellar Álvarez, Carla, Córdoba, Alba, Merlo Mas, Josep, Gerónimo, Haydee, Chinea, Glay, Falcón, Viviana, Moreno Calvo, Evelyn, Pedersen, Jan Skov, Romero, Jessica, Navarro Requena, Claudia, Valdés, Calixto, Limonta, Miladys, Berlanga Acosta, Jorge, Sala Vergés, Santiago, Martínez, Eduardo, Veciana, Jaume, Ventosa, Nora, Ministerio de Economía y Competitividad (España), European Commission, Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina (España), Generalitat de Catalunya, Ferrer Tasies, Lidia P., Santana, Hector, Cabrera, Ingrid, González Mira, Elisabet, Ballell Hosa, Lídia, Castellar Álvarez, Carla, Córdoba, Alba, Merlo Mas, Josep, Gerónimo, Haydee, Chinea, Glay, Falcón, Viviana, Moreno Calvo, Evelyn, Pedersen, Jan Skov, Romero, Jessica, Navarro Requena, Claudia, Valdés, Calixto, Limonta, Miladys, Berlanga Acosta, Jorge, Sala Vergés, Santiago, Martínez, Eduardo, Veciana, Jaume, and Ventosa, Nora
- Abstract
A multitude of microparticles and nanoparticles is developed to improve the delivery of different small drugs and large biomolecules, which are subject to several hindering biological barriers that limit their optimal biodistribution and therapeutic effects. Here, a soft, reliable, and scalable method based on compressed CO2 is reported for obtaining nanoconjugates of recombinant human epidermal growth factor and nanovesicles called quatsomes, where the latter consists of cholesterol and cetyltrimethylammonium bromide. These nanoconjugates exhibit appropriate values of the major critical quality attributes of colloidal nanomedicines, such as controlled and narrow nanoscopic particle size distribution (which play important roles in determining their stability), drug loading, drug release, drug protection, targeting ability, and bioactivity. Also, they exhibit a dual action by 1) inbuilt antimicrobial activity preventing infections and 2) promoting regeneration of granulation tissue and re‐epithelialization with complete closure of complex wounds. Therefore, such nanoconjugates are a potential nanomedicine for the topical treatment of complex wounds, particularly diabetic foot ulcers and venous leg ulcers.
- Published
- 2021
12. Recombinant Human Epidermal Growth Factor/Quatsome Nanoconjugates: A Robust Topical Delivery System for Complex Wound Healing (Adv. Therap. 6/2021)
- Author
-
Ferrer‐Tasies, Lidia, primary, Santana, Hector, additional, Cabrera‐Puig, Ingrid, additional, González‐Mira, Elisabet, additional, Ballell‐Hosa, Lídia, additional, Castellar‐Álvarez, Carla, additional, Córdoba, Alba, additional, Merlo‐Mas, Josep, additional, Gerónimo, Haydee, additional, Chinea, Glay, additional, Falcón, Viviana, additional, Moreno‐Calvo, Evelyn, additional, Pedersen, Jan Skov, additional, Romero, Jessica, additional, Navarro‐Requena, Claudia, additional, Valdés, Calixto, additional, Limonta, Miladys, additional, Berlanga, Jorge, additional, Sala, Santiago, additional, Martínez, Eduardo, additional, Veciana, Jaume, additional, and Ventosa, Nora, additional
- Published
- 2021
- Full Text
- View/download PDF
13. Impact of Chemical Composition on the Nanostructure and Biological Activity of α-Galactosidase-Loaded Nanovesicles for Fabry Disease Treatment
- Author
-
Tomsen-Melero, Judit, primary, Passemard, Solène, additional, García-Aranda, Natalia, additional, Díaz-Riascos, Zamira Vanessa, additional, González-Rioja, Ramon, additional, Nedergaard Pedersen, Jannik, additional, Lyngsø, Jeppe, additional, Merlo-Mas, Josep, additional, Cristóbal-Lecina, Edgar, additional, Corchero, José Luis, additional, Pulido, Daniel, additional, Cámara-Sánchez, Patricia, additional, Portnaya, Irina, additional, Ionita, Inbal, additional, Schwartz, Simó, additional, Veciana, Jaume, additional, Sala, Santi, additional, Royo, Miriam, additional, Córdoba, Alba, additional, Danino, Dganit, additional, Pedersen, Jan Skov, additional, González-Mira, Elisabet, additional, Abasolo, Ibane, additional, and Ventosa, Nora, additional
- Published
- 2021
- Full Text
- View/download PDF
14. Clinical validation of risk scoring systems to predict risk of delayed bleeding after EMR of large colorectal lesions
- Author
-
La Caixa, Caja Navarra, Albéniz, Eduardo, Gimeno-Garcia, Antonio Z., Fraile, María, Ibáñez Beroiz, Berta, Guarner-Argente, Carlos, Alonso-Aguirre, Pedro, Álvarez, Marco Antonio, Jerusalén Gargallo, Carla, Pellisé, María, Ramos-Zabala, Felipe, Herreros de Tejada, Alberto, Nogales, Oscar, Martínez-Ares, David, Múgica, Fernando, Peña, Joaquín de la, Espinós, Jorge C., Huerta, Alain, Álvarez, Alberto, Gonzalez-Santiago, Jesús M., Navajas, Francisco, Martínez-Cara, Juan Gabriel, Redondo-Cerezo, Eduardo, Merlo Mas, Josep, Sábado, Fernando, Rivero, Liseth, Saperas, Esteban, Soto, Santiago, Rodríguez-Sánchez, Joaquín, López-Roses, Leopoldo, Rodríguez-Téllez, Manuel, Rullán Iriarte, María, Elosua, Alfonso, Pardeiro, Remedios, Valdivielso Cortázar, Eduardo, Concepción-Martín, Mar, Huelin Álvarez, Patricia, Colán Hernández, Juan, Cobian, Julyssa, Santiago, José, Jiménez, Alejandra, Remedios, David, López-Viedma, Bartolomé, García, Orlando, Martínez-Alcalá, Felipe, Pérez-Roldán, Francisco, Carbó, Jorge, Enguita-Germán, Mónica, La Caixa, Caja Navarra, Albéniz, Eduardo, Gimeno-Garcia, Antonio Z., Fraile, María, Ibáñez Beroiz, Berta, Guarner-Argente, Carlos, Alonso-Aguirre, Pedro, Álvarez, Marco Antonio, Jerusalén Gargallo, Carla, Pellisé, María, Ramos-Zabala, Felipe, Herreros de Tejada, Alberto, Nogales, Oscar, Martínez-Ares, David, Múgica, Fernando, Peña, Joaquín de la, Espinós, Jorge C., Huerta, Alain, Álvarez, Alberto, Gonzalez-Santiago, Jesús M., Navajas, Francisco, Martínez-Cara, Juan Gabriel, Redondo-Cerezo, Eduardo, Merlo Mas, Josep, Sábado, Fernando, Rivero, Liseth, Saperas, Esteban, Soto, Santiago, Rodríguez-Sánchez, Joaquín, López-Roses, Leopoldo, Rodríguez-Téllez, Manuel, Rullán Iriarte, María, Elosua, Alfonso, Pardeiro, Remedios, Valdivielso Cortázar, Eduardo, Concepción-Martín, Mar, Huelin Álvarez, Patricia, Colán Hernández, Juan, Cobian, Julyssa, Santiago, José, Jiménez, Alejandra, Remedios, David, López-Viedma, Bartolomé, García, Orlando, Martínez-Alcalá, Felipe, Pérez-Roldán, Francisco, Carbó, Jorge, and Enguita-Germán, Mónica
- Abstract
[Background and Aims]: The Endoscopic Resection Group of the Spanish Society of Endoscopy (GSEED-RE) model and the Australian Colonic Endoscopic Resection (ACER) model were proposed to predict delayed bleeding (DB) after EMR of large superficial colorectal lesions, but neither has been validated. We validated and updated these models., [Methods]: A multicenter cohort study was performed in patients with nonpedunculated lesions ≥20 mm removed by EMR. We assessed the discrimination and calibration of the GSEED-RE and ACER models. Difficulty performing EMR was subjectively categorized as low, medium, or high. We created a new model, including factors associated with DB in 3 cohort studies., [Results]: DB occurred in 45 of 1034 EMRs (4.5%); it was associated with proximal location (odds ratio [OR], 2.84; 95% confidence interval [CI], 1.31-6.16), antiplatelet agents (OR, 2.51; 95% CI, .99-6.34) or anticoagulants (OR, 4.54; 95% CI, 2.14-9.63), difficulty of EMR (OR, 3.23; 95% CI, 1.41-7.40), and comorbidity (OR, 2.11; 95% CI, .99-4.47). The GSEED-RE and ACER models did not accurately predict DB. Re-estimation and recalibration yielded acceptable results (GSEED-RE area under the curve [AUC], .64 [95% CI, .54-.74]; ACER AUC, .65 [95% CI, .57-.73]). We used lesion size, proximal location, comorbidity, and antiplatelet or anticoagulant therapy to generate a new model, the GSEED-RE2, which achieved higher AUC values (.69-.73; 95% CI, .59-.80) and exhibited lower susceptibility to changes among datasets., [Conclusions]: The updated GSEED-RE and ACER models achieved acceptable prediction levels of DB. The GSEED-RE2 model may achieve better prediction results and could be used to guide the management of patients after validation by other external groups. (Clinical trial registration number: NCT 03050333.)
- Published
- 2020
15. SLEEVE GÁSTRICO ENDOSCÓPICO-GASTROPLASTIA RESTRICTIVA ENDOSCÓPICA-ENDOSLEEVE (MÉTODO APOLLO): RESULTADOS RETROSPECTIVOS DE NUESTRA UNIDAD DE OBESIDAD A 1 AÑO
- Author
-
Gon�alves aa Cunha, Patricia, primary, Ruiz Serrano, Ana, additional, Durán Bermejo, Ramiro, additional, Yip Baldeón, Luis, additional, Cuixart Carruesco, Gemma, additional, Otero Pareja, Jorge, additional, Bacardit Vendrell, Mar, additional, Torres Mota, Laura, additional, and Merlo Mas, Josep, additional
- Published
- 2019
- Full Text
- View/download PDF
16. Targeted nanoliposomes to improve enzyme replacement therapy of Fabry disease.
- Author
-
Tomsen-Melero, Judit, Moltó-Abad, Marc, Merlo-Mas, Josep, Díaz-Riascos, Zamira V., Cristóbal-Lecina, Edgar, Soldevila, Andreu, Altendorfer-Kroath, Thomas, Danino, Dganit, Ionita, Inbal, Pedersen, Jan Skov, Snelling, Lyndsey, Clay, Hazel, Carreño, Aida, Corchero, José L., Pulido, Daniel, Casas, Josefina, Veciana, Jaume, Schwartz Jr., Simó, Sala, Santi, and Font, Albert
- Subjects
- *
ANGIOKERATOMA corporis diffusum , *ENZYME replacement therapy , *GALACTOSIDASES , *LYSOSOMAL storage diseases , *CENTRAL nervous system , *SYMPTOMS - Abstract
The central nervous system represents a major target tissue for therapeutic approach of numerous lysosomal storage disorders. Fabry disease arises from the lack or dysfunction of the lysosomal alpha-galactosidase A (GLA) enzyme, resulting in substrate accumulation and multisystemic clinical manifestations. Current enzyme replacement therapies (ERTs) face limited effectiveness due to poor enzyme biodistribution in target tissues and inability to reach the brain. We present an innovative drug delivery strategy centered on a peptide-targeted nanoliposomal formulation, designated as nanoGLA, engineered to selectively deliver a recombinant human GLA (rhGLA) to target tissues. In a Fabry mouse model, nanoGLA demonstrated improved efficacy, inducing a notable reduction in Gb3 deposits in contrast to non-nanoformulated GLA, even in the brain, highlighting the potential of the nano-GLA to address both systemic and cerebrovascular manifestations of Fabry disease. The EMA has granted the Orphan Drug Designation to this product, underscoring the potential clinical superiority of nanoGLA over authorized ERTs and encouraging to advance it toward clinical translation. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
17. UNA PROPUESTA DE GEOMETRÍAS PARA MARCAJE HORIZONTAL
- Author
-
LARENA PELLEJERO, ALICIA, primary, MAROTO IBAÑEZ, JOAQUIN, additional, MERLO MAS, JOSEP, additional, and BERNABEU LARENA, ALEJANDRO, additional
- Published
- 2018
- Full Text
- View/download PDF
18. Propuesta de un nuevo modelo de geometrías para marcado horizontal de carreteras.
- Author
-
Larena Pellejero, Alicia, Maroto-Ibáñez, Joaquín, Merlo-Mas, Josep, and Bernabéu-Larena, Alejandro
- Published
- 2018
- Full Text
- View/download PDF
19. Sobre el uso de sistemas inteligentes para seguridad vial.
- Author
-
Larena-Pellejero, Alicia and Merlo-Mas, Josep
- Published
- 2016
- Full Text
- View/download PDF
20. Engineering pH-Sensitive Stable Nanovesicles for Delivery of MicroRNA Therapeutics
- Author
-
Dganit Danino, Alba Córdoba, Santi Sala, Ariadna Boloix, Lorenzo Albertazzi, Inbal Abutbul-Ionita, Mariana Köber, Marc Masanas, Soledad Gallego, Josep Sánchez de Toledo, Javier Repetto, Nora Ventosa, Nathaly Segovia, Natalia Feiner-Gracia, Miguel F. Segura, Aroa Soriano, Rosa Pascarella, Josep Merlo-Mas, Josep Roma, Jaume Veciana, Guillem Vargas-Nadal, Laia Foradada, Institut Català de la Salut, [Boloix A] Molecular Nanoscience and Organic Materials (Nanomol) Institut de Ciència de Materials de Barcelona ICMAB-CSIC Campus UAB. Laboratori de Recerca Translacional en Càncer en la Infància i l’Adolescència, Vall d’Hebron Institut de Recerca (VHIR), Barcelona, Spain. Universitat Autònoma de Barcelona, Bellaterra, Spain. CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN) Madrid, Spain. [Feiner-Gracia N, Pascarella R] Nanoscopy for Nanomedicine Group Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute of Science and Technology (BIST) Barcelona, Spain. Department of Biomedical Engineering Institute for Complex Molecular Systems (ICMS) Eindhoven University of Technology Eindhoven, The Netherlands. [Köber M] Molecular Nanoscience and Organic Materials (Nanomol) Institut de Ciència de Materials de Barcelona ICMAB-CSIC Campus UAB. CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN) Madrid, Spain. [Repetto J] Molecular Nanoscience and Organic Materials (Nanomol) Institut de Ciència de Materials de Barcelona ICMAB-CSIC Campus UAB. [Soriano A, Masanas M, Roma J, Sánchez de Toledo J, Gallego S] Laboratori de Recerca Translacional en Càncer en la Infància i l’Adolescència, Vall d’Hebron Institut de Recerca (VHIR), Barcelona, Spain. Universitat Autònoma de Barcelona, Bellaterra, Spain. [Foradada L] Peptomyc S.L., Edifici Cellex Barcelona, Spain. [Segura MF] Molecular Nanoscience and Organic Materials (Nanomol) Institut de Ciència de Materials de Barcelona ICMAB-CSIC Campus UAB. Laboratori de Recerca Translacional en Càncer en la Infància i l’Adolescència, Vall d’Hebron Institut de Recerca (VHIR), Barcelona, Spain. Universitat Autònoma de Barcelona, Bellaterra, Spain, Vall d'Hebron Barcelona Hospital Campus, Ministerio de Educación, Cultura y Deporte (España), Ministerio de Economía y Competitividad (España), Ministerio de Ciencia, Innovación y Universidades (España), Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina (España), Matem lo Bitxo, Asociación Española Contra el Cáncer, Generalitat de Catalunya, Boloix, Ariadna, Köber, Mariana, Soriano, Aroa, Masanas, Marc, Segovia, Nathaly, Vargas Nadal, Guillem, Merlo Mas, Josep, Danino, Dganit, Foradada, Laia, Roma, Josep, Toledo, Josep Sánchez de, Gallego, Soledad, Veciana, Jaume, Albertazzi, Lorenzo, Segura, Miguel F., Ventosa, Nora, ICMS Core, Nanoscopy for Nanomedicine, Molecular Biosensing for Med. Diagnostics, Boloix, Ariadna [0000-0002-1648-5589], Köber, Mariana [0000-0001-9962-7900], Soriano, Aroa [0000-0001-9659-1471], Masanas, Marc [0000-0002-2249-8554], Segovia, Nathaly [0000-0001-8814-6095], Vargas Nadal, Guillem [0000-0003-4383-1325], Merlo Mas, Josep [0000-0002-3698-6655], Danino, Dganit [0000-0002-9782-4940], Foradada, Laia [0000-0002-0589-4360], Roma, Josep [0000-0001-7692-6123], Toledo, Josep Sánchez de [0000-0002-1034-1920], Gallego, Soledad [0000-0002-4712-9624], Veciana, Jaume [0000-0003-1023-9923], Albertazzi, Lorenzo [0000-0002-6837-0812], Segura, Miguel F. [0000-0003-0916-3618], and Ventosa, Nora [0000-0002-8008-4974]
- Subjects
Micro RNAs ,Cancer therapy ,nanovesicles ,siRNAs delivery ,Otros calificadores::Otros calificadores::/farmacoterapia [Otros calificadores] ,Endogeny ,Tumor cells ,SDG 3 – Goede gezondheid en welzijn ,Other subheadings::Other subheadings::/drug therapy [Other subheadings] ,Nanovesicles ,Biomaterials ,neoplasias [ENFERMEDADES] ,neuroblastoma ,SDG 3 - Good Health and Well-being ,Neuroblastoma ,Neoplasms ,microRNA ,quatsomes ,medicine ,Humans ,General Materials Science ,Tumors ,miRNAs delivery ,MicroARN ,Nanopartícules ,nanocarriers ,Chemistry ,Càncer - Tractament ,General Chemistry ,Hydrogen-Ion Concentration ,medicine.disease ,Pediatric cancer ,Cell biology ,pediatric cancer ,Clinical Practice ,Neoplasms [DISEASES] ,Cytosol ,MicroRNAs ,cancer therapy ,Nanoparticles ,Nanocarriers ,Biotechnology - Abstract
MicroRNAs (miRNAs) are small non-coding endogenous RNAs, which are attracting a growing interest as therapeutic molecules due to their central role in major diseases. However, the transformation of these biomolecules into drugs is limited due to their unstability in the bloodstream, caused by nucleases abundantly present in the blood, and poor capacity to enter cells. The conjugation of miRNAs to nanoparticles (NPs) could be an effective strategy for their clinical delivery. Herein, the engineering of non-liposomal lipid nanovesicles, named quatsomes (QS), for the delivery of miRNAs and other small RNAs into the cytosol of tumor cells, triggering a tumor-suppressive response is reported. The engineered pH-sensitive nanovesicles have controlled structure (unilamellar), size (24 weeks), and are prepared by a green, GMP compliant, and scalable one-step procedure, which are all unavoidable requirements for the arrival to the clinical practice of NP based miRNA therapeutics. Furthermore, QS protect miRNAs from RNAses and when injected intravenously, deliver them into liver, lung, and neuroblastoma xenografts tumors. These stable nanovesicles with tunable pH sensitiveness constitute an attractive platform for the efficient delivery of miRNAs and other small RNAs with therapeutic activity and their exploitation in the clinics., The funding was received by Ministerio de Educación, Cultura y Deporte (Grant no. FPU16/01099), Ministerio de Economía, Industria y Competividad (Grants MAT2016-80820-R, MAT2016-80826-R and SAF2016-75241-R), the Ministry of Science and Innovation (MINECO) of Spain through grant PID2019-105622RB-I00, from Instituto de Salud Carlos III (Grant no. CP16/00006, PI17/00564, PI20/00530, DTS20/00018) (Co-funded by European Regional Development Fund/European Social Fund) “Investing in your future”), from the EuroNanoMed II platform through the NanoVax project, from CIBER-BBN through grant TAG-SMARTLY, Joan Petit Foundation, Asociación Matem Lo Bitxo and Asociación Española Contra el Cáncer (Grant no. LABAE18009SEGU), as well as, Generalitat de Catalunya through the Centres de Recerca de Catalunya (CERCA) programme and grant no. 2017-SGR-918, and from Agency for Management of University and Research Grants (AGAUR) (Grant no 2018LLAV0064 and SIFECAT IU68-010017). Furthermore, ICMAB-CSIC acknowledges support from the MINECO through the Severo Ochoa Programme for Centres of Excellence in R&D (SEV-2015-0496 and CEX2019-000917-S). Quatsome production and their physicochemical characterization was performed by the ICTS “NANBIOSIS,” more specifically in the Biomaterial Processing and Nanostructuring Unit (U6), Unit of the CIBER in Bioengineering, Biomaterials & Nanomedicne (CIBER-BBN) located at the Institute of Materials Science of Barcelona (ICMAB-CSIC). The authors thank the UAB Microscopy service for their help in recording cryo-TEM images. The authors also thank Mr. Adolfo de Hoyos-Limon for pKa measurements, Ms. Patricia Pérez for her help in in vitro experiments, the members of Laboratory Animal Service Unit of Vall d'Hebron Research Institute for their help in the in vivo experiment. The authors thank Editage (www.editage.com) and Ms. Christine O'Hara for English language correction. The authors acknowledge Biorender.com for allowing the adaptation of their templates. Retrieved from https://app.biorender.com/biorender-templates., With funding from the Spanish government through the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000917-S).
- Published
- 2021
21. Engineering pH-Sensitive Stable Nanovesicles for Delivery of MicroRNA Therapeutics.
- Author
-
Boloix A, Feiner-Gracia N, Köber M, Repetto J, Pascarella R, Soriano A, Masanas M, Segovia N, Vargas-Nadal G, Merlo-Mas J, Danino D, Abutbul-Ionita I, Foradada L, Roma J, Córdoba A, Sala S, de Toledo JS, Gallego S, Veciana J, Albertazzi L, Segura MF, and Ventosa N
- Subjects
- Humans, Hydrogen-Ion Concentration, MicroRNAs chemistry, Nanoparticles chemistry, Neoplasms drug therapy, Neoplasms therapy
- Abstract
MicroRNAs (miRNAs) are small non-coding endogenous RNAs, which are attracting a growing interest as therapeutic molecules due to their central role in major diseases. However, the transformation of these biomolecules into drugs is limited due to their unstability in the bloodstream, caused by nucleases abundantly present in the blood, and poor capacity to enter cells. The conjugation of miRNAs to nanoparticles (NPs) could be an effective strategy for their clinical delivery. Herein, the engineering of non-liposomal lipid nanovesicles, named quatsomes (QS), for the delivery of miRNAs and other small RNAs into the cytosol of tumor cells, triggering a tumor-suppressive response is reported. The engineered pH-sensitive nanovesicles have controlled structure (unilamellar), size (<150 nm) and composition. These nanovesicles are colloidal stable (>24 weeks), and are prepared by a green, GMP compliant, and scalable one-step procedure, which are all unavoidable requirements for the arrival to the clinical practice of NP based miRNA therapeutics. Furthermore, QS protect miRNAs from RNAses and when injected intravenously, deliver them into liver, lung, and neuroblastoma xenografts tumors. These stable nanovesicles with tunable pH sensitiveness constitute an attractive platform for the efficient delivery of miRNAs and other small RNAs with therapeutic activity and their exploitation in the clinics., (© 2021 The Authors. Small published by Wiley-VCH GmbH.)
- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.