1. 2D nanostructures: Potential in diagnosis and treatment of Alzheimer's disease.
- Author
-
Tufail S, Sherwani MA, Shamim Z, Abdullah, Goh KW, Alomary MN, Ansari MA, Almosa AA, Ming LC, Abdullah ADI, Khan FB, Menhali AA, Mirza S, and Ayoub MA
- Subjects
- Humans, Graphite chemistry, Alzheimer Disease diagnosis, Alzheimer Disease drug therapy, Nanostructures therapeutic use, Nanostructures chemistry, Biosensing Techniques methods
- Abstract
Two-dimensional (2D) nanomaterials have garnered enormous attention seemingly due to their unusual architecture and properties. Graphene and graphene oxide based 2D nanomaterials remained the most sought after for several years but the quest to design superior 2D nanomaterials which can find wider application gave rise to development of non-graphene 2D materials as well. Consequently, in addition to graphene based 2D nanomaterials, 2D nanostructures designed using macromolecules (such as DNAs, proteins, peptides and peptoids), transition metal dichalcogenides, transition-metal carbides and/or nitrides (MXene), black phosphorous, chitosan, hexagonal boron nitrides, and graphitic carbon nitride, and covalent organic frameworks have been developed. Interestingly, these 2D nanomaterials have found applications in diagnosis and treatment of various diseases including Alzheimer's disease (AD). Although AD is one of the most debilitating neurodegenerative conditions across the globe; unfortunately, there remains a paucity of effective diagnostic and/or therapeutic intervention for it till date. In this scenario, nanomaterial-based biosensors, or therapeutics especially 2D nanostructures are emerging to be promising in this regard. This review summarizes the diagnostic and therapeutic platforms developed for AD using 2D nanostructures. Collectively, it is worth mentioning that these 2D nanomaterials would seemingly provide an alternative and intriguing platform for biomedical interventions., Competing Interests: Declaration of Competing Interest There are none, (Copyright © 2023 The Authors. Published by Elsevier Masson SAS.. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF