1. Preparation of Immobilized Lipase Based on Hollow Mesoporous Silica Spheres and Its Application in Ester Synthesis
- Author
-
Zhe Dong, Meng-Ying Jiang, Jie Shi, Ming-Ming Zheng, and Feng-Hong Huang
- Subjects
immobilized lipase ,hydrophobic modification ,enzymatic esterification ,phytosterols esters ,response surface methodology ,Organic chemistry ,QD241-441 - Abstract
In this study, Candida rugosa lipase (CRL) was immobilized into modified hollow mesoporous silica (HMSS) materials with different hydrophobicity. Among propyl-(C3), phenyl-(C6), octyl-(C8), and octadecyl-(C18) modified HMSS as well as native HMSS, taking advantage of more hydrophobic microenvironment, the HMSS-C18-CRL showed exceptional performance in enzymatic esterification reaction. Using the novel HMSS-C18 with immobilized CRL (HMSS-C18-CRL), we investigated the esterification of phytosterols with polyunsaturated fat acid (PUFA) in a solvent-free system for the production of phytosterols esters. Response surface methodology (RSM) was applied to model and optimize the reaction conditions, namely, the enzyme load (5⁻25%), reaction time (10⁻110 min), molar ratio of α-linolenic acid (ALA)/phytosterols (1:1⁻7:1) and represented by the letters E, T, and M respectively. Best-fitting models were successfully established by multiple regressions with backward elimination. The optimum production was achieved at 70 min for reaction time, 20% based on the weight of substrate for enzyme loading, and 5.6:1 for ALA/phytosterols molar ratio. Under optimized conditions, a conversion of about 90 ± 2% was achieved. These results indicated that HMSS-C18-CRL demonstrates to be a promising catalyst and can be potentially applied in the functional lipid production.
- Published
- 2019
- Full Text
- View/download PDF