1. Combinatorial Optimization Perspective based Framework for Multi-behavior Recommendation
- Author
-
Zhai, Chenhao, Meng, Chang, Yang, Yu, Zhang, Kexin, Zhao, Xuhao, and Li, Xiu
- Subjects
Computer Science - Information Retrieval - Abstract
In real-world recommendation scenarios, users engage with items through various types of behaviors. Leveraging diversified user behavior information for learning can enhance the recommendation of target behaviors (e.g., buy), as demonstrated by recent multi-behavior methods. The mainstream multi-behavior recommendation framework consists of two steps: fusion and prediction. Recent approaches utilize graph neural networks for multi-behavior fusion and employ multi-task learning paradigms for joint optimization in the prediction step, achieving significant success. However, these methods have limited perspectives on multi-behavior fusion, which leads to inaccurate capture of user behavior patterns in the fusion step. Moreover, when using multi-task learning for prediction, the relationship between the target task and auxiliary tasks is not sufficiently coordinated, resulting in negative information transfer. To address these problems, we propose a novel multi-behavior recommendation framework based on the combinatorial optimization perspective, named COPF. Specifically, we treat multi-behavior fusion as a combinatorial optimization problem, imposing different constraints at various stages of each behavior to restrict the solution space, thus significantly enhancing fusion efficiency (COGCN). In the prediction step, we improve both forward and backward propagation during the generation and aggregation of multiple experts to mitigate negative transfer caused by differences in both feature and label distributions (DFME). Comprehensive experiments on three real-world datasets indicate the superiority of COPF. Further analyses also validate the effectiveness of the COGCN and DFME modules. Our code is available at https://github.com/1918190/COPF., Comment: Accepted by KDD 2025 Research Track
- Published
- 2025