1,708 results on '"Meng, B."'
Search Results
2. Evaluating the Efficacy of Conbercept and Dexamethasone Implants Sequentially in the Treatment of Refractory Macular Edema Secondary to Central Retinal Vein Occlusion (CRVO): A One-Year Follow-Up Study
- Author
-
Xing P, Zhang Y, Wang S, Hu X, Wang M, Xia F, Zhao Y, Qu W, and Meng B
- Subjects
macular edema ,sequential ,central retinal thickness ,best corrected visual acuity ,Ophthalmology ,RE1-994 - Abstract
Peiyu Xing,1,* Yucheng Zhang,2,* Yong Zhang,1 Shaowei Wang,2 Xiaojia Hu,1 Meihua Wang,1 Fan Xia,1 Yang Zhao,1 Wei Qu,2 Bo Meng2 1Department of Ophthalmology, China Medical University the Fourth People’s Hospital of Shenyang, Shenyang, People’s Republic of China; 2Department of Ophthalmology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China*These authors contributed equally to this workCorrespondence: Bo Meng, Department of Ophthalmology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China, Email m18204507737@163.comPurpose: The objective of this research was to assess the effectiveness and safety of using Conbercept injection and dexamethasone implant (DEX I) in sequence for treating refractory macular edema (ME) caused by central retinal vein occlusion (CRVO) in patients.Methods: A study was conducted on 34 patients with persistent macular edema caused by central retinal vein occlusion, reviewing their medical history and interventions performed. Sequential implantation of DEX I was performed 1 week after the Conbercept injection. OCTA images were used to measure central retinal thickness (CRT), best-corrected visual acuity (BCVA), intraocular pressure (IOP), and pre- and post-treatment vessel density of the superficial capillary plexus (SCP) and deep capillary plexus (DCP), with a 1-year follow-up period.Results: At the 12-month follow-up, participants demonstrated notable improvements in central retinal thickness and intraocular pressure (p < 0.05). Throughout the monitoring period, no significant differences were found in BCVA improvement or vessel density reduction (p > 0.05). Two patients required topical treatment to lower their intraocular pressure during the study period.Conclusion: In conclusion, patients experiencing persistent ME due to secondary CRVO may benefit from transitioning to a treatment regimen involving Conbercept and DEX I, potentially resulting in a reduction in CRT. However, no significant improvement was observed in BCVA or deep and superficial capillary plexus vessel density.Keywords: macular edema, sequential, central retinal thickness, best corrected visual acuity
- Published
- 2024
3. Performance of the CMS High Granularity Calorimeter prototype to charged pion beams of 20$-$300 GeV/c
- Author
-
Acar, B., Adamov, G., Adloff, C., Afanasiev, S., Akchurin, N., Akgün, B., Alhusseini, M., Alison, J., de Almeida, J. P. Figueiredo de sa Sousa, de Almeida, P. G. Dias, Alpana, A., Alyari, M., Andreev, I., Aras, U., Aspell, P., Atakisi, I. O., Bach, O., Baden, A., Bakas, G., Bakshi, A., Banerjee, S., DeBarbaro, P., Bargassa, P., Barney, D., Beaudette, F., Beaujean, F., Becheva, E., Becker, A., Behera, P., Belloni, A., Bergauer, T., Berni, M. El, Besancon, M., Bhattacharya, S., Bhowmik, D., Bilki, B., Bilokin, S., Blazey, G. C., Blekman, F., Bloch, P., Bodek, A., Bonanomi, M., Bonis, J., Bonnemaison, A., Bonomally, S., Borg, J., Bouyjou, F., Bower, N., Braga, D., Brennan, L., Brianne, E., Brondolin, E., Bryant, P., Buhmann, E., Buhmann, P., Butler-Nalin, A., Bychkova, O., Callier, S., Calvet, D., Canderan, K., Cankocak, K., Cao, X., Cappati, A., Caraway, B., Caregari, S., Carty, C., Cauchois, A., Ceard, L., Cerci, D. S., Cerci, S., Cerminara, G., Chadeeva, M., Charitonidis, N., Chatterjee, R., Chen, J. A., Chen, Y. M., Cheng, H. J., Cheng, K. Y., Cheung, H., Chokheli, D., Cipriani, M., Čoko, D., Couderc, F., Cuba, E., Danilov, M., Dannheim, D., Daoud, W., Das, I., Dauncey, P., Davies, G., Davignon, O., Day, E., Debbins, P., Defranchis, M. M., Delagnes, E., Demiragli, Z., Demirbas, U., Derylo, G., Diaz, D., Diehl, L., Dinaucourt, P., Dincer, G. G., Dittmann, J., Dragicevic, M., Dugad, S., Dulucq, F., Dumanoglu, I., Dünser, M., Dutta, S., Dutta, V., Edberg, T. K., Elias, F., Emberger, L., Eno, S. C., Ershov, Yu., Extier, S., Fahim, F., Fallon, C., Fard, K. Sarbandi, Fedi, G., Ferragina, L., Forthomme, L., Frahm, E., Franzoni, G., Freeman, J., French, T., Gadow, K., Gandhi, P., Ganjour, S., Gao, X., Garcia, M. T. Ramos, Garcia-Bellido, A., Garutti, E., Gastaldi, F., Gastler, D., Gecse, Z., Germer, A., Gerwig, H., Gevin, O., Ghosh, S., Gilbert, A., Gilbert, W., Gill, K., Gingu, C., Gninenko, S., Golunov, A., Golutvin, I., Gonultas, B., Gorbounov, N., Göttlicher, P., Gouskos, L., Graf, C., Gray, A. B., Grieco, C., Gr\"önroos, S., Gu, Y., Guilloux, F., Guler, E. Gurpinar, Guler, Y., Gülmez, E., Guo, J., Gutti, H., Hakimi, A., Hammer, M., Hartbrich, O., Hassanshahi, H. M., Hatakeyama, K., Hazen, E., Heering, A., Hegde, V., Heintz, U., Heuchel, D., Hinton, N., Hirschauer, J., Hoff, J., Hou, W. S., Hou, X., Hua, H., Huck, S., Hussain, A., Incandela, J., Irles, A., Irshad, A., Isik, C., Jain, S., Jaroslavceva, J., Jheng, H. R., Joshi, U., Kaadze, K., Kachanov, V., Kalipoliti, L., Kaminskiy, A., Kanuganti, A. R., Kao, Y. W., Kapoor, A., Kara, O., Karneyeu, A., Kałuzińska, O., Kaya, M., Kaya, O., Kazhykharim, Y., Khan, F. A., Khukhunaishvili, A., Kieseler, J., Kilpatrick, M., Kim, S., Koetz, K., Kolberg, T., Komm, M., Köseyan, O. K., Kraus, V., Krawczyk, M., Kristiansen, K., Kristić, A., Krohn, M., Kronheim, B., Krüger, K., Kulis, S., Kumar, M., Kunori, S., Kuo, C. M., Kuryatkov, V., Kvasnicka, J., Kyre, S., Lai, Y., Lamichhane, K., Landsberg, G., Lange, C., Langford, J., Laurien, S., Lee, M. Y., Lee, S. W., Leiton, A. G. Stahl, Levin, A., Li, A., Li, J. H., Li, Y. Y., Liang, Z., Liao, H., Lin, Z., Lincoln, D., Linssen, L., Lipton, R., Liu, G., Liu, Y., Lobanov, A., Lohezic, V., Lomidze, D., Lu, R. S., Lu, S., Lupi, M., Lysova, I., Magnan, A. -M., Magniette, F., Mahjoub, A., Martens, S., Matysek, M., Meier, B., Malakhov, A., Mallios, S., Mandjavize, I., Mannelli, M., Mans, J., Marchioro, A., Martelli, A., Martinez, G., Masterson, P., Matthewman, M., Mayekar, S. N., David, A., Coco, S., Meng, B., Menkel, A ., Mestvirishvili, A., Milella, G., Mirza, I., Moccia, S., Mohanty, G. B., Monti, F., Moortgat, F. W., Morrissey, I., Motta, J., Murthy, S., Musić, J., Musienko, Y., Nabili, S., Nguyen, M., Nikitenko, A., Noonan, D., Noy, M., Nurdan, K., Nursanto, M. Wulansatiti, Ochando, C., Odell, N., Okawa, H., Onel, Y., Ortez, W., Ozegović, J., Ozkorucuklu, S., Paganis, E., Palmer, C. A., Pandey, S., Pantaleo, F., Papageorgakis, C., Papakrivopoulos, I., Paranjpe, M., Parshook, J., Pastika, N., Paulini, M., Peitzmann, T., Peltola, T., Peng, N., Perraguin, A. Buchot, Petiot, P., Pierre-Emile, T., Pinto, M. Vicente Barreto, Popova, E., Pöschl, R., Prosper, H., Prvan, M., Puljak, I., Qasim, S. R., Qu, H., Quast, T., Quinn, R., Quinnan, M., Rane, A., Rao, K. K., Rapacz, K., Raux, L., Redjeb, W., Reinecke, M., Revering, M., Richard, F., Roberts, A., Sanchez, A. M., Rohlf, J., Rolph, J., Romanteau, T., Rosado, M., Rose, A., Rovere, M., Roy, A., Rubinov, P., Rusack, R., Rusinov, V., Ryjov, V., Sahin, O. M., Salerno, R., Saradhy, R., Sarkar, T., Sarkisla, M. A., Sauvan, J. B., Schmidt, I., Schmitt, M., Schuwalow, S., Scott, E., Seez, C., Sefkow, F., Selivanova, D., Sharma, S., Shelake, M., Shenai, A., Shukla, R., Sicking, E., De, M., Silva, P., Simkina, P., Simon, F., Simsek, A. E., Sirois, Y., Smirnov, V., Sobering, T. J., Spencer, E., Srimanobhas, N., Steen, A., Strait, J., Strobbe, N., Su, X. F., Sudo, Y., Suarez, C. Mantilla, Sukhov, E., Sulak, L., Sun, L., Suryadevara, P., Syal, C., de La Taille, C., Tali, B., Tan, C. L., Tao, J., Tarabini, A., Tatli, T., Thaus, R., Taylor, R. D., Tekten, S., Thiebault, A., Thienpont, D., Tiley, C., Tiras, E., Titov, M., Tlisov, D., Tok, U. G., Kayis, A., Troska, J., Tsai, L. S., Tsamalaidze, Z., Tsipolitis, G., Tsirou, A., Undleeb, S., Urbanski, D., Uslan, E., Ustinov, V., Uzunian, A., Varela, J., Velasco, M., Vernazza, E., Viazlo, O., Vichoudis, P., Virdee, T., Voirin, E., Vojinovi\c, M., Vojinovic, M., Wade, A., Wang, C., Wang, C. C., Wang, D., Wang, F., Wang, X., Wang, Z., Wayne, M., Webb, S. N., Whitbeck, A., Wickwire, R., Wilson, J. S., Wu, H. Y., Wu, L., Xiao, M., Yang, J., Yeh, C. H, Yohay, R., Yu, D., Yu, S. S., Yuan, C., Miao, Y., Yumiceva, F., Yusuff, I., Zabi, A., Zacharopoulou, A., Zamiatin, N., Zarubin, A., Zehetner, P., Zerwas, D., Zhang, H., Zhang, J., Zhang, Y., Zhang, Z., and Zhao, X.
- Subjects
Physics - Instrumentation and Detectors - Abstract
The upgrade of the CMS experiment for the high luminosity operation of the LHC comprises the replacement of the current endcap calorimeter by a high granularity sampling calorimeter (HGCAL). The electromagnetic section of the HGCAL is based on silicon sensors interspersed between lead and copper (or copper tungsten) absorbers. The hadronic section uses layers of stainless steel as an absorbing medium and silicon sensors as an active medium in the regions of high radiation exposure, and scintillator tiles directly readout by silicon photomultipliers in the remaining regions. As part of the development of the detector and its readout electronic components, a section of a silicon-based HGCAL prototype detector along with a section of the CALICE AHCAL prototype was exposed to muons, electrons and charged pions in beam test experiments at the H2 beamline at the CERN SPS in October 2018. The AHCAL uses the same technology as foreseen for the HGCAL but with much finer longitudinal segmentation. The performance of the calorimeters in terms of energy response and resolution, longitudinal and transverse shower profiles is studied using negatively charged pions, and is compared to GEANT4 predictions. This is the first report summarizing results of hadronic showers measured by the HGCAL prototype using beam test data., Comment: Accepted for publication by JINST
- Published
- 2022
4. Study of Using Chitosan Fiber to Reinforce PSTG
- Author
-
Meng, B., Zhang, Y., and Cui, F.Z.
- Subjects
Materials of engineering and construction. Mechanics of materials ,TA401-492 - Published
- 2006
- Full Text
- View/download PDF
5. Peculiar disk behaviors of the black hole candidate MAXI J1348-630 in the hard state observed by Insight-HXMT and Swift
- Author
-
Zhang, W., Tao, L., Soria, R., Qu, J. L., Zhang, S. N., Weng, S. S., zhang, L., Wang, Y. N., Huang, Y., Ma, R. C., Zhang, S., Ge, M. Y., Song, L. M., Ma, X., Bu, Q. C., Cai, C., Cao, X. L., Chang, Z., Chen, L., Chen, T. X., Chen, Y. B., Chen, Y., Chen, Y. P., Cui, W. W., Du, Y. Y., Gao, G. H., Gao, H., Gu, Y. D., Guan, J., Guo, C. C., Han, D. W., Huo, J., Jia, S. M., Jiang, W. C., Jin, J., Kong, L. D., Li, B., Li, C. K., Li, G., Li, T. P., Li, W., Li, X., Li, X. B., Li, X. F., Li, Z. W., Liang, X. H., Liao, J. Y., Liu, B. S., Liu, C. Z., Liu, H. X., Liu, H. W., Liu, X. J., Lu, F. J., Lu, X. F., Luo, Q., Luo, T., Meng, B., Nang, Y., Nie, J. Y., Ou, G., Ren, X. Q., Sai, N., Song, X. Y., Sun, L., Tan, Y., Tuo, Y. L., Wang, C., Wang, L. J., Wang, P. J., Wang, W. S., Wang, Y. S., Wen, X. Y., Wu, B. Y., Wu, B. B., Wu, M., Xiao, G. C., Xiao, S., Xiong, S. L., Yang, R. J., Yang, S., Yang, Y. J., Yang, Y. R., Yi, Q. B., Yin, Q. Q., Yuan, Y., Zhang, F., Zhang, H. M., Zhang, P., Zhang, W. C., Zhang, Y. F., Zhang, Y. H., Zhao, H. S., Zhao, X. F., Zheng, S. J., Zheng, Y. G., and Zhou, D. K.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
We present a spectral study of the black hole candidate MAXI J1348-630 during its 2019 outburst, based on monitoring observations with Insight-HXMT and Swift. Throughout the outburst, the spectra are well fitted with power-law plus disk-blackbody components. In the soft-intermediate and soft states, we observed the canonical relation L ~ T_in^4 between disk luminosity L and peak colour temperature T_in, with a constant inner radius R_in (traditionally identified with the innermost stable circular orbit). At other stages of the outburst cycle, the behaviour is more unusual, inconsistent with the canonical outburst evolution of black hole transients. In particular, during the hard rise, the apparent inner radius is smaller than in the soft state (and increasing), and the peak colour temperature is higher (and decreasing). This anomalous behaviour is found even when we model the spectra with self-consistent Comptonization models, which take into account the up-scattering of photons from the disk component into the power-law component. To explain both those anomalous trends at the same time, we suggest that the hardening factor for the inner disk emission was larger than the canonical value of ~1.7 at the beginning of the outburst. A more physical trend of radii and temperature evolution requires a hardening factor evolving from ~3.5 at the beginning of the hard state to ~1.7 in the hard intermediate state. This could be evidence that the inner disk was in the process of condensing from the hot, optically thin medium and had not yet reached a sufficiently high optical depth for its emission spectrum to be described by the standard optically-thick disk solution., Comment: 20 pages, 10 figures, 4 tables, accepted by ApJ
- Published
- 2022
- Full Text
- View/download PDF
6. The Design and Performance of Charged Particle Detector onboard the GECAM Mission
- Author
-
Xu, Y. B., Sun, X. L., Yang, S., Li, X. Q., Peng, W. X., Gong, K., Liang, X. H., Liu, Y. Q., Guo, D. Y., Wang, H., Li, C. Y., An, Z. H., He, J. J., Liu, X. J., Xiong, S. L., Wen, X. Y., Zhang, Fan, Zhang, D. L., Zhao, X. Y., Zhang, C. Y., Cai, C., Chang, Z., Chen, G., Chen, C., Du, Y. Y., Gao, M., Gao, R., Hou, D. J., Li, Y. G., Li, G., Li, L., Li, X. F., Li, M. S., Lu, F. J., Lu, H., Meng, B., Shi, F., Wang, J. Z., Wang, Y. S., Wang, H. Z., Wen, X., Xiao, S., Xu, Y. P., Yang, J. W., Yi, Q. B., Zhang, S. N., Zhang, C. M., Zhang, Fei, Zhao, Y., and Zhou, X.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Physics - Instrumentation and Detectors - Abstract
The Gravitational Wave highly energetic Electromagnetic Counterpart All-sky Monitor (GECAM) is dedicated to detecting gravitational wave gamma-ray bursts. It is capable of all-sky monitoring over and discovering gamma-ray bursts and new radiation phenomena. GECAM consists of two microsatellites, each equipped with 8 charged particle detectors (CPDs) and 25 gamma-ray detectors (GRDs). The CPD is used to measure charged particles in the space environment, monitor energy and flow intensity changes, and identify between gamma-ray bursts and space charged particle events in conjunction with GRD. CPD uses plastic scintillator as the sensitive material for detection, silicon photomultiplier (SiPM) array as the optically readable device, and the inlaid Am-241 radioactive source as the onboard calibration means. In this paper, we will present the working principle, physical design, functional implementation and preliminary performance test results of the CPD., Comment: accepted to RDTM
- Published
- 2021
7. GECAM detection of a bright type-I X-ray burst from 4U 0614+09: confirmation its spin frequency at 413 Hz
- Author
-
Chen, Y. P., Li, J., Xiong, S. L., Ji, L., Zhang, S., Peng, W. X., Qiao, R., Li, X. Q., Wen, X. Y., Song, L. M., Zheng, S. J., Song, X. Y., Zhao, X. Y., Huang, Y., Lu, F. J., Zhang, S. N., Xiao, S., Cai, C., Zhang, B. X., An, Z. H., Chen, C., Chen, G., Chen, W., Dai, G. Q., Du, Y. Q., Gao, M., Gong, K., Guo, D. Y., Guo, Z. W., He, J. J., Li, B., Li, C., Li, C. Y., Li, G., Li, J. H., Li, L., Li, Q. X., Li, X. B., Li, Y. G., Liang, J., Liang, X. H., Liao, J. Y., Liu, J. C., Liu, X. J., Liu, Y. Q., Luo, Q., Ma, X., Meng, B., Ou, G., Shi, D. L., Shi, F., Shi, J. Y., Sun, G. X., Sun, X. L., Tuo, Y. L., Wang, C. W., Wang, H., Wang, H. Y., Wang, J., Wang, J. Z., Wang, P., Wang, Y. S., Wang, Y. X., Wen, X., Wu, H., Xie, S. L., Xu, Y. B., Xu, Y. P., Xue, W. C., Yang, S., Yao, M., Ye, J. Y., Yi, Q. B., Zhang, C. M., Zhang, C. Y., Zhang, D. L., Zhang, Fan, Zhang, Fei, Zhang, H. M., Zhang, K., Zhang, P., Zhang, X. L., Zhang, Y. Q., Zhang, Z., Zhao, G. Y., Zhao, S. Y., Zhao, Y., Zheng, C., Zhou, X., and Zhu, Y.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
One month after launching Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor (GECAM), a bright thermonuclear X-ray burst from 4U~0614+09, was observed on January 24, 2021. We report the time-resolved spectroscopy of the burst and a burst oscillation detection at 413 Hz with a fractional amplitude 3.4\% (rms). This coincides with the burst oscillation previously discovered with \textit{Swift}/BAT \citep{Strohmayer2008}, and therefore confirms the spin frequency of this source. This burst is the brightest one in the normal bursts (except the superburst) ever detected from 4U~0614+09, which leads to an upper limit of distance estimation as 3.1 kpc. The folded light curve during the burst oscillation shows a multi-peak structure, which is the first case observed during a single burst oscillation in nonpulsating sources. The multi-peak profile could be due to additional harmonics of the burst oscillation, which is corresponding to several brighter/fainter spots at the stellar surface.
- Published
- 2021
- Full Text
- View/download PDF
8. The SiPM Array Data Acquisition Algorithm Applied to the GECAM Satellite Payload
- Author
-
Liu, Y. Q., Gong, K., Li, X. Q., Wen, X. Y., An, Z. H., Cai, C., Chang, Z., Chen, G., Chen, C., Du, Y. Y., Gao, M., Gao, R., Guo, D. Y., He, J. J., Hou, D. J., Li, Y. G., Li, C. Y., Li, G., Li, L., Li, X. F., Li, M. S., Liang, X. H., Liu, X. J., Lu, F. J., Lu, H., Meng, B., Peng, W. X., Shi, F., Sun, X. L., Wang, H., Wang, J. Z., Wang, Y. S., Wang, H. Z., Wen, X., Xiao, S., Xiong, S. L., Xu, Y. B., Xu, Y. P., Yang, S., Yang, J. W., Yi, Q. B., Zhang, Fan., Zhang, D. L., Zhang, S. N., Zhang, C. Y., Zhang, C. M., Zhang, Fei, Zhao, X. Y., Zhao, Y., and Zhou, X.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,High Energy Physics - Experiment - Abstract
The Gravitational Wave Burst High-energy Electromagnetic Counterpart All-sky Monitor (GECAM), consists of 2 small satellites that each contain 25 LaBr3 (lanthanum bromide doped with cerium chloride) detectors and 8 plastic scintillator detectors. The detector signals are read out using a silicon photomultiplier (SiPM) array. In this study, an acquisition algorithm for in-orbit real-time SiPM array data is designed and implemented, and the output event packet is defined. Finally, the algorithm's efficacy for event acquisition is verified.
- Published
- 2021
9. Ground-based calibration and characterization of GRD of GECAM: 8-160 keV
- Author
-
He, J. J., An, Z. H., Peng, W. X., Li, X. Q., Xiong, S. L., Zhang, D. L., Qiao, R., Guo, D. Y., Cai, C., Chang, Z., Chen, C., Chen, G., Du, Y. Y., Gao, M., Gao, R., Gong, K., Hou, D. J., Li, C. Y., Li, G., Li, L., Li, M. S., Li, X. B., Li, X. F., Li, Y. G., Liang, X. H., Liu, J. C., Liu, X. J., Liu, Y. Q., Lu, H., Ma, X., Meng, B., Shi, F., Song, L. M., Sun, X. L., Wang, C. W., Wang, H., Wang, H. Z., Wang, J. Z., Wang, Y. S., Wen, X., Wen, X. Y., Xiao, S., Xu, Y. B., Xu, Y. P., Xue, W. C., Yang, J. W., Yang, S., Yi, Q. B., Zhang, C. M., Zhang, C. Y., Zhang, Fan, Zhang, Fei, Zhang, P., Zhang, S. N., Zhang, Y. Q., Zhao, X. Y., Zhao, Y., Zheng, C., Zheng, S. J., Zhou, X., and Zhu, Y.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena - Abstract
As the main detector of the GECAM satellite, the calibration of the energy response and detection efficiency of the GRD detector is the main content of the ground-based calibration. The calibration goal requires the calibrated energy points to sample the full energy range (8 keV-2 MeV) as much as possible. The low energy band (8-160 keV) is calibrated with the X-ray beam, while the high energy band (>160 keV) with radioactive sources. This article mainly focuses on the calibration of the energy response and detection efficiency in the 8-160 keV with a refined measurement around the absorption edges of the lanthanum bromide crystal. The GRD performances for different crystal types, data acquisition modes, working modes, and incident positions are also analyzed in detail. We show that the calibration campaign is comprehensive, and the calibration results are generally consistent with simulations as expected., Comment: 16 pages,46 figures
- Published
- 2021
10. The design and performance of GRD onboard the GECAM satellite
- Author
-
An, Z. H., Sun, X. L., Zhang, D. L., Yang, S., Li, X. Q., Wen, X. Y., Gong, K., Liang, X. H., Liu, X. J., Liu, Y. Q., Li, Y. G., Xiong, S. L., Xu, Y. B., Zhang, Fan, Zhao, X. Y., Cai, C., Chang, Z., Chen, G., Chen, C., Du, Y. Y., Feng, P. Y., Gao, M., Gao, R., Guo, D. Y., He, J. J., Hou, D. J., Li, C. Y., Li, G., Li, L., Li, X. F., Li, M. S., Lu, F. J., Lu, H., Meng, B., Peng, W. X., Shi, F., Wang, H., Wang, Z., Wang, Y. S., Wang, H. Z., Wen, X., Xiao, S., Xu, Y. P., Yang, J. W., Yi, Q. B., Zhang, S. N., Zhang, C. Y., Zhang, C. M., Zhang, Fei, Zhao, Y., and Zhou, X.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
Background: Each GECAM satellite payload contains 25 gamma-ray detectors (GRDs), which can detect gamma-rays and particles and can roughly localize the Gamma-Ray Bursts (GRBs). GRD was designed using lanthanum bromide (LaBr3) crystal as the sensitive material with the rear end coupled with silicon photomultiplier (SiPM) array for readout. Purpose: In aerospace engineering design of GRD, there are many key points to be studied. In this paper, we present the specific design scheme of GRD, the assembly and the performance test results of detectors. Methods: Based on Monte Carlo simulation and experimental test results, the specific schematic design and assembling process ofGRDwere optimized. After being fully assembled, theGRDswere conducted performance tests by using radioactive source and also conducted random vibration tests. Result and conclusion: The test results show that all satellite-borne GRDs have energy resolution <16% at 59.5 keV, meeting requirements of satellite in scientific performance. The random vibration test shows that GRD can maintain in a stable performance, which meets the requirement of spatial application., Comment: 10 pages, 15 figures
- Published
- 2021
- Full Text
- View/download PDF
11. Inflight performance of the GECAM Gamma-ray and Charge particle Detectors
- Author
-
Li, X. Q., Wen, X. Y., Xiong, S. L., Gong, K., Zhang, D. L., An, Z. H., Xu, Y. B., Liu, Y. Q., Cai, C., Chang, Z., Chen, G., Chen, C., Du, Y. Y., Gao, M., Gao, R., Guo, D. Y., He, J. J., Hou, D. J., Li, Y. G., Li, C., Li, C. Y., Li, G., Li, L., Li, Q. X., Li, X. F., Li, M. S., Liang, X. H., Liu, X. J., Lu, F. J., Lu, H., Ma, X., Meng, B., Peng, W. X., Qiao, R., Shi, F., Song, L. M., Sun, X. L., Wang, H., Wang, H. Z., Wang, J. Z., Wang, P., Wang, Y. S., Wen, X., Xiao, S., Xu, Y. P., Yang, S., Yang, J. W., Yi, Q. B., Zhang, Fan., Zhang, S. N., Zhang, C. Y., Zhang, C. M., Zhang, Fei, Zhang, K., Zhang, P., Zhao, X. Y., Zhao, Y., Zheng, S. J., and Zhou, X.
- Subjects
Physics - Instrumentation and Detectors - Abstract
The GECAM mission consists of two identical microsatellites (GECAM-A and GECAM-B). Each satellite is equipped with 25 gamma-ray detectors (GRD) and 8 charged particle detectors (CPD). The main scientific objective of the GECAM mission is to detect gamma-ray bursts (GRBs) associated with the gravitational wave events produced by the merging of binary compact stars. After the launch on Dec. 10, 2020 , we carried out a series of on orbit tests. This paper introduces the test results of the GECAM-B satellite. According to the in-flight performance, the energy band for gamma-ray detection of GECAM-B is from about 7 keV to 3.5 MeV. GECAM-B can achieve prompt localization of GRBs. For the first time, GECAM-B realized a quasi-real-time transmission of trigger information using Beidou-3 RDSS. Keywords GECAM, gamma-ray burst, gravitational wave, GRD, CPD, Comment: 16 pages, 8 figures
- Published
- 2021
12. Dedicated SiPM array for GRD of GECAM
- Author
-
Zhang, D. L., Sun, X. L., An, Z. H., Li, X. Q., Wen, X. Y., Gong, K., Cai, C., Chang, Z., Chen, G., Chen, C., Du, Y. Y., Gao, M., Gao, R., Guo, D. Y., He, J. J., Hou, D. J., Li, Y. G., Li, C. Y., Li, G., Li, L., Li, X. F., Li, M. S., Liang, X. H., Liu, X. J., Liu, Y. Q., Lu, F. J., Lu, H., Meng, B., Peng, W. X., Shi, F., Wang, H., Wang, J. Z., Wang, Y. S., Wang, H. Z., Wen, X., Xiao, S., Xiong, S. L., Xu, Y. B., Xu, Y. P., Yang, S., Yang, J. W., Zhang, Fan, Zhang, S. N., Zhang, C. Y., Zhang, C. M., Zhang, Fei, Zhao, X. Y., and Zhou, X.
- Subjects
High Energy Physics - Experiment ,Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
The discovery of gravitational waves and gamma-ray bursts heralds the era of multi-messenger astronomy. With the adoption of two small satellites to achieve the all-sky monitoring of gamma-ray bursts, the gravitational wave high-energy electromagnetic counterpart all-sky monitor (GECAM) possesses a quasi-real-time early warning ability and plays an important role in positioning the sources of gravitational waves and in subsequent observations.
- Published
- 2021
13. Response of a CMS HGCAL silicon-pad electromagnetic calorimeter prototype to 20-300 GeV positrons
- Author
-
Acar, B., Adamov, G., Adloff, C., Afanasiev, S., Akchurin, N., Akgün, B., Khan, F. Alam, Alhusseini, M., Alison, J., Alpana, A., Altopp, G., Alyari, M., An, S., Anagul, S., Andreev, I., Aspell, P., Atakisi, I. O., Bach, O., Baden, A., Bakas, G., Bakshi, A., Bannerjee, S., Bargassa, P., Barney, D., Beaudette, F., Beaujean, F., Becheva, E., Becker, A., Behera, P., Belloni, A., Bergauer, T., Besancon, M., Bhattacharya, S., Bhowmik, D., Bilki, B., Bloch, P., Bodek, A., Bonanomi, M., Bonnemaison, A., Bonomally, S., Borg, J., Bouyjou, F., Bower, N., Braga, D., Brashear, J., Brondolin, E., Bryant, P., Perraguin, A. Buchot, Bueghly, J., Burkle, B., Butler-Nalin, A., Bychkova, O., Callier, S., Calvet, D., Cao, X., Cappati, A., Caraway, B., Caregari, S., Cauchois, A., Ceard, L., Cekmecelioglu, Y. C., Cerci, S., Cerminara, G., Chadeeva, M., Charitonidis, N., Chatterjee, R., Chen, Y. M., Chen, Z., Cheng, H. J., Cheng, K. y., Chernichenko, S., Cheung, H., Chien, C. H., Choudhury, S., Čoko, D., Collura, G., Couderc, F., Danilov, M., Dannheim, D., Daoud, W., Dauncey, P., David, A., Davies, G., Davignon, O., Day, E., DeBarbaro, P., De Guio, F., de La Taille, C., De Silva, M., Debbins, P., Defranchis, M. M., Delagnes, E., Berrio, J. M. Deltoro, Derylo, G., de Almeida, P. G. Dias, Diaz, D., Dinaucourt, P., Dittmann, J., Dragicevic, M., Dugad, S., Dulucq, F., Dumanoglu, I., Dutta, V., Dutta, S., Dünser, M., Eckdahl, J., Edberg, T. K., Berni, M. El, Elias, F., Eno, S. C., Ershov, Yu., Everaerts, P., Extier, S., Fahim, F., Fallon, C., Fedi, G., Alves, B. A. Fontana Santos, Frahm, E., Franzoni, G., Freeman, J., French, T., Gandhi, P., Ganjour, S., Gao, X., Garcia-Bellido, A., Gastaldi, F., Gecse, Z., Geerebaert, Y., Gerwig, H., Gevin, O., Ghosh, S., Gilbert, A., Gilbert, W., Gill, K., Gingu, C., Gninenko, S., Golunov, A., Golutvin, I., Gonzalez, T., Gorbounov, N., Gouskos, L., Gray, A. B., Gu, Y., Guilloux, F., Guler, Y., Gülmez, E., Guo, J., Guler, E. Gurpinar, Hammer, M., Hassanshahi, H. M., Hatakeyama, K., Heering, A., Hegde, V., Heintz, U., Hinton, N., Hirschauer, J., Hoff, J., Hou, W. -S., Hou, X., Hua, H., Incandela, J., Irshad, A., Isik, C., Jain, S., Jheng, H. R., Joshi, U., Kachanov, V., Kalinin, A., Kalipoliti, L., Kaminskiy, A., Kapoor, A., Kara, O., Karneyeu, A., Kaya, M., Kaya, O., Topaksu, A. Kayis, Khukhunaishvili, A., Kiesler, J., Kilpatrick, M., Kim, S., Koetz, K., Kolberg, T., Köseyan, O. K., Kristić, A., Krohn, M., Krüger, K., Kulagin, N., Kulis, S., Kunori, S., Kuo, C. M., Kuryatkov, V., Kyre, S., Lai, Y., Lamichhane, K., Landsberg, G., Lange, C., Langford, J., Lee, M. Y., Levin, A., Li, A., Li, B., Li, J. H., Li, Y. y., Liao, H., Lincoln, D., Linssen, L., Lipton, R., Liu, Y., Lobanov, A., Lu, R. -S., Lupi, M., Lysova, I., Magnan, A. -M., Magniette, F., Mahjoub, A., Maier, A. A., Malakhov, A., Mallios, S., Mandjavize, I., Mannelli, M., Mans, J., Marchioro, A., Martelli, A., Martinez, G., Masterson, P., Meng, B., Mengke, T., Mestvirishvili, A., Mirza, I., Moccia, S., Mohanty, G. B., Monti, F., Morrissey, I., Murthy, S., Musić, J., Musienko, Y., Nabili, S., Nagar, A., Nguyen, M., Nikitenko, A., Noonan, D., Noy, M., Nurdan, K., Ochando, C., Odegard, B., Odell, N., Okawa, H., Onel, Y., Ortez, W., Ozegović, J., Ozkorucuklu, S., Paganis, E., Pagenkopf, D., Palladino, V., Pandey, S., Pantaleo, F., Papageorgakis, C., Papakrivopoulos, I., Parshook, J., Pastika, N., Paulini, M., Paulitsch, P., Peltola, T., Gomes, R. Pereira, Perkins, H., Petiot, P., Pierre-Emile, T., Pitters, F., Popova, E., Prosper, H., Prvan, M., Puljak, I., Qu, H., Quast, T., Quinn, R., Quinnan, M., Garcia, M. T. Ramos, Rao, K. K., Rapacz, K., Raux, L., Reichenbach, G., Reinecke, M., Revering, M., Roberts, A., Romanteau, T., Rose, A., Rovere, M., Roy, A., Rubinov, P., Rusack, R., Rusinov, V., Ryjov, V., Sahin, O. M., Salerno, R., Rodriguez, A. M. Sanchez, Saradhy, R., Sarkar, T., Sarkisla, M. A., Sauvan, J. B., Schmidt, I., Schmitt, M., Scott, E., Seez, C., Sefkow, F., Sharma, S., Shein, I., Shenai, A., Shukla, R., Sicking, E., Sieberer, P., Silva, P., Simsek, A. E., Sirois, Y., Smirnov, V., Sozbilir, U., Spencer, E., Steen, A., Strait, J., Strobbe, N., Su, J. W., Sukhov, E., Sun, L., Cerci, D. Sunar, Syal, C., Tali, B., Tan, C. L., Tao, J., Tastan, I., Tatli, T., Thaus, R., Tekten, S., Thienpont, D., Tiras, E., Titov, M., Tlisov, D., Tok, U. G., Troska, J., Tsai, L. -S., Tsamalaidze, Z., Tsipolitis, G., Tsirou, A., Tyurin, N., Undleeb, S., Urbanski, D., Ustinov, V., Uzunian, A., Van de Klundert, M., Varela, J., Velasco, M., Viazlo, O., Pinto, M. Vicente Barreto, Virdee, P. Vichoudis T., de Oliveira, R. Vizinho, Voelker, J., Voirin, E., Vojinovic, M., Wade, A., Wang, C., Wang, F., Wang, X., Wang, Z., Wayne, M., Webb, S. N., Whitbeck, A., White, D., Wickwire, R., Wilson, J. S., Winter, D., Wu, H. y., Wu, L., Nursanto, M. Wulansatiti, Yeh, C. H, Yohay, R., Yu, D., Yu, G. B., Yu, S. S., Yuan, C., Yumiceva, F., Yusuff, I., Zacharopoulou, A., Zamiatin, N., Zarubin, A., Zenz, S., Zghiche, A., Zhang, H., Zhang, J., Zhang, Y., and Zhang, Z.
- Subjects
Physics - Instrumentation and Detectors ,High Energy Physics - Experiment - Abstract
The Compact Muon Solenoid Collaboration is designing a new high-granularity endcap calorimeter, HGCAL, to be installed later this decade. As part of this development work, a prototype system was built, with an electromagnetic section consisting of 14 double-sided structures, providing 28 sampling layers. Each sampling layer has an hexagonal module, where a multipad large-area silicon sensor is glued between an electronics circuit board and a metal baseplate. The sensor pads of approximately 1 cm$^2$ are wire-bonded to the circuit board and are readout by custom integrated circuits. The prototype was extensively tested with beams at CERN's Super Proton Synchrotron in 2018. Based on the data collected with beams of positrons, with energies ranging from 20 to 300 GeV, measurements of the energy resolution and linearity, the position and angular resolutions, and the shower shapes are presented and compared to a detailed Geant4 simulation.
- Published
- 2021
- Full Text
- View/download PDF
14. Search for Gamma-Ray Bursts and Gravitational Wave Electromagnetic Counterparts with High Energy X-ray Telescope of \textit{Insight}-HXMT
- Author
-
Cai, C., Xiong, S. L., Li, C. K., Liu, C. Z., Zhang, S. N., Li, X. B., Song, L. M., Li, B., Xiao, S., Yi, Q. B., Zhu, Y., Zheng, Y. G., Chen, W., Luo, Q., Huang, Y., Song, X. Y., Zhao, H. S., Zhao, Y., Zhang, Z., Bu, Q. C., Cao, X. L., Chang, Z., Chen, L., Chen, T. X., Chen, Y. B., Chen, Y., Chen, Y. P., Cui, W. W., Du, Y. Y., Gao, G. H., Gao, H., Ge, M. Y., Gu, Y. D., Guan, J., Guo, C. C., Han, D. W., Huo, J., Jia, S. M., Jiang, W. C., Jin, J., Kong, L. D., Li, G., Li, T. P., Li, W., Li, X., Li, X. F., Li, Z. W., Liang, X. H., Liao, J. Y., Liu, B. S., Liu, H. W., Liu, H. X., Liu, X. J., Lu, F. J., Lu, X. F., Luo, T., Ma, R. C., Ma, X., Meng, B., Nang, Y., Nie, J. Y., Ou, G., Qu, J. L., Ren, X. Q., Sai, N., Sun, L., Tan, Y., Tao, L., Tuo, Y. L., Wang, C., Wang, L. J., Wang, P. J., Wang, W. S., Wang, Y. S., Wen, X. Y., Wu, B. B., Wu, B. Y., Wu, M., Xiao, G. C., Xu, Y. P., Yang, R. J., Yang, S., Yang, Y. J., Yang, Y. R., Yang, X. J., Yin, Q. Q., You, Y., Zhang, F., Zhang, H. M., Zhang, J., Zhang, P., Zhang, S., Zhang, W. C., Zhang, W., Zhang, Y. F., Zhang, Y. H., Zhao, X. F., Zheng, S. J., and Zhou, D. K.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
The High Energy X-ray telescope (HE) on-board the Hard X-ray Modulation Telescope (\textit{Insight}-HXMT) can serve as a wide Field of View (FOV) gamma-ray monitor with high time resolution ($\mu$s) and large effective area (up to thousands cm$^2$). We developed a pipeline to search for Gamma-Ray Bursts (GRBs), using the traditional signal-to-noise ratio (SNR) method for blind search and the coherent search method for targeted search. By taking into account the location and spectrum of the burst and the detector response, the targeted coherent search is more powerful to unveil weak and sub-threshold bursts, especially those in temporal coincidence with Gravitational Wave (GW) events. Based on the original method in literature, we further improved the coherent search to filter out false triggers caused by spikes in light curves, which are commonly seen in gamma-ray instruments (e.g. \textit{Fermi}/GBM, \textit{POLAR}). We show that our improved targeted coherent search method could eliminate almost all false triggers caused by spikes. Based on the first two years of \textit{Insight}-HXMT/HE data, our targeted search recovered 40 GRBs, which were detected by either \textit{Swift}/BAT or \textit{Fermi}/GBM but too weak to be found in our blind search. With this coherent search pipeline, the GRB detection sensitivity of \textit{Insight}-HXMT/HE is increased to about 1.5E-08 erg/cm$^2$ (200 keV$-$3 MeV). We also used this targeted coherent method to search \textit{Insight}-HXMT/HE data for electromagnetic (EM) counterparts of LIGO-Virgo GW events (including O2 and O3a runs). However, we did not find any significant burst associated with GW events., Comment: 12 pages, 14 figures, 5 tables; accepted for publication in MNRAS
- Published
- 2021
- Full Text
- View/download PDF
15. Quality assurance test and Failure Analysis of SiPM Arrays of GECAM Satellites
- Author
-
Zhang, D. L., Gao, M., Sun, X. L., Li, X. Q., An, Z. H., Wen, X. Y., Cai, C., Chang, Z., Chen, G., Chen, C., Du, Y. Y., Gao, R., Gong, K., Guo, D. Y., He, J. J., Hou, D. J., Li, Y. G., Li, C. Y., Li, G., Li, L., Li, X. F., Li, M. S., Liang, X. H., Liu, X. J., Liu, Y. Q., Lu, F. J., Lu, H., Meng, B., Peng, W. X., Shi, F., Wang, H., Wang, J. Z., Wang, Y. S., Wang, H. Z., Wen, X., Xiao, S., Xiong, S. L., Xu, Y. B., Xu, Y. P., Yang, S., Yang, J. W., Zhang, Fan., Zhang, S. N., Zhang, C. Y., Zhang, C. M., Zhang, Fei, Zhao, X. Y., and Zhou, X.
- Subjects
Physics - Instrumentation and Detectors - Abstract
The Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor (GECAM) satellite consists of two small satellites. Each GECAM payload contains 25 gamma ray detectors (GRD) and 8 charged particle detectors (CPD). GRD is the main detector which can detect gamma-rays and particles and localize the Gamma-Ray Bursts (GRB),while CPD is used to help GRD to discriminate gamma-ray bursts and charged particle bursts. The GRD makes use of lanthanum bromide (LaBr3) crystal readout by SiPM. As the all available SiPM devices belong to commercial grade, quality assurance tests need to be performed in accordance with the aerospace specifications. In this paper, we present the results of quality assurance tests, especially a detailed mechanism analysis of failed devices during the development of GECAM. This paper also summarizes the application experience of commercial-grade SiPM devices in aerospace payloads, and provides suggestions for forthcoming SiPM space applications., Comment: 13 pages, 23 figures
- Published
- 2021
16. Leveraging dynamic power benchmarks and CUSUM charts for enhanced fault detection in distributed PV systems
- Author
-
Meng, B., Loonen, R.C.G.M., and Hensen, J.L.M.
- Published
- 2024
- Full Text
- View/download PDF
17. Accretion Torque Reversals in GRO J1008-57 Revealed by Insight-HXMT
- Author
-
Wang, W., Tang, Y. M., Tuo, Y. L., Epili, P. R., Zhang, S. N., Song, L. M., Lu, F. J., Qu, J. L., Zhang, S., Ge, M. Y., Huang, Y., Li, B., Bu, Q. C., Cai, C., Cao, X. L., Chang, Z., Chen, L., Chen, T. X., Chen, Y. B., Chen, Y., Chen, Y. P., Cui, W. W., Du, Y. Y., Gao, G. H., Gao, H., Gu, Y. D., Guan, J., Guo, C. C., Han, D. W., Huo, J., Jia, S. M., Jiang, W. C., Jin, J., Kong, L. D., Li, C. K., Li, G., Li, T. P., Li, W., Li, X., Li, X. B., Li, X. F., Li, Z. W., Liang, X. H., Liao, J. Y., Liu, B. S., Liu, C. Z., Liu, H. X., Liu, H. W., Lu, X. F., Luo, Q., Luo, T., Ma, R. C., Ma, X., Meng, B., Nang, Y., Nie, J. Y., Ou, G., Ren, X. Q., Sai, N., Song, X. Y., Sun, L., Tao, L., Wang, C., Wang, L. J., Wang, P. J., Wang, W. S., Wang, Y. S., Wen, X. Y., Wu, B. Y., Wu, B. B., Wu, M., Xiao, G. C., Xiao, S., Xiong, S. L., Xu, Y. P., Yang, R. J., Yang, S., Yang, J. J., Yang, Y. J., Yi, B. B., Yin, Q. Q., You, Y., Zhang, F., Zhang, H. M., Zhang, J., Zhang, P., Zhang, W., Zhang, W. C., Zhang, Y. F., Zhang, Y. H., Zhao, H. S., Zhao, X. F., Zheng, S. J., Zheng, Y. G., and Zhou, D. K.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
GRO J1008-57, as a Be/X-ray transient pulsar, is considered to have the highest magnetic field in known neutron star X-ray binary systems. Observational data of the X-ray outbursts in GRO J1008-57 from 2017 to 2020 were collected by the Insight-HXMT satellite. In this work, the spin period of the neutron star in GRO J1008-57 was determined to be about 93.28 seconds in August 2017, 93.22 seconds in February 2018, 93.25 seconds in June 2019 and 93.14 seconds in June 2020. GRO J1008-57 evolved in the spin-up process with a mean rate of $-(2.10\pm 0.05)\times$10$^{-4}$ s/d from 2009 -- 2018, and turned into a spin down process with a rate of $(6.7\pm 0.6)\times$10$^{-5}$ s/d from Feb 2018 to June 2019. During the type II outburst of 2020, GRO J1008-57 had the spin-up torque again. During the torque reversals, the pulse profiles and continuum X-ray spectra did not change significantly, and the cyclotron resonant scattering feature around 80 keV was only detected during the outbursts in 2017 and 2020. Based on the observed mean spin-up rate, we estimated the inner accretion disk radius in GRO J1008-57 (about 1 - 2 times of the Alfv\'{e}n radius) by comparing different accretion torque models of magnetic neutron stars. During the spin-down process, the magnetic torque should dominate over the matter accreting inflow torque, and we constrained the surface dipole magnetic field $B\geq 6\times 10^{12}$ G for the neutron star in GRO J1008-57, which is consistent with the magnetic field strength obtained by cyclotron line centroid energy., Comment: 10 pages, 5 figures, and 3 tables, the Journal of High Energy Astrophysics in press
- Published
- 2021
18. QPOs and Orbital elements of X-ray binary 4U 0115+63 during the 2017 outburst observed by Insight-HXMT
- Author
-
Ding, Y. Z., Wang, W., Zhang, P., Bu, Q. C., Cai, C., Cao, X. L., Zhi, C., Chen, L., Chen, T. X., Chen, Y. B., Chen, Y., Chen, Y. P., Cui, W. W., Du, Y. Y., Gao, G. H., Gao, H., Ge, M. Y., Gu, Y. D., Guan, J., Guo, C. C., Han, D. W., Huang, Y., Huo, J., Jia, S. M., Jiang, W. C., Jin, J., Kong, L. D., Li, B., Li, C. K., Li, G., Li, T. P., Li, W., Li, X., Li, X. B., Li, X. F., Li, Z. W., Liang, X. H., Liao, J. Y., Liu, B. S., Liu, C. Z., Liu, H. X., Liu, H. W., Liu, X. J., Lu, F. J., Lu, X. F., L., Q., T., L., Ma, R. C., Ma, X., Meng, B., Nang, Y., Nie, J. Y., Qu, J. L., Ren, X. Q., Sai, N., Song, L. M., Song, X. Y., Sun, L., Tan, Y., Tao, L., Tuo, Y. L., Wang, L. J., Wang, P. J., Wang, W. S., Wang, Y. S., Wen, X. Y., Wu, B. Y., Wu, B. B., Wu, M., Xiao, G. C., Xiao, S., Xiong, S. L., Xu, Y. P., Yang, R. J., Yang, S., Yang, Y. J., Yi, Q. B., Yin, Q. Q., You, Y., Zhang, F., Zhang, H. M., Zhang, J., Zhang, S., Zhang, S. N., Zhang, W. C., Zhang, W., Zhang, Y. F., Zhang, Y. H., Zhao, H. S., Zhao, X. F., Zheng, S. J., Zheng, Y. G., and Zhou, D. K.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
In this paper, we presented a detailed timing analysis of a prominent outburst of 4U 0115+63 detected by \textit{Insight}-HXMT in 2017 August. The spin period of the neutron star was determined to be $3.61398\pm 0.00002$ s at MJD 57978. We measured the period variability and extract the orbital elements of the binary system. The angle of periastron evolved with a rate of $0.048\pm0.003$ $yr^{-1}$. The light curves are folded to sketch the pulse profiles in different energy ranges. A multi-peak structure in 1-10 keV is clearly illustrated. We introduced wavelet analysis into our data analysis procedures to study QPO signals and perform a detailed wavelet analysis in many different energy ranges. Through the wavelet spectra, we report the discovery of a QPO at the frequency $\sim 10$ mHz. In addition, the X-ray light curves showed multiple QPOs in the period of $\sim 16-32 $ s and $\sim 67- 200 $ s. We found that the $\sim100$ s QPO was significant in most of the observations and energies. There exist positive relations between X-ray luminosity and their Q-factors and S-factors, while the QPO periods have no correlation with X-ray luminosity. In wavelet phase maps, we found that the pulse phase of $\sim 67- 200 $ s QPO drifting frequently while the $\sim 16-32 $ s QPO scarcely drifting. The dissipation of oscillations from high energy to low energy was also observed. These features of QPOs in 4U 0115+63 provide new challenge to our understanding of their physical origins., Comment: 14 pages, 9 figures, and 6 tables. This work has been submitted to MNRAS after the referee's report
- Published
- 2021
- Full Text
- View/download PDF
19. Insight-HXMT observations of Swift J0243.6+6124: the evolution of RMS pulse fractions at super-Eddington luminosity
- Author
-
Wang, P. J., Kong, L. D., Zhang, S., Chen, Y. P., Zhang, S. N., Qu, J. L., Ji, L., Tao, L., Ge, M. Y., Lu, F. J., Chen, L., Song, L. M., Li, T. P., Xu, Y. P., Cao, X. L., Chen, Y., Liu, C. Z., Bu, Q. C., Cai, C., Chang, Z., Chen, G., Chen, T. X., Chen, Y. B., Cui, W., Cui, W. W., Deng, J. K., Dong, Y. W., Du, Y. Y., Fu, M. X., Gao, G. H., Gao, H., Gao, M., Gu, Y. D., Guan, J., Guo, C. C., Han, D. W., Huang, Y., Huo, J., Jia, S. M., Jiang, L. H., Jiang, W. C., Jin, J., Jin, Y. J., Li, B., Li, C. K., Li, G., Li, M. S., Li, W., Li, X., Li, X. B., Li, X. F., Li, Y. G., Li, Z. W., Liang, X. H., Liao, J. Y., Liu, B. S., Liu, G. Q., Liu, H. W., Liu, X. J., Liu, Y. N., Lu, B., Lu, X. F., Luo, Q., Luo, T., Ma, X., Meng, B., Nang, Y., Nie, J. Y., Ou, G., Sai, N., Shang, R. C., Song, X. Y., Sun, L., Tan, Y., Tuo, Y. L., Wang, C., Wang, G. F., Wang, J., Wang, L. J., Wang, W. S., Wang, Y. S., Wen, X. Y., Wu, B. Y., Wu, B. B., Wu, M., Xiao, G. C., Xiao, S., Xiong, S. L., Yang, J. W., Yang, S., Yang, Yan Ji, Yang, Yi Jung, Yi, Q. B., Yin, Q. Q., You, Y., Zhang, A. M., Zhang, C. M., Zhang, F., Zhang, H. M., Zhang, J., Zhang, T., Zhang, W. C., Zhang, W., Zhang, W. Z., Zhang, Y., Zhang, Y. F., Zhang, Y. J., Zhang, Zhao, Zhang, Zhi, Zhang, Z. L., Zhao, H. S., Zhao, X. F., Zheng, S. J., Zheng, Y. G., Zhou, D. K., Zhou, J. F., Zhu, Y. X., Zhu, Y., and Zhuang, R. L.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
Based on Insight-HXMT data, we report on the pulse fraction evolution during the 2017-2018 outburst of the newly discovered first Galactic ultraluminous X-ray source (ULX) Swift J0243.6+6124. The pulse fractions of 19 observation pairs selected in the rising and fading phases with similar luminosity are investigated. The results show a general trend of the pulse fraction increasing with luminosity and energy at super-critical luminosity. However, the relative strength of the pulsation between each pair evolves strongly with luminosity. The pulse fraction in the rising phase is larger at luminosity below $7.71\times10^{38}$~erg~s$^{-1}$, but smaller at above. A transition luminosity is found to be energy independent. Such a phenomena is firstly confirmed by Insight-HXMT observations and we speculate it may have relation with the radiation pressure dominated accretion disk.
- Published
- 2020
- Full Text
- View/download PDF
20. Physical origin of the nonphysical spin evolution of MAXI J1820+070
- Author
-
Guan, J., Tao, L., Qu, J. L., Zhang, S. N., Zhang, W., Zhang, S., Ma, R. C., Ge, M. Y., Song, L. M., Lu, F. J., Li, T. P., Xu, Y. P., Chen, Y., Cao, X. L., Liu, C. Z., Zhang, L., Wang, Y. N., Chen, Y. P., Bu, Q. C., Cai, C., Chang, Z., Chen, L., Chen, T. X., Chen, Y. B., Cui, W. W., Du, Y. Y., Gao, G. H., Gao, H., Gu, Y. D., Guo, C. C., Han, D. W., Huang, Y., Huo, J., Jia, S. M., Jiang, W. C., Jin, J., Kong, L. D., Li, B., Li, C. K., Li, G., Li, W., Li, X., Li, X. B., Li, X. F., Li, Z. W., Liang, X. H., Liao, J. Y., Liu, B. S., Liu, H. W., Liu, H. X., Liu, X. J., Lu, X. F., Luo, Q., Luo, T., Ma, X., Meng, B., Nang, Y., Nie, J. Y., Ou, G., Ren, X. Q., Sai, N., Song, X. Y., Sun, L., Tan, Y., Wang, C., Wang, L. J., Wang, P. J., Wang, W. S., Wang, Y. S., Wen, X. Y., Wu, B. B., Wu, B. Y., Wu, M., Xiao, G. C., Xiao, S., Xiong, S. L., Yang, R. J., Yang, S., Yang, Y. J., Yi, Q. B., Yin, Q. Q., You, Y., Zhang, F., Zhang, H. M., Zhang, J., Zhang, P., Zhang, W. C., Zhang, Y. F., Zhang, Y. H., Zhao, H. S., Zhao, X. F., Zheng, S. J., Zheng, Y. G., and Zhou, D. K.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena ,83C57 - Abstract
We report on the Insight-HXMT observations of the new black hole X-ray binary MAXI J1820+070 during its 2018 outburst. Detailed spectral analysis via the continuum fitting method shows an evolution of the inferred spin during its high soft sate. Moreover, the hardness ratio, the non-thermal luminosity and the reflection fraction also undergo an evolution, exactly coincident to the period when the inferred spin transition takes place. The unphysical evolution of the spin is attributed to the evolution of the inner disc, which is caused by the collapse of a hot corona due to condensation mechanism or may be related to the deceleration of a jet-like corona. The studies of the inner disc radius and the relation between the disc luminosity and the inner disc radius suggest that, only at a particular epoch, did the inner edge of the disc reach the innermost stable circular orbit and the spin measurement is reliable. We then constrain the spin of MAXI J1820+070 to be a*=0.2^{+0.2}_{-0.3}. Such a slowly spinning black hole possessing a strong jet suggests that its jet activity is driven mainly by the accretion disc rather than by the black hole spin., Comment: 14 pages, 13 figures, 5 tables, accepted for publication in MNRAS
- Published
- 2020
- Full Text
- View/download PDF
21. Construction and commissioning of CMS CE prototype silicon modules
- Author
-
Acar, B., Adamov, G., Adloff, C., Afanasiev, S., Akchurin, N., Akgün, B., Alhusseini, M., Alison, J., Altopp, G., Alyari, M., An, S., Anagul, S., Andreev, I., Andrews, M., Aspell, P., Atakisi, I. A., Bach, O., Baden, A., Bakas, G., Bakshi, A., Bargassa, P., Barney, D., Becheva, E., Behera, P., Belloni, A., Bergauer, T., Besancon, M., Bhattacharya, S., Bhowmik, D., Bloch, P., Bodek, A., Bonanomi, M., Bonnemaison, A., Bonomally, S., Borg, J., Bouyjou, F., Braga, D., Brashear, J., Brondolin, E., Bryant, P., Bueghly, J., Bilki, B., Burkle, B., Butler-Nalin, A., Callier, S., Calvet, D., Cao, X., Caraway, B., Caregari, S., Ceard, L., Cekmecelioglu, Y. C., Cerminara, G., Charitonidis, N., Chatterjee, R., Chen, Y. M., Chen, Z., Cheng, K. y., Chernichenko, S., Cheung, H., Chien, C. H., Choudhury, S., Čoko, D., Collura, G., Couderc, F., Dumanoglu, I., Dannheim, D., Dauncey, P., David, A., Davies, G., Day, E., DeBarbaro, P., De Guio, F., de La Taille, C., De Silva, M., Debbins, P., Delagnes, E., Deltoro, J. M., Derylo, G., de Almeida, P. G. Dias, Diaz, D., Dinaucourt, P., Dittmann, J., Dragicevic, M., Dugad, S., Dutta, V., Dutta, S., Eckdahl, J., Edberg, T. K., Berni, M. El, Eno, S. C., Ershov, Yu., Everaerts, P., Extier, S., Fahim, F., Fallon, C., Alves, B. A. Fontana Santos, Frahm, E., Franzoni, G., Freeman, J., French, T., Guler, E. Gurpinar, Guler, Y., Gagnan, M., Gandhi, P., Ganjour, S., Garcia-Bellido, A., Gecse, Z., Geerebaert, Y., Gerwig, H., Gevin, O., Gilbert, W., Gilbert, A., Gill, K., Gingu, C., Gninenko, S., Golunov, A., Golutvin, I., Gonzalez, T., Gorbounov, N., Gouskos, L., Gu, Y., Guilloux, F., Gülmez, E., Hammer, M., Harilal, A., Hatakeyama, K., Heering, A., Hegde, V., Heintz, U., Hinger, V., Hinton, N., Hirschauer, J., Hoff, J., Hou, W. S., Isik, C., Incandela, J., Jain, S., Jheng, H. R., Joshi, U., Kara, O., Kachanov, V., Kalinin, A., Kameshwar, R., Kaminskiy, A., Karneyeu, A., Kaya, O., Kaya, M., Khukhunaishvili, A., Kim, S., Koetz, K., Kolberg, T., Kristić, A., Krohn, M., Krüger, K., Kulagin, N., Kulis, S., Kunori, S., Kuo, C. M., Kuryatkov, V., Kyre, S., Köseyan, O. K., Lai, Y., Lamichhane, K., Landsberg, G., Langford, J., Lee, M. Y., Levin, A., Li, A., Li, B., Li, J. -H., Liao, H., Lincoln, D., Linssen, L., Lipton, R., Liu, Y., Lobanov, A., Lu, R. S., Lysova, I., Magnan, A. M., Magniette, F., Maier, A. A., Malakhov, A., Mandjavize, I., Mannelli, M., Mans, J., Marchioro, A., Martelli, A., Masterson, P., Meng, B., Mengke, T., Mestvirishvili, A., Mirza, I., Moccia, S., Morrissey, I., Mudholkar, T., Musić, J., Musienko, I., Nabili, S., Nagar, A., Nikitenko, A., Noonan, D., Noy, M., Nurdan, K., Ochando, C., Odegard, B., Odell, N., Onel, Y., Ortez, W., Ozegović, J., Rodriguez, L. Pacheco, Paganis, E., Pagenkopf, D., Palladino, V., Pandey, S., Pantaleo, F., Papageorgakis, C., Papakrivopoulos, I., Parshook, J., Pastika, N., Paulini, M., Paulitsch, P., Peltola, T., Gomes, R. Pereira, Perkins, H., Petiot, P., Pitters, F., Prosper, H., Prvan, M., Puljak, I., Quast, T., Quinn, R., Quinnan, M., Rapacz, K., Raux, L., Reichenbach, G., Reinecke, M., Revering, M., Rodriguez, A., Romanteau, T., Rose, A., Rovere, M., Roy, A., Rubinov, P., Rusack, R., Simsek, A. E., Sozbilir, U., Sahin, O. M., Sanchez, A., Saradhy, R., Sarkar, T., Sarkisla, M. A., Sauvan, J. B., Schmidt, I., Schmitt, M., Scott, E., Seez, C., Sefkow, F., Sharma, S., Shein, I., Shenai, A., Shukla, R., Sicking, E., Sieberer, P., Sirois, Y., Smirnov, V., Spencer, E., Steen, A., Strait, J., Strebler, T., Strobbe, N., Su, J. W., Sukhov, E., Sun, L., Sun, M., Syal, C., Tali, B., Tok, U. G., Topaksu, A. Kayis, Tan, C. L., Tastan, I., Tatli, T., Thaus, R., Tekten, S., Thienpont, D., Pierre-Emile, T., Tiras, E., Titov, M., Tlisov, D., Troska, J., Tsamalaidze, Z., Tsipolitis, G., Tsirou, A., Tyurin, N., Undleeb, S., Urbanski, D., Ustinov, V., Uzunian, A., van de Klundert, M., Varela, J., Velasco, M., Pinto, M. Vicente Barreto, da Silva, P. M., Virdee, T., de Oliveira, R. Vizinho, Voelker, J., Voirin, E., Wang, Z., Wang, X., Wang, F., Wayne, M., Webb, S. N., Weinberg, M., Whitbeck, A., White, D., Wickwire, R., Wilson, J. S., Wu, H. Y., Wu, L., Yeh, C. H, Yohay, R., Yu, G. B., Yu, S. S., Yu, D., Yumiceva, F., Zacharopoulou, A., Zamiatin, N., Zarubin, A., Zenz, S., Zhang, H., and Zhang, J.
- Subjects
Physics - Instrumentation and Detectors ,High Energy Physics - Experiment - Abstract
As part of its HL-LHC upgrade program, the CMS Collaboration is developing a High Granularity Calorimeter (CE) to replace the existing endcap calorimeters. The CE is a sampling calorimeter with unprecedented transverse and longitudinal readout for both electromagnetic (CE-E) and hadronic (CE-H) compartments. The calorimeter will be built with $\sim$30,000 hexagonal silicon modules. Prototype modules have been constructed with 6-inch hexagonal silicon sensors with cell areas of 1.1~$cm^2$, and the SKIROC2-CMS readout ASIC. Beam tests of different sampling configurations were conducted with the prototype modules at DESY and CERN in 2017 and 2018. This paper describes the construction and commissioning of the CE calorimeter prototype, the silicon modules used in the construction, their basic performance, and the methods used for their calibration., Comment: 35 pages, submitted to JINST
- Published
- 2020
22. The DAQ system of the 12,000 Channel CMS High Granularity Calorimeter Prototype
- Author
-
Acar, B., Adamov, G., Adloff, C., Afanasiev, S., Akchurin, N., Akgün, B., Alhusseini, M., Alison, J., Altopp, G., Alyari, M., An, S., Anagul, S., Andreev, I., Andrews, M., Aspell, P., Atakisi, I. A., Bach, O., Baden, A., Bakas, G., Bakshi, A., Bargassa, P., Barney, D., Becheva, E., Behera, P., Belloni, A., Bergauer, T., Besancon, M., Bhattacharya, S., Bhowmik, D., Bloch, P., Bodek, A., Bonanomi, M., Bonnemaison, A., Bonomally, S., Borg, J., Bouyjou, F., Braga, D., Brashear, J., Brondolin, E., Bryant, P., Bueghly, J., Bilki, B., Burkle, B., Butler-Nalin, A., Callier, S., Calvet, D., Cao, X., Caraway, B., Caregari, S., Ceard, L., Cekmecelioglu, Y. C., Cerminara, G., Charitonidis, N., Chatterjee, R., Chen, Y. M., Chen, Z., Cheng, K. y., Chernichenko, S., Cheung, H., Chien, C. H., Choudhury, S., Čoko, D., Collura, G., Couderc, F., Dumanoglu, I., Dannheim, D., Dauncey, P., David, A., Davies, G., Day, E., DeBarbaro, P., De Guio, F., de La Taille, C., De Silva, M., Debbins, P., Delagnes, E., Deltoro, J. M., Derylo, G., de Almeida, P. G. Dias, Diaz, D., Dinaucourt, P., Dittmann, J., Dragicevic, M., Dugad, S., Dutta, V., Dutta, S., Eckdahl, J., Edberg, T. K., Berni, M. El, Eno, S. C., Ershov, Yu., Everaerts, P., Extier, S., Fahim, F., Fallon, C., Alves, B. A. Fontana Santos, Frahm, E., Franzoni, G., Freeman, J., French, T., Guler, E. Gurpinar, Guler, Y., Gagnan, M., Gandhi, P., Ganjour, S., Garcia-Bellido, A., Gecse, Z., Geerebaert, Y., Gerwig, H., Gevin, O., Gilbert, W., Gilbert, A., Gill, K., Gingu, C., Gninenko, S., Golunov, A., Golutvin, I., Gonzalez, T., Gorbounov, N., Gouskos, L., Gu, Y., Guilloux, F., Gülmez, E., Hammer, M., Harilal, A., Hatakeyama, K., Heering, A., Hegde, V., Heintz, U., Hinger, V., Hinton, N., Hirschauer, J., Hoff, J., Hou, W. S., Isik, C., Incandela, J., Jain, S., Jheng, H. R., Joshi, U., Kara, O., Kachanov, V., Kalinin, A., Kameshwar, R., Kaminskiy, A., Karneyeu, A., Kaya, O., Kaya, M., Khukhunaishvili, A., Kim, S., Koetz, K., Kolberg, T., Kristić, A., Krohn, M., Krüger, K., Kulagin, N., Kulis, S., Kunori, S., Kuo, C. M., Kuryatkov, V., Kyre, S., Köseyan, O. K., Lai, Y., Lamichhane, K., Landsberg, G., Langford, J., Lee, M. Y., Levin, A., Li, A., Li, B., Li, J. -H., Liao, H., Lincoln, D., Linssen, L., Lipton, R., Liu, Y., Lobanov, A., Lu, R. S., Lysova, I., Magnan, A. M., Magniette, F., Maier, A. A., Malakhov, A., Mandjavize, I., Mannelli, M., Mans, J., Marchioro, A., Martelli, A., Masterson, P., Meng, B., Mengke, T., Mestvirishvili, A., Mirza, I., Moccia, S., Morrissey, I., Mudholkar, T., Musić, J., Musienko, I., Nabili, S., Nagar, A., Nikitenko, A., Noonan, D., Noy, M., Nurdan, K., Ochando, C., Odegard, B., Odell, N., Onel, Y., Ortez, W., Ozegović, J., Rodriguez, L. Pacheco, Paganis, E., Pagenkopf, D., Palladino, V., Pandey, S., Pantaleo, F., Papageorgakis, C., Papakrivopoulos, I., Parshook, J., Pastika, N., Paulini, M., Paulitsch, P., Peltola, T., Gomes, R. Pereira, Perkins, H., Petiot, P., Pitters, F., Prosper, H., Prvan, M., Puljak, I., Quast, T., Quinn, R., Quinnan, M., Rapacz, K., Raux, L., Reichenbach, G., Reinecke, M., Revering, M., Rodriguez, A., Romanteau, T., Rose, A., Rovere, M., Roy, A., Rubinov, P., Rusack, R., Simsek, A. E., Sozbilir, U., Sahin, O. M., Sanchez, A., Saradhy, R., Sarkar, T., Sarkisla, M. A., Sauvan, J. B., Schmidt, I., Schmitt, M., Scott, E., Seez, C., Sefkow, F., Sharma, S., Shein, I., Shenai, A., Shukla, R., Sicking, E., Sieberer, P., Sirois, Y., Smirnov, V., Spencer, E., Steen, A., Strait, J., Strebler, T., Strobbe, N., Su, J. W., Sukhov, E., Sun, L., Sun, M., Syal, C., Tali, B., Tok, U. G., Topaksu, A. Kayis, Tan, C. L., Tastan, I., Tatli, T., Thaus, R., Tekten, S., Thienpont, D., Pierre-Emile, T., Tiras, E., Titov, M., Tlisov, D., Troska, J., Tsamalaidze, Z., Tsipolitis, G., Tsirou, A., Tyurin, N., Undleeb, S., Urbanski, D., Ustinov, V., Uzunian, A., van de Klundert, M., Varela, J., Velasco, M., Pinto, M. Vicente Barreto, da Silva, P. M., Virdee, T., de Oliveira, R. Vizinho, Voelker, J., Voirin, E., Wang, Z., Wang, X., Wang, F., Wayne, M., Webb, S. N., Weinberg, M., Whitbeck, A., White, D., Wickwire, R., Wilson, J. S., Wu, H. Y., Wu, L., Yeh, C. H, Yohay, R., Yu, G. B., Yu, S. S., Yu, D., Yumiceva, F., Zacharopoulou, A., Zamiatin, N., Zarubin, A., Zenz, S., Zhang, H., and Zhang, J.
- Subjects
Physics - Instrumentation and Detectors ,High Energy Physics - Experiment - Abstract
The CMS experiment at the CERN LHC will be upgraded to accommodate the 5-fold increase in the instantaneous luminosity expected at the High-Luminosity LHC (HL-LHC). Concomitant with this increase will be an increase in the number of interactions in each bunch crossing and a significant increase in the total ionising dose and fluence. One part of this upgrade is the replacement of the current endcap calorimeters with a high granularity sampling calorimeter equipped with silicon sensors, designed to manage the high collision rates. As part of the development of this calorimeter, a series of beam tests have been conducted with different sampling configurations using prototype segmented silicon detectors. In the most recent of these tests, conducted in late 2018 at the CERN SPS, the performance of a prototype calorimeter equipped with ${\approx}12,000\rm{~channels}$ of silicon sensors was studied with beams of high-energy electrons, pions and muons. This paper describes the custom-built scalable data acquisition system that was built with readily available FPGA mezzanines and low-cost Raspberry PI computers.
- Published
- 2020
- Full Text
- View/download PDF
23. X-ray reprocessing in accreting pulsar GX 301-2 observed with Insight-HXMT
- Author
-
Ji, L., Doroshenko, V., Suleimanov, V., Santangelo, A., Orlandini, M., Liu, J., Ducci, L., Zhang, S. N., Nabizadeh, A., Gavran, D., Zhang, S., Ge, M. Y., Li, X. B., Tao, L., Bu, Q. C., Qu, J. L., Lu, F. J., Chen, L., Song, L. M., Li, T. P., Xu, Y. P., Cao, X. L., Chen, Y., Liu, C. Z., Cai, C., Chang, Z., Chen, T. X., Chen, Y. P., Cui, W. W., Du, Y. Y., Gao, G. H., Gao, H., Gu, Y. D., Guan, J., Guo, C. C., Han, D. W., Huang, Y., Huo, J., Jia, S. M., Jiang, W. C., Jin, J., Kong, L. D., Li, B., Li, C. K., Li, G., Li, W., Li, X., Li, X. F., Li, Z. W., Liang, X. H., Liao, J. Y., Liu, B. S., Liu, H. X., Liu, H. W., Liu, X. J., Lu, X. F., Luo, Q., Luo, T., Ma, R. C., Ma, X., Meng, B., Nang, Y., Nie, J. Y., Ou, G., Ren, X. Q., Sai, N., Song, X. Y., Sun, L., Tan, Y., Tuo, Y. L., Wang, C., Wang, L. J., Wang, P. J., Wang, W. S., Wang, Y. S., Wen, X. Y., Wu, B. Y., Wu, B. B., Wu, M., Xiao, G. C., Xiao, S., Xiong, S. L., Yang, R. J., Yang, S., Yang, Yan-Ji, Yang, Yi-Jung, Yi, Q. B., Yin, Q. Q., You, Y., Zhang, F., Zhang, H. M., Zhang, J., Zhang, P., Zhang, W., Zhang, W. C., Zhang, Yi, Zhang, Y. F., Zhang, Y. H., Zhao, H. S., Zhao, X. F., Zheng, S. J., Zheng, Y. G., and Zhou, D. K.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
We investigate the absorption and emission features in observations of GX 301-2 detected with Insight-HXMT/LE in 2017-2019. At different orbital phases, we found prominent Fe Kalpha, Kbeta and Ni Kalpha lines, as well as Compton shoulders and Fe K-shell absorption edges. These features are due to the X-ray reprocessing caused by the interaction between the radiation from the source and surrounding accretion material. According to the ratio of iron lines Kalpha and Kbeta, we infer the accretion material is in a low ionisation state. We find an orbital-dependent local absorption column density, which has a large value and strong variability around the periastron. We explain its variability as a result of inhomogeneities of the accretion environment and/or instabilities of accretion processes. In addition, the variable local column density is correlated with the equivalent width of the iron Kalpha lines throughout the orbit, which suggests that the accretion material near the neutron star is spherically distributed., Comment: 10 pages, 5 figures, 2 tables, accepted for publication in MNRAS
- Published
- 2020
- Full Text
- View/download PDF
24. Insight-HXMT observations of a possible fast transition from jet to wind dominated state during a huge flare of GRS~1915+105
- Author
-
Kong, L. D., Zhang, S., Chen, Y. P., Zhang, S. N., Ji, L., Wang, P. J., Tao, L., Ge, M. Y., Liu, C. Z., Song, L. M., Lu, F. J., Qu, J. L., Li, T. P., Xu, Y. P., Cao, X. L., Chen, Y., Bu, Q. C., Cai, C., Chang, Z., Chen, G., Chen, L., Chen, T. X., Cui, W. W., Du, Y. Y., Gao, G. H., Gao, H., Gao, M., Gu, Y. D., Guan, J., Guo, C. C., Han, D. W., Huang, Y., Huo, J., Jia, S. M., Jiang, W. C., Jin, J., Li, B., Li, C. K., Li, G., Li, W., Li, X., Li, X. B., Li, X. F., Li, Z. W., Liang, X. H., Liao, J. Y., Liu, B. S., Liu, H. W., Liu, H. X., Liu, X. J., Lu, X. F., Luo, Q., Luo, T., Ma, R. C., Ma, X., Meng, B., Nang, Y., Nie, J. Y., Ou, G., Ren, X. Q., Sai, N., Song, X. Y., Sun, L., Tan, Y., Tuo, Y. L., Wang, C., Wang, L. J., Wang, W. S., Wang, Y. S., Wen, X. Y., Wu, B. B., Wu, B. Y., Wu, M., Xiao, G. C., Xiao, S., Xiong, S. L., Yang, R. J., Yang, S., Yang, Y. J., Yi, Q. B., Yin, Q. Q., You, Y., Zhang, F., Zhang, H. M., Zhang, J., Zhang, P., Zhang, W. C., Zhang, W., Zhang, Y. F., Zhang, Y. H., Zhao, H. S., Zhao, X. F., Zheng, S. J., Zheng, Y. G., and Zhou, D. K.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
We present the analysis of the brightest flare that was recorded in the \emph{Insight}-HMXT data set, in a broad energy range (2$-$200 keV) from the microquasar GRS~1915+105 during an unusual low-luminosity state. This flare was detected by \emph{Insight}-HXMT among a series of flares during 2 June 2019 UTC 16:37:06 to 20:11:36, with a 2-200 keV luminosity of 3.4$-$7.27$\times10^{38}$ erg s$^{-1}$. Basing on the broad-band spectral analysis, we find that the flare spectrum shows different behaviors during bright and faint epochs. The spectrum of the flare can be fitted with a model dominated by a power-law component. Additional components show up in the bright epoch with a hard tail and in the faint epoch with an absorption line $\sim$ 6.78 keV. The reflection component of the latter is consistent with an inner disk radius $\sim$ 5 times larger than that of the former. These results on the giant flare during the "unusual" low-luminosity state of GRS~1915+105 may suggest that the source experiences a possible fast transition from a jet-dominated state to a wind-dominated state. We speculate that the evolving accretion disk and the large-scale magnetic field may play important roles in this peculiar huge flare.
- Published
- 2020
- Full Text
- View/download PDF
25. A variable ionized disk wind in the black-hole candidate EXO 1846-031
- Author
-
Wang, Yanan, Ji, Long, Garcia, Javier A., Dauser, Thomas, Mendez, Mariano, Mao, Junjie, Tao, L., Altamirano, Diego, Maggi, Pierre, Zhang, S. N., Ge, M. Y., Zhang, L., Qu, J. L., Zhang, S., Ma, X., Lu, F. J., Li, T. P., Huang, Y., Zheng, S. J., Chang, Z., Tuo, Y. L., Song, L. M., Xu, Y. P., Chen, Y., Liu, C. Z., Bu, Q. C., Cai, C., Cao, X. L., Chen, L., Chen, T. X., Chen, Y. P., Cui, W. W., Du, Y. Y., Gao, G. H., Gu, Y. D., Guan, J., Guo, C. C., Han, D. W., Huo, J., Jia, S. M., Jiang, W. C., Jin, J., Kong, L. D., Li, B., Li, C. K., Li, G., Li, W., Li, X., Li, X. B., Li, X. F., Li, Z. W., Liang, X. H., Liao, J. Y., Liu, H. W., Liu, X. J., Lu, X. F., Luo, Q., Luo, T., Meng, B., Nang, Y., Nie, J. Y., Ou, G., Sai, N., Shang, R. C., Song, X. Y., Sun, L., Tan, Y., Wang, W. S., Wang, Y. D., Wang, Y. S., Wen, X. Y., Wu, B. B., Wu, B. Y., Wu, M., Xiao, G. C., Xiao, S., Xiong, S. L., Yang, S., Yang, Y. J., Yi, Q. B., Yin, Q. Q., You, Y., Zhang, F., Zhang, H. M., Zhang, J., Zhang, W. C., Zhang, W., Zhang, Y. F., Zhao, H. S., Zhao, X. F., and Zhou, D. K.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
After 34 years, the black-hole candidate EXO 1846-031 went into outburst again in 2019. We investigate its spectral properties in the hard intermediate and the soft states with NuSTAR and Insight-HXMT. A reflection component has been detected in the two spectral states but possibly originating from different illumination spectra: in the intermediate state, the illuminating source is attributed to a hard coronal component, which has been commonly observed in other X-ray binaries, whereas in the soft state the reflection is probably produced by the disk self-irradiation. Both cases support EXO 1846-031 as a low inclination system of ~40 degrees. An absorption line is clearly detected at ~7.2 keV in the hard intermediate state, corresponding to a highly ionized disk wind (log {\xi} > 6.1) with a velocity up to 0.06c. Meanwhile, quasi-simultaneous radio emissions have been detected before and after the X-rays, implying the co-existence of disk winds and jets in this system. Additionally, the observed wind in this source is potentially driven by magnetic forces. The absorption line disappeared in the soft state and a narrow emission line appeared at ~6.7 keV on top of the reflection component, which may be evidence for disk winds, but data with the higher spectral resolution are required to examine this., Comment: Accepted for publication in ApJ
- Published
- 2020
- Full Text
- View/download PDF
26. Constraining the transient high-energy activity of FRB180916.J0158+65 with Insight-HXMT followup observations
- Author
-
Guidorzi, C., Orlandini, M., Frontera, F., Nicastro, L., Xiong, S. L., Liao, J. Y., Li, G., Zhang, S. N., Amati, L., Virgilli, E., Zhang, S., Bu, Q. C., Cai, C., Cao, X. L., Chang, Z., Chen, L., Chen, T. X., Chen, Y., Chen, Y. P., Cui, W. W., Du, Y. Y., Gao, G. H., Gao, H., Gao, M., Ge, M. Y., Gu, Y. D., Guan, J., Guo, C. C., Han, D. W., Huang, Y., Huo, J., Jia, S. M., Jiang, W. C., Jin, J., Kong, L. D., Li, B., Li, C. K., Li, T. P., Li, W., Li, X., Li, X. B., Li, X. F., Li, Z. W., Liang, X. H., Liu, B. S., Liu, C. Z., Liu, H. X., Liu, H. W., Liu, X. J., Lu, F. J., Lu, X. F., Luo, Q., Luo, T., Ma, R. C., Ma, X., Meng, B., Nang, Y., Nie, J. Y., Ou, G., Qu, J. L, Ren, X. Q., Sai, N., Song, L. M., Song, X. Y., Sun, L., Tan, Y., Tao, L., Tuo, Y. L., Wang, C., Wang, L. J., Wang, P. J., Wang, W. S., Wang, Y. S., Wen, X. Y., Wu, B. Y., Wu, B. B., Wu, M., Xiao, G. C., Xiao, S., Xu, Y. P., Yang, R., Yang, S., Yang, Y. J., Yi, Q. B., Yin, Q. Q., You, Y., Zhang, F., Zhang, H. M., Zhang, J., Zhang, P., Zhang, W. C., Zhang, W., Zhang, Y. F., Zhang, Y. H., Zhao, H. S., Zhao, X. F., Zheng, S. J., Zheng, Y. G., and Zhou, D. K.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
A link between magnetars and fast radio burst (FRB) sources has finally been established. In this context, one of the open issues is whether/which sources of extra galactic FRBs exhibit X/gamma-ray outbursts and whether it is correlated with radio activity. We aim to constrain possible X/gamma-ray burst activity from one of the nearest extragalactic FRB sources currently known over a broad energy range, by looking for bursts over a range of timescales and energies that are compatible with being powerful flares from extragalactic magnetars. We followed up the as-yet nearest extragalactic FRB source at a mere 149 Mpc distance, the periodic repeater FRB180916.J0158+65, during the active phase on February 4-7, 2020, with the Insight-Hard X-ray Modulation Telescope (HXMT). Taking advantage of the combination of broad band, large effective area, and several independent detectors available, we searched for bursts over a set of timescales from 1 ms to 1.024 s with a sensitive algorithm, that had previously been characterised and optimised. Moreover, through simulations we studied the sensitivity of our technique in the released energy-duration phase space for a set of synthetic flares and assuming different energy spectra. We constrain the possible occurrence of flares in the 1-100 keV energy band to E<10^46 erg for durations <0.1 s over several tens of ks exposure. We can rule out the occurrence of giant flares similar to the ones that were observed in the few cases of Galactic magnetars. The absence of reported radio activity during our observations does not allow us to make any statements on the possible simultaneous high-energy emission., Comment: 10 pages, 3 figures, accepted by A&A
- Published
- 2020
- Full Text
- View/download PDF
27. Insight-HXMT firm detection of the highest energy fundamental cyclotron resonance scattering feature in the spectrum of GRO J1008-57
- Author
-
Ge, M. Y., Ji, L., Zhang, S. N., Santangelo, A., Liu, C. Z., Doroshenko, V., Staubert, R., Qu, J. L., Zhang, S., Lu, F. J., Song, L. M., Li, T. P., Tao, L., Xu, Y. P., Cao, X. L., Chen, Y., Bu, Q. C., Cai, C., Chang, Z., Chen, G., Chen, L., Chen, T. X., Chen, Y. B., Chen, Y. P., Cui, W., Cui, W. W., Deng, J. K., Dong, Y. W., Du, Y. Y., Fu, M. X., Gao, G. H., Gao, H., Gao, M., Gu, Y. D., Guan, J., Guo, C. C., Han, D. W., Huang, Y., Huo, J., Jia, S. M., Jiang, L. H., Jiang, W. C., Jin, J., Jin, Y. J., Kong, L. D., Li, B., Li, C. K., Li, G., Li, M. S., Li, W., Li, X., Li, X. B., Li, X. F., Li, Y. G., Li, Z. W., Liang, X. H., Liao, J. Y., Liu, B. S., Liu, G. Q., Liu, H. W., Liu, X. J., Liu, Y. N., Lu, B., Lu, X. F., Luo, Q., Luo, T., Ma, X., Meng, B., Nang, Y., Nie, J. Y., Ou, G., Sai, N., Shang, R. C., Song, X. Y., Sun, L., Tan, Y., Tuo, Y. L., Wang, C., Wang, G. F., Wang, J., Wang, L. J., Wang, W. S., Wang, Y. D., Wang, Y. S., Wen, X. Y., Wu, B. B., Wu, B. Y., Wu, M., Xiao, G. C., Xiao, S., Xiong, S. L., Xu, H., Yang, J. W., Yang, S., Yang, Y. J., Yi, Q. B., Yin, Q. Q., You, Y., Zhang, A. M., Zhang, C. M., Zhang, F., Zhang, H. M., Zhang, J., Zhang, T., Zhang, W. C., Zhang, W., Zhang, W. Z., Zhang, Y., Zhang, Y. F., Zhang, Y. J., Zhang, Z., Zhang, Z. L., Zhao, H. S., Zhao, X. F., Zheng, S. J., Zheng, Y. G., Zhou, D. K., Zhou, J. F., Zhuang, R. L., Zhu, Y. X., and Zhu, Y.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
We report on the observation of the accreting pulsar GRO J1008-57 performed by Insight-HXMT at the peak of the source's 2017 outburst. Pulsations are detected with a spin period of 93.283(1) s. The pulse profile shows double peaks at soft X-rays, and only one peak above 20 keV. The spectrum is well described by the phenomenological models of X-ray pulsars. A cyclotron resonant scattering feature is detected with very high statistical significance at a centroid energy of $E_{\rm cyc}=90.32_{-0.28}^{+0.32}$ keV, for the reference continuum and line models, HIGHECUT and GABS respectively. Detection is very robust with respect to different continuum models. The line energy is significantly higher than what suggested from previous observations, which provided very marginal evidence for the line. This establishes a new record for the centroid energy of a fundamental cyclotron resonant scattering feature observed in accreting pulsars. We also discuss the accretion regime of the source during the Insight-HXMT observation., Comment: 8 pages, 3 figures, accepted for publication in ApJL
- Published
- 2020
- Full Text
- View/download PDF
28. HXMT Identification of a non-thermal X-ray burst from SGR J1935+2154 and with FRB 200428
- Author
-
Li, C. K., Lin, L., Xiong, S. L., Ge, M. Y., Li, X. B., Li, T. P., Lu, F. J., Zhang, S. N., Tuo, Y. L., Nang, Y., Zhang, B., Xiao, S., Chen, Y., Song, L. M., Xu, Y. P., Liu, C. Z., Jia, S. M., Cao, X. L., Qu, J. L., Zhang, S., Gu, Y. D., Liao, J. Y., Zhao, X. F., Tan, Y., Nie, J. Y., Zhao, H. S., Zheng, S. J., Zheng, Y. G., Luo, Q., Cai, C., Li, B., Xue, W. C., Bu, Q. C., Chang, Z., Chen, G., Chen, T. X., Chen, Y. B., Chen, Y. P., Cui, W., Cui, W. W., Deng, J. K., Dong, Y. W., Du, Y. Y., Fu, M. X., Gao, G. H., Gao, H., Gao, M., Guan, J., Guo, C. C., Han, D. W., Huang, Y., Huo, J., Jiang, L. H., Jiang, W. C., Jin, J., Jin, Y. J., Kong, L. D., Li, G., Li, M. S., Li, W., Li, X., Li, X. F., Li, Y. G., Li, Z. W., Liang, X. H., Liu, B. S., Liu, G. Q., Liu, H. W., Liu, X. J., Liu, Y. N., Lu, B., Lu, X. F., Luo, T., Ma, X., Meng, B., Ou, G., Sai, N., Shang, R. C., Song, X. Y., Sun, L., Tao, L., Wang, C., Wang, G. F., Wang, J., Wang, W. S., Wang, Y. S., Wen, X. Y., Wu, B. B., Wu, B. Y., Wu, M., Xiao, G. C., Xu, H., Yang, J. W., Yang, S., Yang, Y. J., Yang, Yi-Jung, Yi, Q. B., Yin, Q. Q., You, Y., Zhang, A. M., Zhang, C. M., Zhang, F., Zhang, H. M., Zhang, J., Zhang, T., Zhang, W., Zhang, W. C., Zhang, W. Z., Zhang, Y., Zhang, Yue, Zhang, Y. F., Zhang, Y. J., Zhang, Z., Zhang, Zhi, Zhang, Z. L., Zhou, D. K., Zhou, J. F., Zhu, Y., Zhu, Y. X., and Zhuang, R. L.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena ,Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
Fast radio bursts (FRBs) are short pulses observed in radio band from cosmological distances. One class of models invoke soft gamma-ray repeaters (SGRs), or magnetars, as the sources of FRBs. Some radio pulses have been observed from some magnetars, however, no FRB-like events had been detected in association any magnetar burst, including one giant flare. Recently, a pair of FRB-like bursts (FRB 200428 hereafter) separated by milliseconds (ms) were detected from the general direction of the Galactic magnetar SGR J1935+2154. Here we report the detection of a non-thermal X-ray burst in the 1-250 keV energy band with the Insight-HXMT satellite, which we identify as emitted from SGR J1935+2154. The burst showed two hard peaks with a separation of 34 ms, broadly consistent with that of the two bursts in FRB 200428. The delay time between the double radio and X-ray peaks is about 8.57 s, fully consistent with the dispersion delay of FRB 200428. We thus identify the non-thermal X-ray burst is associated with FRB 200428 whose high energy counterpart is the two hard peaks in X-ray. Our results suggest that the non-thermal X-ray burst and FRB 200428 share the same physical origin in an explosive event from SGR J1935+2154., Comment: 24 pages, 9 figures, 6 tables; initial submission to a journal on May 9th, 2020. Significant changes include updated localization and detailed spectral evolution of the X-ray burst, and better determination of the two narrow X-ray peaks corresponding to the two radio pulses. Conclusions are strengthened. Nature Astronomy online on Feb. 18, 2021
- Published
- 2020
- Full Text
- View/download PDF
29. Insight-HXMT insight into switch of the accretion mode: the case of the X-ray pulsar 4U 1901+03
- Author
-
Tuo, Y. L., Ji, L., Tsygankov, S. S., Mihara, T., Song, L. M., Ge, M. Y., Nabizadeh, A., Tao, L., Qu, J. L., Zhang, Y., Zhang, S., Zhang, S. N., Bu, Q. C., Chen, L., Xu, Y. P., Cao, X. L., Chen, Y., Liu, C. Z., Cai, C., Chang, Z., Chen, G., Chen, T. X., Chen, Y. B., Chen, Y. P., Cui, W., Cui, W. W., Deng, J. K., Dong, Y. W., Du, Y. Y., Fu, M. X., Gao, G. H., Gao, H., Gao, M., Gu, Y. D., Guan, J., Guo, C. C., Han, D. W., Huang, Y., Huo, J., Jia, S. M., Jiang, L. H., Jiang, W. C., Jin, J., Jin, Y. J., Kong, L. D., Li, B., Li, C. K., Li, G., Li, M. S., Li, T. P., Li, W., Li, X., Li, X. B., Li, X. F., Li, Y. G., Li, Z. W., Liang, X. H., Liao, J. Y., Liu, B. S., Liu, G. Q., Liu, H. W., Liu, X. J., Liu, Y. N., Lu, B., Lu, F. J., Lu, X. F., Luo, Q., Luo, T., Ma, X., Meng, B., Nang, Y., Nie, J. Y., Ou, G., Sai, N., Shang, R. C., Song, X. Y., Sun, L., Tan, Y., Wang, C., Wang, G. F., Wang, J., Wang, W. S., Wang, Y. S., Wen, X. Y., Wu, B. Y., Wu, B. B., Wu, M., Xiao, G. C., Xiao, S., Xiong, S. L., Yang, J. W., Yang, S., Yang, Y. J., Yi, Q. B., Yin, Q. Q., You, Y., Zhang, A. M., Zhang, C. M., Zhang, F., Zhang, H. M., Zhang, J., Zhang, T., Zhang, W., Zhang, W. C., Zhang, W. Z., Zhang, Y. F., Zhang, Y. J., Zhang, Y. H., Zhang, Z., Zhang, Z. L., Zhao, H. S., Zhao, X. F., Zheng, S. J., Zheng, Y. G., Zhou, D. K., Zhou, J. F., Zhu, Y. X., Zhu, Y., and Zhuang, R. L.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
We use the In data collected during the 2019 outburst from X-ray pulsar 4U 1901+03 to complement the orbital parameters reported by Fermi/GBM. Using the Insight-HXMT, we examine the correlation between the derivative of the intrinsic spin frequency and bolometric flux based on accretion torque models. It was found that the pulse profiles significantly evolve during the outburst. The existence of two types of the profile's pattern discovered in the Insight-HXMT data indicates that this source experienced transition between a super-critical and a sub-critical accretion regime during its 2019 outburst. Based on the evolution of the pulse profiles and the torque model, we derive the distance to 4U 1901+03 as 12.4+-0.2 kpc., Comment: 8 pages, 5 figures, accepted by JHEAP
- Published
- 2020
30. The evolution of the broadband temporal features observed in the black-hole transient MAXI J1820+070 with Insight-HXMT
- Author
-
Wang, Yanan, Ji, Long, Zhang, S. N., Méndez, Mariano, Qu, J. L., Maggi, Pierre, Ge, M. Y., Qiao, Erlin, Tao, L., Zhang, S., Altamirano, Diego, Zhang, L., Ma, X., Lu, F. J., Li, T. P., Huang, Y., Zheng, S. J., Chen, Y. P., Chang, Z., Tuo, Y. L., Gungor, C., Song, L. M., Xu, Y. P., Cao, X. L., Chen, Y., Liu, C. Z., Bu, Q. C., Cai, C., Chen, G., Chen, L., Chen, T. X., Chen, Y. B., Cui, W., Cui, W. W., Deng, J. K., Dong, Y. W., Du, Y. Y., Fu, M. X., Gao, G. H., Gao, H., Gao, M., Gu, Y. D., Guan, J., Guo, C. C., Han, D. W., Huo, J., Jia, S. M., Jiang, L. H., Jiang, W. C., Jin, J., Jin, Y. J., Kong, L. D., Li, B., Li, C. K., Li, G., Li, M. S., Li, W., Li, X., Li, X. B., Li, X. F., Li, Y. G., Li, Z. W., Liang, X. H., Liao, J. Y., Liu, G. Q., Liu, H. W., Liu, X. J., Liu, Y. N., Lu, B., Lu, X. F., Luo, Q., Luo, T., Meng, B., Nang, Y., Nie, J. Y., Ou, G., Sai, N., Shang, R. C., Song, X. Y., Sun, L., Tan, Y., Wang, G. F., Wang, J., Wang, W. S., Wang, Y. D., Wang, Y. S., Wen, X. Y., Wu, B. B., Wu, B. Y., Wu, M., Xiao, G. C., Xiao, S., Xiong, S. L., Yang, J. W., Yang, S., Yang, Y. J., Yi, Q. B., Yin, Q. Q., You, Y., Zhang, A. M., Zhang, C. M., Zhang, F., Zhang, H. M., Zhang, J., Zhang, T., Zhang, W. C., Zhang, W., Zhang, W. Z., Zhang, Y., Zhang, Y. F., Zhang, Y. J., Zhang, Z., Zhang, Z. L., Zhao, H. S., Zhao, X. F., Zhou, D. K., Zhou, J. F., Zhuang, R. L., Zhu, Y. X., and Zhu, Y.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
We study the evolution of the temporal properties of MAXI 1820+070 during the 2018 outburst in its hard state from MJD 58190 to 58289 with Insight-HXMT in a broad energy band 1-150 keV. We find different behaviors of the hardness ratio, the fractional rms and time lag before and after MJD 58257, suggesting a transition occurred at around this point. The observed time lags between the soft photons in the 1-5 keV band and the hard photons in higher energy bands, up to 150 keV, are frequency-dependent: the time lags in the low-frequency range, 2-10 mHz, are both soft and hard lags with a timescale of dozens of seconds but without a clear trend along the outburst; the time lags in the high-frequency range, 1-10 Hz, are only hard lags with a timescale of tens of milliseconds; first increase until around MJD 58257 and decrease after this date. The high-frequency time lags are significantly correlated to the photon index derived from the fit to the quasi-simultaneous NICER spectrum in the 1-10 keV band. This result is qualitatively consistent with a model in which the high-frequency time lags are produced by Comptonization in a jet., Comment: Accepted for publication in ApJ
- Published
- 2020
- Full Text
- View/download PDF
31. Discovery of delayed spin-up behavior following two large glitches in the Crab pulsar, and the statistics of such processes
- Author
-
Ge, M. Y., Zhang, S. N., Lu, F. J., Li, T. P., Yuan, J. P., Zheng, X. P., Huang, Y., Zheng, S. J., Chen, Y. P., Chang, Z., Tuo, Y. L., Cheng, Q., Güngör, C., Song, L. M., Xu, Y. P., Cao, X. L., Chen, Y., Liu, C. Z., Zhang, S., Qu, J. L., Bu, Q. C., Cai, C., Chen, G., Chen, L., Chen, M. Z., Chen, T. X., Chen, Y. B., Cui, W., Cui, W. W., Deng, J. K., Dong, Y. W., Du, Y. Y., Fu, M. X., Gao, G. H., Gao, H., Gao, M., Gu, Y. D., Guan, J., Guo, C. C., Han, D. W., Hao, L. F., Huo, J., Jia, S. M., Jiang, L. H., Jiang, W. C., Jin, C. J., Jin, J., Jin, Y. J., Kong, L. D., Li, B., Li, D., Li, C. K., Li, G., Li, M. S., Li, W., Li, X., Li, X. B., Li, X. F., Li, Y. G., Li, Z. W., Li, Z. X., Liu, Z. Y., Liang, X. H., Liao, J. Y., Liu, G. Q., Liu, H. W., Liu, X. J., Liu, Y. N., Lu, B., Lu, X. F., Luo, Q., Luo, T., Ma, X., Meng, B., Nang, Y., Nie, J. Y., Ou, G., Sai, N., Shang, R. C., Song, X. Y., Sun, L., Tan, Y., Tao, L., Wang, C., Wang, G. F., Wang, J., Wang, J. B., Wang, M., Wang, N., Wang, W. S., Wang, Y. D., Wang, Y. S., Wen, X. Y., Wen, Z. G., Wu, B. B., Wu, B. Y., Wu, M., Xiao, G. C., Xiao, S., Xiong, S. L., Xu, Y. H., Yan, W. M., Yang, J. W., Yang, S., Yang, Y. J., Yi, Q. B., Yin, Q. Q., You, Y., Yue, Y. L., Zhang, A. M., Zhang, C. M., Zhang, D. P., Zhang, F., Zhang, H. M., Zhang, J., Zhang, T., Zhang, W. C., Zhang, W., Zhang, W. Z., Zhang, Y., Zhang, Y. F., Zhang, Y. J., Zhang, Z., Zhang, Z. L., Zhao, H. S., Zhao, X. F., Zheng, W., Zhou, D. K., Zhou, J. F., Zhou, X., Zhuang, R. L., Zhu, Y. X., and Zhu, Y.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
Glitches correspond to sudden jumps of rotation frequency ($\nu$) and its derivative ($\dot{\nu}$) of pulsars, the origin of which remains not well understood yet, partly because the jump processes of most glitches are not well time-resolved. There are three large glitches of the Crab pulsar, detected in 1989, 1996 and 2017, which were found to have delayed spin-up processes before the normal recovery processes. Here we report two additional glitches of the Crab pulsar occurred in 2004 and 2011 for which we discovered delayed spin up processes, and present refined parameters of the largest glitch occurred in 2017. The initial rising time of the glitch is determined as $<0.48$ hour. We also carried out a statistical study of these five glitches with observed spin-up processes. The two glitches occurred in 2004 and 2011 have delayed spin-up time scales ($\tau_{1}$) of $1.7\pm0.8$\,days and $1.6\pm0.4$\,days, respectively. We find that the $\Delta{\nu}$ vs. $|\Delta{\dot\nu}|$ relation of these five glitches is similar to those with no detected delayed spin-up process, indicating that they are similar to the others in nature except that they have larger amplitudes. For these five glitches, the amplitudes of the delayed spin-up process ($|\Delta{\nu}_{\rm d1}|$) and recovery process ($\Delta{\nu}_{\rm d2}$), their time scales ($\tau_{1}$, $\tau_{2}$), and permanent changes in spin frequency ($\Delta{\nu}_{\rm p}$) and total frequency step ($\Delta{\nu}_{\rm g}$) have positive correlations. From these correlations, we suggest that the delayed spin-up processes are common for all glitches, but are too short and thus difficult to be detected for most glitches., Comment: 25 pages, 8 figures
- Published
- 2020
- Full Text
- View/download PDF
32. A search for prompt gamma-ray counterparts to fast radio bursts in the Insight-HXMT data
- Author
-
Guidorzi, C., Marongiu, M., Martone, R., Nicastro, L., Xiong, S. L., Liao, J. Y., Li, G., Zhang, S. N., Amati, L., Frontera, F., Orlandini, M., Rosati, P., Virgilli, E., Zhang, S., Bu, Q. C., Cai, C., Cao, X. L., Chang, Z., Chen, G., Chen, L., Chen, T. X., Chen, Y. B., Chen, Y. P., Cui, W., Cui, W. W., Deng, J. K., Dong, Y. W., Du, Y. Y., Fu, M. X., Gao, G. H., Gao, H., Gao, M., Ge, M. Y., Gu, Y. D., Guan, J., Guo, C. C., Han, D. W., Huang, Y., Huo, J., Jia, S. M., Jiang, L. H., Jiang, W. C., Jin, J., Jin, Y. J., Kong, L. D., Li, B., Li, C. K., Li, M. S., Li, T. P., Li, W., Li, X., Li, X. B., Li, X. F., Li, Y. G., Li, Z. W., Liang, X. H., Liu, B. S., Liu, C. Z., Liu, G. Q., Liu, H. W., Liu, X. J., Liu, Y. N., Lu, B., Lu, F. J., Lu, X. F., Luo, Q., Luo, T., Ma, R. C., Ma, X., Meng, B., Nang, Y., Nie, J. Y., Oui, G., Qu, J. L, Sai, N., Shang, R. C., Song, L. M., Song, X. Y., Sun, L., Tani, Y., Tao, L., Tuo, Y. L., Wang, C., Wang, G. F., Wang, J., Wang, W. S., Wang, Y. S., Wen, X. Y., Wu, B. Y., Wu, B. B., Wu, M., Xiao, G. C., Xiao, S., Xu, Y. P., Yang, J. W., Yang, S., Yang, Y. J., Yi, Q. B., Yin, Q. Q., You, Y., Zhang, A. M. Zhang C. M., Zhang, F., Zhang, H. M., Zhang, J., Zhang, T., Zhang, W. C., Zhang, W., Zhang, W. Z., Zhang, Y., Zhang, Y. F., Zhang, Y. J., Zhang, Z., Zhang, Z. L., Zhang, H. S., Zhang, X. F., Zheng, S. J., Zhou, D. K., Zhou, J. F., Zhu, Y. X., Zhu, Y., and Zhuang, R. L.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
No robust detection of prompt electromagnetic counterparts to fast radio bursts (FRBs) has yet been obtained, in spite of several multi-wavelength searches carried out so far. Specifically, X/gamma-ray counterparts are predicted by some models. We planned on searching for prompt gamma-ray counterparts in the Insight-Hard X-ray Modulation Telescope (Insight-HXMT) data, taking advantage of the unique combination of large effective area in the keV-MeV energy range and of sub-ms time resolution. We selected 39 FRBs that were promptly visible from the High-Energy (HE) instrument aboard Insight-HXMT. After calculating the expected arrival times at the location of the spacecraft, we searched for a significant excess in both individual and cumulative time profiles over a wide range of time resolutions, from several seconds down to sub-ms scales. Using the dispersion measures in excess of the Galactic terms, we estimated the upper limits on the redshifts. No convincing signal was found and for each FRB we constrained the gamma-ray isotropic-equivalent luminosity and the released energy as a function of emission timescale. For the nearest FRB source, the periodic repeater FRB180916.J0158+65, we find $L_{\gamma,iso}<5.5\times 10^{47}$ erg/s over 1 s, whereas $L_{\gamma,iso}<10^{49}-10^{51}$ erg/s for the bulk of FRBs. The same values scale up by a factor of ~100 for a ms-long emission. Even on a timescale comparable with that of the radio pulse itself no keV-MeV emission is observed. A systematic association with either long or short GRBs is ruled out with high confidence, except for subluminous events, as is the case for core-collapse of massive stars (long) or binary neutron star mergers (short) viewed off axis. Only giant flares from extra-galactic magnetars at least ten times more energetic than Galactic siblings are ruled out for the nearest FRB., Comment: 15 pages, 3 figures, 6 tables, accepted by A&A
- Published
- 2020
- Full Text
- View/download PDF
33. Switches between accretion structures during flares in 4U 1901+03
- Author
-
Ji, L., Ducci, L., Santangelo, A., Zhang, S., Suleimanov, V., Tsygankov, S., Doroshenko, V., Nabizadeh, A., Zhang, S. N., Ge, M. Y., Tao, L., Bu, Q. C., Qu, J. L., Lu, F. J., Chen, L., Song, L. M., Li, T. P., Xu, Y. P., Cao, X. L., Chen, Y., Liu, C. Z., Cai, C., Chang, Z., Chen, G., Chen, T. X., Chen, Y. B., Chen, Y. P., Cui, W., Cui, W. W., Deng, J. K., Dong, Y. W., Du, Y. Y., Fu, M. X., Gao, G. H., Gao, H., Gao, M., Gu, Y. D., Guan, J., Guo, C. C., Han, D. W., Huang, Y., Huo, J., Jia, S. M., Jiang, L. H., Jiang, W. C., Jin, J., Kong, L. D., Li, B., Li, C. K., Li, G., Li, M. S., Li, W., Li, X., Li, X. B., Li, X. F., Li, Y. G., Li, Z. W., Liang, X. H., Liao, J. Y., Liu, G. Q., Liu, H. X., Liu, H. W., Liu, X. J., Liu, Y. N., Lu, B., Lu, X. F., Luo, Q., Luo, T., Ma, X., Meng, B., Nang, Y., Nie, J. Y., Ou, G., Ren, X. Q., Sai, N., Song, X. Y., Sun, L., Tan, Y., Tuo, Y. L., Wang, C., Wang, G. F., Wang, J., Wang, P. J., Wang, W. S., Wang, Y. S., Wen, X. Y., Wu, B. Y., Wu, B. B., Wu, M., Xiao, G. C., Xiao, S., Xiong, S. L., Yang, J. W., Yang, S., Yang, Yan-Ji, Yang, Yi-Jung, Yi, Q. B., Yin, Q. Q., You, Y., Zhang, A. M., Zhang, C. M., Zhang, F., Zhang, H. M., Zhang, J., Zhang, P., Zhang, T., Zhang, W., Zhang, W. C., Zhang, W. Z., Zhang, Yi, Zhang, Y. F., Zhang, Y. J., Zhang, Y. H., Zhang, Yue, Zhang, Z., Zhang, Z. L., Zhao, H. S., Zhao, X. F., Zheng, S. J., Zhou, D. K., Zhou, J. F., Zhu, Y. X., and Zhu, Y.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
We report on our analysis of the 2019 outburst of the X-ray accreting pulsar 4U 1901+03 observed with Insight-HXMT and NICER. Both spectra and pulse profiles evolve significantly in the decaying phase of the outburst. Dozens of flares are observed throughout the outburst. They are more frequent and brighter at the outburst peak. We find that the flares, which have a duration from tens to hundreds of seconds, are generally brighter than the persistent emission by a factor of $\sim$ 1.5. The pulse profile shape during the flares can be significantly different than that of the persistent emission. In particular, a phase shift is clearly observed in many cases. We interpret these findings as direct evidence of changes of the pulsed beam pattern, due to transitions between the sub- and super-critical accretion regimes on a short time scale. We also observe that at comparable luminosities the flares' pulse profiles are rather similar to those of the persistent emission. This indicates that the accretion on the polar cap of the neutron star is mainly determined by the luminosity, i.e., the mass accretion rate., Comment: 11 pages, 8 figures, accepted for publication in MNRAS
- Published
- 2020
- Full Text
- View/download PDF
34. Joint Analysis of Energy and RMS Spectra from MAXI J1535-571 with Insight-HXMT
- Author
-
Kong, L. D., Zhang, S., Chen, Y. P., Ji, L., Zhang, S. N., Yang, Y. R., Tao, L., Ma, X., Qu, J. L., Lu, F. J., Bu, Q. C., Chen, L., Song, L. M., Li, T. P., Xu, Y. P., Cao, X. L., Chen, Y., Liu, C. Z., Cai, C., Chang, Z., Chen, G., Chen, T. X., Chen, Y. B., Cui, W., Cui, W. W., Deng, J. K., Dong, Y. W., Du, Y. Y., Fu, M. X., Gao, G. H., Gao, H., Gao, M., Ge, M. Y., Gu, Y. D., Guan, J., Guo, C. C., Han, D. W., Huang, Y., Huo, J., Jia, S. M., Jiang, L. H., Jiang, W. C., Jin, J., Li, B., Li, C. K., Li, G., Li, M. S., Li, W., Li, X., Li, X. B., Li, X. F., Li, Y. G., Li, Z. W., Liang, X. H., Liao, J. Y., Liu, G. Q., Liu, H. X., Liu, H. W., Liu, S. Z., Liu, X. J., Liu, Y. N., Lu, B., Lu, X. F., Luo, Q., Luo, T., Meng, B., Nang, Y., Nie, J. Y., Ou, G., Ren, X. Q., Sai, N., Song, X. Y., Sun, L., Tan, Y., Tuo, Y. L., Wang, C., Wang, G. F., Wang, J., Wang, P. J., Wang, W. S., Wang, Y. S., Wen, X. Y., Wu, B. Y., Wu, B. B., Wu, M., Xiao, G. C., Xiao, S., Xiong, S. L., Xu, H., Yang, J. W., Yang, S., Yang, Y. J., Yi, Q. B., You, Y., Zhang, A. M., Zhang, C. M., Zhang, F., Zhang, H. M., Zhang, J., Zhang, P., Zhang, T., Zhang, W., Zhang, W. C., Zhang, W. Z., Zhang, Y., Zhang, Y. F., Zhang, Y. J., Zhang, Y. H., Zhang, Z., Zhang, Z. L., Zhao, H. S., Zhao, X. F., Zheng, S. J., Zheng, Y. G., Zhou, D. K., Zhou, J. F., Zhu, Y. X., and Zhu, Y.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
A new black hole X-ray binary (BHXRB) MAXI J1535-571 was discovered by MAXI during its outburst in 2017. Using observations taken by the first Chinese X-ray satellite, the Hard X-ray Modulation Telescope (dubbed as Insight-HXMT), we perform a joint spectral analysis (2-150 keV) in both energy and time domains. The energy spectra provide the essential input for probing the intrinsic Quasi-Periodic Oscillation (QPO) fractional rms spectra (FRS). Our results show that during the intermediate state, the energy spectra are in general consistent with those reported by Swift/XRT and NuSTAR. However, the QPO FRS become harder and the FRS residuals may suggest the presence of either an additional power-law component in the energy spectrum or a turn-over in the intrinsic QPO FRS at high energies.
- Published
- 2020
35. Diagnostic of the spectral properties of Aquila X-1 by Insight-HXMT snapshots during the early propeller phase
- Author
-
Güngör, C., Ge, M. Y., Zhang, S., Santangelo, A., Zhang, S. N., Lu, F. J., Zhang, Y., Chen, Y. P., Tao, L., Yang, Y. J., Bu, Q. C., Cai, C., Cao, X. L., Chang, Z., Chen, G., Chen, L., Chen, T. X., Chen, Y., Chen, Y. B., Cui, W., Cui, W. W., Deng, J. K., Dong, Y. W., Du, Y. Y., Fu, M. X., Gao, G. H., Gao, H., Gao, M., Gu, Y. D., Guan, J., Guo, C. C., Han, D. W., Huang, Y., Huo, J., Ji, L., Jia, S. M., Jiang, L. H., Jiang, W. C., Jin, J., Kong, L. D., Li, B., Li, C. K., Li, G., Li, M. S., Li, T. P., Li, W., Li, X., Li, X. B., Li, X. F., Li, Y. G., Li, Z. W., Liang, X. H., Liao, J. Y., Liu, C. Z., Liu, G. Q., Liu, H. W., Liu, X. J., Liu, Y. N., Lu, B., Lu, X. F., Luo, T., Luo, Q., Ma, X., Meng, B., Nang, Y., Nie, J. Y., Ou, G., Sai, N., Song, L. M., Song, X. Y., Sun, L., Tan, Y., Tuo, Y. L., Wang, C., Wang, G. F., Wang, J., Wang, W. S., Wang, Y. S., Wen, X. Y., Wu, B. B., Wu, B. Y., Wu, M., Xiao, G. C., Xiao, S., Xiong, S. L., Xu, Y. P., Yang, J. W., Yang, S., Yi, Q. B., Yin, Q. Q., You, Y., Zhang, A. M., Zhang, C. M., Zhang, F., Zhang, H. M., Zhang, J., Zhang, T., Zhang, W., Zhang, W. C., Zhang, W. Z., Zhang, Y. F., Zhang, Y. J., Zhang, Z., Zhang, Z. L., Zhao, H. S., Zhao, X. F., Zheng, S. J., Zhou, D. K., Zhou, J. F., Zhu, Y., and Zhu, Y. X.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
We study the 2018 outburst of Aql X-1 via the monitor of all sky X-ray image (MAXI) data. We show that the outburst starting in February 2018 is a member of short-low class in the frame of outburst duration and the peak count rate although the outburst morphology is slightly different from the other fast-rise-exponential-decay (FRED) type outbursts with a milder rising stage. We study the partial accretion in the weak propeller stage of Aql X-1 via the MAXI data of the 2018 outburst. We report on the spectral analysis of 3 observations of Aquila X-1 obtained by Insight - hard X-ray modulation telescope (Insight-HXMT) during the late decay stage of the 2018 outburst. We discuss that the data taken by Insight-HXMT is just after the transition to the weak propeller stage. Our analysis shows the necessity of a comptonization component to take into account the existence of an electron cloud resulting photons partly up-scattered., Comment: 8 pages, 4 figures, accepted for publication in JHEAp
- Published
- 2019
36. Effect of sintering duration on microstructure and properties of Inconel 718 superalloy prepared by electric field-activated sintering
- Author
-
Ma, L.Y., Wan, M., Zhang, Z.Y., and Meng, B.
- Published
- 2023
- Full Text
- View/download PDF
37. Energy field assisted metal forming: Current status, challenges and prospects
- Author
-
Li, H., Peng, L.F., Meng, B., Xu, Z.T., Wang, L.L., Ngaile, G., and Fu, M.W.
- Published
- 2023
- Full Text
- View/download PDF
38. $Insight$-HXMT study of the timing properties of Sco X-1
- Author
-
Jia, S. M., Bu, Q. C., Qu, J. L., Lu, F. J., Zhang, S. N., Huang, Y., Ma, X., Tao, L., Xiao, G. C., Zhang, W., Chen, L., Song, L. M., Zhang, S., Li, T. B., Xu, Y. P., Cao, X. L., Chen, Y., Liu, C. Z., Cai, C., Chang, Z., Chen, G., Chen, T. X., Chen, Y. B., Chen, Y. P., Cui, W., Cui, W. W., Deng, J. K., Dong, Y. W., Du, Y. Y., Fu, M. X., Gao, G. H., Gao, H., Gao, M., Ge, M. Y., Gu, Y. D., Guan, J., Guo, C. C., Han, D. W., Huo, J., Jiang, L. H., Jiang, W. C., Jin, J., Kong, L. D., Li, B., Li, C. K., Li, G., Li, M. S., Li, W., Li, X., Li, X. B., Li, X. F., Li, Y. G., Li, Z. W., Liang, X. H., Liao, J. Y., Liu, G. Q., Liu, H. W., Liu, X. J., Liu, Y. N., Lu, B., Lu, X. F., Luo, Q., Luo, T., Meng, B., Nang, Y., Nie, J. Y., Ou, G., Sai, N., Song, X. Y., Sun, L., Tan, Y., Tuo, Y. L., Wang, C., Wang, G. F., Wang, J., Wang, W. S., Wang, Y. S., Wen, X. Y., Wu, B. Y., Wu, B. B., Wu, M., Xiao, S., Xiong, S. L., Yang, J. W., Yang, S., Yang, Y. J., Yin, Q. Q., Yi, Q. B., You, Y., Zhang, A. M., Zhang, C. M., Zhang, F., Zhang, H. M., Zhang, J., Zhang, T., Zhang, W. C., Zhang, W. Z., Zhang, Y., Zhang, Y. F., Zhang, Y. J., Zhang, Z., Zhang, Z. L., Zhao, H. S., Zhao, X. F., Zheng, S. J., Zhou, D. K., Zhou, J. F., Zhu, Y. X., and Zhu, Y.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena ,High Energy Physics - Phenomenology - Abstract
We present a detailed timing study of the brightest persistent X-ray source Sco X-1 using the data collected by the Hard X-ray Modulation Telescope ($Insight$-HXMT) from July 2017 to August 2018. A complete $Z$-track hardness-intensity diagram (HID) is obtained. The normal branch oscillations (NBOs) at $\sim$ 6 Hz in the lower part of the normal branch (NB) and the flare branch oscillations (FBOs) at $\sim$ 16 Hz in the beginning part of the flaring branch (FB) are found in observations with the Low Energy X-ray Telescope (LE) and the Medium Energy X-ray Telescope (ME) of $Insight$-HXMT, while the horizontal branch oscillations (HBOs) at $\sim$ 40 Hz and the kilohertz quasi-periodic oscillations (kHz QPOs) at $\sim$ 800 Hz are found simultaneously up to 60 keV for the first time on the horizontal branch (HB) by the High Energy X-ray Telescope (HE) and ME. We find that for all types of the observed QPOs, the centroid frequencies are independent of energy, while the root mean square (rms) increases with energy; the centroid frequencies of both the HBOs and kHz QPOs increase along the $Z$-track from the top to the bottom of the HB; and the NBOs show soft phase lags increasing with energy. A continuous QPO transition from the FB to NB in $\sim$ 200 s are also detected. Our results indicate that the non-thermal emission is the origin of all types of QPOs, the innermost region of the accretion disk is non-thermal in nature, and the corona is nonhomogeneous geometrically.
- Published
- 2019
39. Insight-HXMT observation on 4U~1608--52: evolving spectral properties of a bright type-I X-ray burst
- Author
-
Chen, Y. P., Zhang, S., Zhang, S. N., Ji, L., Kong, L. D., Santangelo, A., Qu, J. L., Lu, F. J., Li, T. P., Song, L. M., Xu, Y. P., Cao, X. L., Chen, Y., Liu, C. Z., Bu, Q. C., Cai, C., Chang, Z., Chen, G., Chen, L., Chen, T. X., Chen, Y. B., Cui, W., Cui, W. W., Deng, J. K., Dong, Y. W., Du, Y. Y., Fu, M. X., Gao, G. H., Gao, H., Gao, M., Ge, M. Y., Gu, Y. D., Guan, J., Guo, C. C., Han, D. W., Huang, Y., Huo, J., Jia, S. M., Jiang, L. H., Jiang, W. C., Jin, J., Li, B., Li, C. K., Li, G., Li, M. S., Li, W., Li, X., Li, X. B., Li, X. F., Li, Y. G., Li, Z. W., Liang, X. H., Liu, J. Y. Liao G. Q., Liu, H. W., Liu, X. J., Liu, Y. N., Lu, B., Lu, X. F., Luo, Q., Luo, T., Ma, X., Meng, B., Nang, Y., Nie, J. Y., Ou, G., Sai, N., Sun, L., Tan, Y., Tao, L., Tuo, Y. L., Wang, C., Wang, G. F., Wang, J., Wang, W. S., Wang, Y. S., Wen, X. Y., Wu, B. Y., Wu, B. B., Wu, M., Xiao, G. C., Xiao, S., Xiong, S. L., Yang, J. W., Yang, S., Yang, Yang-Ji, Yang, Yi-Jung, Yi, Q. B., Yin, Q. Q., You, Y., Zhang, A. M., Zhang, C. L., Zhang, C. M., Zhang, F., Zhang, H. M., Zhang, J., Zhang, T., Zhang, W. C., Zhang, W., Zhang, W. Z., Zhang, Yi., Zhang, Y. F., Zhang, Y. J., Zhang, Yue., Zhang, Z., Zhang, Z. L., Zhao, H. S., Zhao, X. F., Zheng, S. J., Zhou, D. K., Zhou, J. F., Zhu, Y., and Zhu, Y. X.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
The evidences for the influence of thermonuclear (type-I) X-ray bursts upon the surrounding environments in neutron star low-mass X-ray binaries (LMXB) were detected previously via spectral and timing analyses. Benefitting from a broad energy coverage of Insight-HXMT, we analyze one photospheric radius expansion (PRE) burst, and find an emission excess at soft X-rays. Our spectral analysis shows that, such an excess is not likely relevant to the disk reflection induced by the burst emission and can be attributed to an enhanced pre-burst/persistent emission. We find that the burst and enhanced persistent emissions sum up to exceed Eddington luminosity by $\sim$ 40 percentages. We speculate that the enhanced emission is from a region beyond the PRE radius, or through the Comptonization of the corona., Comment: accepted by JHEA(Journal of High Energy Astrophysics)
- Published
- 2019
40. Insight-HXMT observations of 4U~1636-536: Corona cooling revealed with single short type-I X-ray burst
- Author
-
Chen, Y. P., Zhang, S., Zhang, S. N., Ji, L., Kong, L. D., Cao, X. L., Chang, Z., Chen, G., Chen, L., Chen, T. X., Chen, Y., Chen, Y. B., Cui, W., Cui, W. W., Deng, J. K., Dong, Y. W., Du, Y. Y., Fu, M. X., Gao, G. H., Gao, H., Gao, M., Ge, M. Y., Gu, Y. D., Guan, J., Guo, C. C., Han, D. W., Hu, W., Huang, Y., Huo, J., Jia, S. M., Jiang, L. H., Jiang, W. C., Jin, J., Jin, Y. J., Li, B., Li, C. K., Li, G., Li, M. S., Li, T. P., Li, W., Li, X., Li, X. B., Li, X. F., Li, Y. G., Li, Z. J., Li, Z. W., Liang, X. H., Liao, J. Y., Liu, C. Z., Liu, G. Q., Liu, H. W., Liu, S. Z., Liu, X. J., Liu, Y., Liu, Y. N., Lu, B., Lu, F. J., Lu, X. F., Luo, T., Ma, X., Meng, B., Nang, Y., Nie, J. Y., Ou, G., Qu, J. L., Sai, N., Song, L. M., Sun, L., Tan, Y., Tao, L., Tao, W. H., Tuo, Y. L., Wang, G. F., Wang, H. Y., Wang, J., Wang, W. S., Wang, Y. S., Wen, X. Y., Wu, B. B., Wu, M., Xiao, G. C., Xiong, S. L., Xu, H., Xu, Y. P., Yan, L. L., Yang, J. W., Yang, S., Yang, Y. J., Zhang, A. M., Zhang, C. L., Zhang, C. M., Zhang, F., hang, H. M., Zhang, J., Zhang, Q., Zhang, T., Zhang, W., Zhang, W. C., Zhang, W. Z., Zhang, Y., Zhang, Y. F., Zhang, Y. J., Zhang, Z., Zhang, Z. L., Zhao, H. S., Zhao, J. L., Zhao, X. F., Zheng, S. J., Zhu, Y., Zhu, Y. X., and Zou, C. L.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
Corona cooling was detected previously from stacking a series of short type-I bursts occurred during the low/had state of atoll outburst. Type-I bursts are hence regarded as sharp probe to our better understanding on the basic property of the corona. The launch of the first Chinese X-ray satellite Insight-HXMT has large detection area at hard X-rays which provide almost unique chance to move further in this research field. We report the first detection of the corona cooling by Insight-HXMT from single short type-I burst showing up during {\bf flare} of 4U 1636-536. This type-I X-ray burst has a duration of $\sim$13 seconds and hard X-ray shortage is detected with significance 6.2~$\sigma$ in 40-70 keV. A cross-correlation analysis between the lightcurves of soft and hard X-ray band, shows that the corona shortage lag the burst emission by 1.6 $\pm$1.2~s. These results are consistent with those derived previously from stacking a large amount of bursts detected by RXTE/PCA within a series of {\bf flares} of 4U 1636-536. Moreover, the broad bandwidth of Insight-HXMT allows as well for the first time to infer the burst influence upon the continuum spectrum via performing the spectral fitting of the burst, which ends up with the finding that hard X-ray shortage appears at around 40 keV in the continuum spectrum. These results suggest that the evolution of the corona along with the outburst{\bf /flare} of NS XRB may be traced via looking into a series of embedded type-I bursts by using Insight-HXMT., Comment: published in 2018, ApJL,864, L30
- Published
- 2019
- Full Text
- View/download PDF
41. Timing analysis of 2S 1417-624 observed with NICER and Insight-HXMT
- Author
-
Ji, L., Doroshenko, V., Santangelo, A., Gungor, C., Zhang, S., Ducci, L., Zhang, S. -N., Ge, M. -Y., Qu, L. J., Chen, Y. P., Bu, Q. C., Cao, X. L., Chang, Z., Chen, G., Chen, L., Chen, T. X., Chen, Y., Chen, Y. B., Cui, W., Cui, W. W., Deng, J. K., Dong, Y. W., Du, Y. Y., Fu, M. X., Gao, G. H., Gao, H., Gao, M., Gu, Y. D., Guan, J., Guo, C. C., Han, D. W., Hu, W., Huang, Y., Huo, J., Jia, S. M., Jiang, L. H., Jiang, W. C., Jin, J., Jin, Y. J., Kong, L. D., Li, B., Li, C. K., Li, G., Li, M. S., Li, T. P., Li, W., Li, X., Li, X. B., Li, X. F., Li, Y. G., Li, Z. J., Li, Z. W., Liang, X. H., Liao, J. Y., Liu, C. Z., Liu, G. Q., Liu, H. W., Liu, S. Z., Liu, X. J., Liu, Y., Liu, Y. N., Lu, B., Lu, F. J., Lu, X. F., Luo, T., Ma, X., Meng, B., Nang, Y., Nie, J. Y., Ou, G., Sai, N., Song, L. M., Song, X. Y., Sun, L., Tan, Y., Tao, L., Tuo, Y. L., Wang, G. F., Wang, J., Wang, W. S., Wang, Y. S., Wen, X. Y., Wu, B. B., Wu, M., Xiao, G. C., Xiong, S. L., Xu, H., Xu, Y. P., Yang, Y. R., Yang, J. W., Yang, S., Yang, Y. J., Zhang, A. M., Zhang, C. L., Zhang, C. M., Zhang, F., Zhang, H. M., Zhang, J., Zhang, Q., Zhang, T., Zhang, W., Zhang, W. C., Zhang, W. Z., Zhang, Y., Zhang, Y. F., Zhang, Y. J., Zhang, Z., Zhang, Z. L., Zhao, H. S., Zhao, J. L., Zhao, X. F., Zheng, S. J., Zhu, Y., Zhu, Y. X., and Zou, C. L.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
We present a study of timing properties of the accreting pulsar 2S 1417-624 observed during its 2018 outburst, based on Swift/BAT, Fermi/GBM, Insight-HXMT and NICER observations. We report a dramatic change of the pulse profiles with luminosity. The morphology of the profile in the range 0.2-10.0keV switches from double to triple peaks at $\sim2.5$ $\rm \times 10^{37}{\it D}_{10}^2\ erg\ s^{-1}$ and from triple to quadruple peaks at $\sim7$ $\rm \times 10^{37}{\it D}_{10}^2\ erg\ s^{-1}$. The profile at high energies (25-100keV) shows significant evolutions as well. We explain this phenomenon according to existing theoretical models. We argue that the first change is related to the transition from the sub to the super-critical accretion regime, while the second to the transition of the accretion disc from the gas-dominated to the radiation pressure-dominated state. Considering the spin-up as well due to the accretion torque, this interpretation allows to estimate the magnetic field self-consistently at $\sim7\times 10^{12}$G., Comment: 7 pages, 4 figures, 1 tables, accepted for publication in MNRAS
- Published
- 2019
- Full Text
- View/download PDF
42. Constant cyclotron line energy in Hercules X-1 -- Joint Insight-HXMT and NuSTAR observations
- Author
-
Xiao, G. C., Ji, L., Staubert, R., Ge, M. Y., Zhang, S., Zhang, S. N., Santangelo, A., Ducci, L., Liao, J. Y., Guo, C. C., Li, X. B., Zhang, W., Qu, J. L., Lu, F. J., Li, T. P., Song, L. M., Xu, Y. P., Bu, Q. C., Cai, C., Cao, X. L., Chang, Z., Chen, G., Chen, L., Chen, T. X., Chen, Y. B., Chen, Y., Chen, Y. P., Cui, W., Cui, W. W., Deng, J. K., Dong, Y. W., Du, Y. Y., Fu, M. X., Gao, G. H., Gao, H., Gao, M., Gu, Y. D., Guan, J., Gungor, C., Han, D. W., Huang, Y., Huo, J., Jia, S. M., Jiang, L. H., Jiang, W. C., Jin, J., Kong, L. D., Li, B., Li, C. K., Li, G., Li, M. S., Li, W., Li, X., Li, X. F., Li, Y. G., Li, Z. W., Liang, X. H., Liu, C. Z., Liu, G. Q., Liu, H. W., Liu, X. J., Liu, Y. N., Lu, B., Lu, X. F., Luo, Q., Luo, T., Ma, X., Meng, B., Nang, Y., Nie, J. Y., Ou, G., Sai, N., Song, S. X., Sun, L., Tan, Y., Tao, L., Tuo, Y. L., Wang, C., Wang, G. F., Wang, J., Wang, W. S., Wang, Y. S., Wen, X. Y., Wu, B. B., Wu, B. Y., Wu, M., Xiong, S. L., Yang, J. W., Yang, S., Yang, Y. J., Yin, Q. B., Yin, Q. Q., Zhang, A. M., Zhang, C. M., Zhang, F., Zhang, H. M., Zhang, J., Zhang, T., Zhang, W. C., Zhang, W. Z., Zhang, Y., Zhang, Y. F., Zhang, Y. J., Zhang, Z., Zhang, Z. L., Zhao, H. S., Zhao, X. F., Zheng, S. J., Zhou, J. F., Zhu, Y., and Zhu, Y. X.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
The long-term evolution of the centroid energy of the CRSF in Her X-1 is still a mystery. We report a new measurement from a campaign between {\sl Insight}-HXMT and {\sl NuSTAR} performed in February 2018. Generally, the two satellites show well consistent results of timing and spectral properties. The joint spectral analysis confirms that the previously observed long decay phase has ended, and that the line energy instead keeps constant around 37.5 keV after flux correction.
- Published
- 2019
43. Hot disk of the Swift J0243.6+6124 revealed by Insight-HXMT
- Author
-
Doroshenko, V., Zhang, S. N., Santangelo, A., Ji, L., Tsygankov, S., Mushtukov, A., Qu, L. J., Zhang, S., Ge, M. Y., Chen, Y. P., Bu, Q. C., Cao, X. L., Chang, Z., Chen, G., Chen, L., Chen, T. X., Chen, Y., Chen, Y. B., Cui, W., Cui, W. W., Deng, J. K., Dong, Y. W., Du, Y. Y., Fu, M. X., Gao, G. H., Gao, H., Gao, M., Gu, Y. D., Guan, Guo, C. C., Han, D. W., Hu, W., Huang, Y., Huo, J., Jia, S. M., Jiang, L. H., Jiang, W. C., Jin, J., Jin, Y. J., Kong, L. D., Li, B., Li, C. K., Li, G., Li, M. S., Li, T. P., Li, W., Li, X., Li, X. B., Li, X. F., Li, Y. G., Li, Z. J., Li, Z. W., Liang, X. H., Liao, J. Y., Liu, C. Z., Liu, G. Q., Liu, H. W., Liu, S. Z., Liu, X. J., Liu, Y., Liu, Y. N., Lu, B., Lu, F. J., Lu, X. F., Luo, T., Ma, X., Meng, B., Nang, Y., Nie, J. Y., Ou, G., Sai, N., Song, L. M., Song, X. Y., Sun, L., Tan, Y., Tao, L., Tuo, Y. L., Wang, G. F., Wang, J., Wang, W. S., Wang, Y. S., Wen, X. Y., Wu, B. B., Wu, M., Xiao, G. C., Xiong, S. L., Xu, H., Xu, Y. P., Yang, Y. R., Yang, J. W., Yang, S., Yang, Y. J., Zhang, A. M., Zhang, C. L., Zhang, C. M., Zhang, F., Zhang, H. M., Zhang, J., Zhang, Q., Zhang, T., Zhang, W., Zhang, W. C., Zhang, W. Z., Zhang, Y., Zhang, Y. F., Zhang, Y. J., Zhang, Z., Zhang, Z. L., Zhao, H. S., Zhao, J. L., Zhao, X. F., Zheng, S. J., Zhu, Y., Zhu, Y. X., and Zou, C. L.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
We report on analysis of observations of the bright transient X-ray pulsar \src obtained during its 2017-2018 giant outburst with Insight-HXMT, \emph{NuSTAR}, and \textit{Swift} observatories. We focus on the discovery of a sharp state transition of the timing and spectral properties of the source at super-Eddington accretion rates, which we associate with the transition of the accretion disk to a radiation pressure dominated (RPD) state, the first ever directly observed for magnetized neutron star. This transition occurs at slightly higher luminosity compared to already reported transition of the source from sub- to super-critical accretion regime associate with onset of an accretion column. We argue that this scenario can only be realized for comparatively weakly magnetized neutron star, not dissimilar to other ultra-luminous X-ray pulsars (ULPs), which accrete at similar rates. Further evidence for this conclusion is provided by the non-detection of the transition to the propeller state in quiescence which strongly implies compact magnetosphere and thus rules out magnetar-like fields., Comment: Submitted to MNRAS
- Published
- 2019
- Full Text
- View/download PDF
44. In-orbit demonstration of X-ray pulsar navigation with the Insight-HXMT satellite
- Author
-
Zheng, S. J., Zhang, S. N., Lu, F. J., Wang, W. B., Gao, Y., Li, T. P., Song, L. M., Ge, M. Y., Han, D. W., Chen, Y., Xu, Y. P., Cao, X. L., Liu, C. Z., Zhang, S., Qu, J. L., Chang, Z., Chen, G., Chen, L., Chen, T. X., Chen, Y. B., Chen, Y. P., Cui, W., Cui, W. W., Deng, J. K., Dong, Y. W., Du, Y. Y., Fu, M. X., Gao, G. H., Gao, H., Gao, M., Gu, Y. D., Guan, J., Gungor, C., Guo, C. C., Hu, W., Huang, Y., Huo, J., Ji, J. F., Jia, S. M., Jiang, L. H., Jiang, W. C., Jin, J., Jin, Y. J., Li, B., Li, C. K., Li, G., Li, M. S., Li, W., Li, X., Li, X. B., Li, X. F., Li, Y. G., Li, Z. J., Li, Z. W., Liang, X. H., Liao, J. Y., Liu, G. Q., Liu, H. W., Liu, S. Z., Liu, X. J., Liu, Y., Liu, Y. N., Lu, B., Lu, X. F., Luo, T., Ma, X., Meng, B., Nang, Y., Nie, J. Y., Ou, G, Sai, N., Shang, R. C., Sun, L., Tan, Y., Tao, L., Tao, W., Tuo, Y. L., Wang, G. F., Wang, J., Wang, W. S., Wang, Y. S., Wen, X. Y., Wu, B. B., Wu, M., Xiao, G. C., Xiong, S. L., Xu, H., Yan, L. L., Yang, J. W., Yang, S., Yang, Y. J., Zhang, A. M., Zhang, C. L., Zhang, C. M., Zhang, F., Zhang, H. M., Zhang, J., Zhang, Q., Zhang, T., Zhang, W., Zhang, W. C., Zhang, W. Z., Zhang, Y., Zhang, Y. F., Zhang, Y. J., Zhang, Z., Zhang, Z. L., Zhao, H. S., Zhao, J. L., Zhao, X. F., Zhu, Y., Zhu, Y. X., and Zou, C. L.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
In this work, we report the in-orbit demonstration of X-ray pulsar navigation with Insight-Hard X-ray Modulation Telescope (Insight-HXMT), which was launched on Jun. 15th, 2017. The new pulsar navigation method 'Significance Enhancement of Pulse-profile with Orbit-dynamics' (SEPO) is adopted to determine the orbit with observations of only one pulsar. In this test, the Crab pulsar is chosen and observed by Insight-HXMT from Aug. 31th to Sept. 5th in 2017. Using the 5-day-long observation data, the orbit of Insight-HXMT is determined successfully with the three telescopes onboard - High Energy X-ray Telescope (HE), Medium Energy X-ray Telescope (ME) and Low Energy X-ray Telescope (LE) - respectively. Combining all the data, the position and velocity of the Insight-HXMT are pinpointed to within 10 km (3 sigma) and 10 m/s (3 sigma), respectively., Comment: Accepted by the Astrophysical Journal Supplement
- Published
- 2019
- Full Text
- View/download PDF
45. Timing performance of the CMS High Granularity Calorimeter prototype
- Author
-
Acar, B, Adamov, G, Adloff, C, Afanasiev, S, Akchurin, N, Akgun, B, Khan, F, Alhusseini, M, Alison, J, Alpana, A, Altopp, G, Alyari, M, An, S, Anagul, S, Andreev, I, Aspell, P, Atakisi, I, Bach, O, Baden, A, Bakas, G, Bakshi, A, Bannerjee, S, Bargassa, P, Barney, D, Beaudette, F, Beaujean, F, Becheva, E, Becker, A, Behera, P, Belloni, A, Bergauer, T, Besancon, M, Bhattacharya, S, Bhowmik, D, Bilki, B, Bloch, P, Bodek, A, Bonanomi, M, Bonnemaison, A, Bonomally, S, Borg, J, Bouyjou, F, Bower, N, Braga, D, Brashear, J, Brondolin, E, Bryant, P, Buchot Perraguin, A, Bueghly, J, Burkle, B, Butler-Nalin, A, Bychkova, O, Callier, S, Calvet, D, Cao, X, Cappati, A, Caraway, B, Caregari, S, Cauchois, A, Ceard, L, Cekmecelioglu, Y, Cerci, S, Cerminara, G, Chadeeva, M, Charitonidis, N, Chatterjee, R, Chen, Y, Chen, Z, Cheng, H, Cheng, K, Chernichenko, S, Cheung, H, Chien, C, Choudhury, S, Coko, D, Collura, G, Couderc, F, Danilov, M, Dannheim, D, Daoud, W, Dauncey, P, David, A, Davies, G, Davignon, O, Day, E, De Barbaro, P, De Guio, F, de La Taille, C, De Silva, M, Debbins, P, Defranchis, M, Delagnes, E, Deltoro Berrio, J, Derylo, G, Dias de Almeida, P, Diaz, D, Dinaucourt, P, Dittmann, J, Dragicevic, M, Dugad, S, Dulucq, F, Dumanoglu, I, Dutta, V, Dutta, S, Dunser, M, Eckdahl, J, Edberg, T, El Berni, M, Elias, F, Eno, S, Ershov, Y, Everaerts, P, Extier, S, Fahim, F, Fallon, C, Fedi, G, Fontana Santos Alves, B, Frahm, E, Franzoni, G, Freeman, J, French, T, Gandhi, P, Ganjour, S, Gao, X, Garcia-Bellido, A, Gastaldi, F, Gecse, Z, Geerebaert, Y, Gerwig, H, Gevin, O, Ghosh, S, Gilbert, A, Gilbert, W, Gill, K, Gingu, C, Gninenko, S, Golunov, A, Golutvin, I, Gonzalez, T, Gorbounov, N, Gouskos, L, Gray, A, Gu, Y, Guilloux, F, Guler, Y, Gulmez, E, Guo, J, Gurpinar Guler, E, Hammer, M, Hassanshahi, H, Hatakeyama, K, Heering, A, Hegde, V, Heintz, U, Hinton, N, Hirschauer, J, Hoff, J, Hou, W, Hou, X, Hua, H, Incandela, J, Irshad, A, Isik, C, Jain, S, Jheng, H, Joshi, U, Kachanov, V, Kalinin, A, Kalipoliti, L, Kaminskiy, A, Kapoor, A, Kara, O, Karneyeu, A, Kaya, M, Kaya, O, Kayis Topaksu, A, Khukhunaishvili, A, Kieseler, J, Kilpatrick, M, Kim, S, Koetz, K, Kolberg, T, Koseyan, O, Kristic, A, Krohn, M, Kruger, K, Kulagin, N, Kulis, S, Kunori, S, Kuo, C, Kuryatkov, V, Kyre, S, Lai, Y, Lamichhane, K, Landsberg, G, Lange, C, Langford, J, Lee, M, Levin, A, Li, A, Li, B, Li, J, Li, Y, Liao, H, Lincoln, D, Linssen, L, Lipton, R, Liu, Y, Lobanov, A, Lu, R, Lupi, M, Lysova, I, Magnan, A, Magniette, F, Mahjoub, A, Maier, A, Malakhov, A, Mallios, S, Mannelli, M, Mans, J, Marchioro, A, Martelli, A, Martinez, G, Masterson, P, Meng, B, Mengke, T, Mestvirishvili, A, Mirza, I, Moccia, S, Mohanty, G, Monti, F, Morrissey, I, Murthy, S, Music, J, Musienko, Y, Nabili, S, Nagar, A, Nguyen, M, Nikitenko, A, Noonan, D, Noy, M, Nurdan, K, Ochando, C, Odegard, B, Odell, N, Okawa, H, Onel, Y, Ortez, W, Ozegovic, J, Ozkorucuklu, S, Paganis, E, Pagenkopf, D, Palladino, V, Pandey, S, Pantaleo, F, Papageorgakis, C, Papakrivopoulos, I, Parshook, J, Pastika, N, Paulini, M, Paulitsch, P, Peltola, T, Pereira Gomes, R, Perkins, H, Petiot, P, Pierre-Emile, T, Pitters, F, Popova, E, Prosper, H, Prvan, M, Puljak, I, Qu, H, Quast, T, Quinn, R, Quinnan, M, Ramos Garcia, M, Rao, K, Rapacz, K, Raux, L, Reichenbach, G, Reinecke, M, Revering, M, Roberts, A, Romanteau, T, Rose, A, Rovere, M, Roy, A, Rubinov, P, Rusack, R, Rusinov, V, Ryjov, V, Sahin, M, Salerno, R, Sanchez Rodriguez, A, Saradhy, R, Sarkar, T, Sarkisla, M, Sauvan, J, Schmidt, I, Schmitt, M, Scott, E, Seez, C, Sefkow, F, Sharma, S, Shein, I, Shenai, A, Shukla, R, Sicking, E, Sieberer, P, Silva, P, Simsek, A, Sirois, Y, Smirnov, V, Sozbilir, U, Spencer, E, Steen, A, Strait, J, Strobbe, N, Su, J, Sukhov, E, Sun, L, Sunar Cerci, D, Syal, C, Tali, B, Tan, C, Tao, J, Tastan, I, Tatli, T, Thaus, R, Tekten, S, Thienpont, D, Tiras, E, Titov, M, Tlisov, D, Tok, U, Troska, J, Tsai, L, Tsamalaidze, Z, Tsipolitis, G, Tsirou, A, Tyurin, N, Undleeb, S, Urbanski, D, Ustinov, V, Uzunian, A, Van de Klundert, M, Varela, J, Velasco, M, Viazlo, O, Vicente Barreto Pinto, M, Vichoudis, P, Virdee, T, Vizinho de Oliveira, R, Voelker, J, Voirin, E, Vojinovic, M, Wade, A, Wang, C, Wang, F, Wang, X, Wang, Z, Wayne, M, Webb, S, Whitbeck, A, White, D, Wickwire, R, Wilson, J, Winter, D, Wu, H, Wu, L, Wulansatiti Nursanto, M, Yeh, C, Yohay, R, Yu, D, Yu, G, Yu, S, Yuan, C, Yumiceva, F, Yusuff, I, Zacharopoulou, A, Zamiatin, N, Zarubin, A, Zenz, S, Zghiche, A, Zhang, H, Zhang, J, Zhang, Y, Zhang, Z, Acar B., Adamov G., Adloff C., Afanasiev S., Akchurin N., Akgun B., Khan F., Alhusseini M., Alison J., Alpana A., Altopp G., Alyari M., An S., Anagul S., Andreev I., Aspell P., Atakisi I., Bach O., Baden A., Bakas G., Bakshi A., Bannerjee S., Bargassa P., Barney D., Beaudette F., Beaujean F., Becheva E., Becker A., Behera P., Belloni A., Bergauer T., Besancon M., Bhattacharya S., Bhowmik D., Bilki B., Bloch P., Bodek A., Bonanomi M., Bonnemaison A., Bonomally S., Borg J., Bouyjou F., Bower N., Braga D., Brashear J., Brondolin E., Bryant P., Buchot Perraguin A., Bueghly J., Burkle B., Butler-Nalin A., Bychkova O., Callier S., Calvet D., Cao X., Cappati A., Caraway B., Caregari S., Cauchois A., Ceard L., Cekmecelioglu Y., Cerci S., Cerminara G., Chadeeva M., Charitonidis N., Chatterjee R., Chen Y., Chen Z., Cheng H., Cheng K., Chernichenko S., Cheung H., Chien C., Choudhury S., Coko D., Collura G., Couderc F., Danilov M., Dannheim D., Daoud W., Dauncey P., David A., Davies G., Davignon O., Day E., De Barbaro P., De Guio F., de La Taille C., De Silva M., Debbins P., Defranchis M., Delagnes E., Deltoro Berrio J., Derylo G., Dias de Almeida P., Diaz D., Dinaucourt P., Dittmann J., Dragicevic M., Dugad S., Dulucq F., Dumanoglu I., Dutta V., Dutta S., Dunser M., Eckdahl J., Edberg T., El Berni M., Elias F., Eno S., Ershov Y., Everaerts P., Extier S., Fahim F., Fallon C., Fedi G., Fontana Santos Alves B., Frahm E., Franzoni G., Freeman J., French T., Gandhi P., Ganjour S., Gao X., Garcia-Bellido A., Gastaldi F., Gecse Z., Geerebaert Y., Gerwig H., Gevin O., Ghosh S., Gilbert A., Gilbert W., Gill K., Gingu C., Gninenko S., Golunov A., Golutvin I., Gonzalez T., Gorbounov N., Gouskos L., Gray A., Gu Y., Guilloux F., Guler Y., Gulmez E., Guo J., Gurpinar Guler E., Hammer M., Hassanshahi H., Hatakeyama K., Heering A., Hegde V., Heintz U., Hinton N., Hirschauer J., Hoff J., Hou W. -S., Hou X., Hua H., Incandela J., Irshad A., Isik C., Jain S., Jheng H., Joshi U., Kachanov V., Kalinin A., Kalipoliti L., Kaminskiy A., Kapoor A., Kara O., Karneyeu A., Kaya M., Kaya O., Kayis Topaksu A., Khukhunaishvili A., Kieseler J., Kilpatrick M., Kim S., Koetz K., Kolberg T., Koseyan O., Kristic A., Krohn M., Kruger K., Kulagin N., Kulis S., Kunori S., Kuo C., Kuryatkov V., Kyre S., Lai Y., Lamichhane K., Landsberg G., Lange C., Langford J., Lee M., Levin A., Li A., Li B., Li J., Li Y., Liao H., Lincoln D., Linssen L., Lipton R., Liu Y., Lobanov A., Lu R. -S., Lupi M., Lysova I., Magnan A. -M., Magniette F., Mahjoub A., Maier A., Malakhov A., Mallios S., Mannelli M., Mans J., Marchioro A., Martelli A., Martinez G., Masterson P., Meng B., Mengke T., Mestvirishvili A., Mirza I., Moccia S., Mohanty G., Monti F., Morrissey I., Murthy S., Music J., Musienko Y., Nabili S., Nagar A., Nguyen M., Nikitenko A., Noonan D., Noy M., Nurdan K., Ochando C., Odegard B., Odell N., Okawa H., Onel Y., Ortez W., Ozegovic J., Ozkorucuklu S., Paganis E., Pagenkopf D., Palladino V., Pandey S., Pantaleo F., Papageorgakis C., Papakrivopoulos I., Parshook J., Pastika N., Paulini M., Paulitsch P., Peltola T., Pereira Gomes R., Perkins H., Petiot P., Pierre-Emile T., Pitters F., Popova E., Prosper H., Prvan M., Puljak I., Qu H., Quast T., Quinn R., Quinnan M., Ramos Garcia M., Rao K., Rapacz K., Raux L., Reichenbach G., Reinecke M., Revering M., Roberts A., Romanteau T., Rose A., Rovere M., Roy A., Rubinov P., Rusack R., Rusinov V., Ryjov V., Sahin M., Salerno R., Sanchez Rodriguez A., Saradhy R., Sarkar T., Sarkisla M., Sauvan J., Schmidt I., Schmitt M., Scott E., Seez C., Sefkow F., Sharma S., Shein I., Shenai A., Shukla R., Sicking E., Sieberer P., Silva P., Simsek A., Sirois Y., Smirnov V., Sozbilir U., Spencer E., Steen A., Strait J., Strobbe N., Su J., Sukhov E., Sun L., Sunar Cerci D., Syal C., Tali B., Tan C., Tao J., Tastan I., Tatli T., Thaus R., Tekten S., Thienpont D., Tiras E., Titov M., Tlisov D., Tok U., Troska J., Tsai L. -S., Tsamalaidze Z., Tsipolitis G., Tsirou A., Tyurin N., Undleeb S., Urbanski D., Ustinov V., Uzunian A., Van de Klundert M., Varela J., Velasco M., Viazlo O., Vicente Barreto Pinto M., Vichoudis P., Virdee T., Vizinho de Oliveira R., Voelker J., Voirin E., Vojinovic M., Wade A., Wang C., Wang F., Wang X., Wang Z., Wayne M., Webb S., Whitbeck A., White D., Wickwire R., Wilson J., Winter D., Wu H., Wu L., Wulansatiti Nursanto M., Yeh C., Yohay R., Yu D., Yu G., Yu S., Yuan C., Yumiceva F., Yusuff I., Zacharopoulou A., Zamiatin N., Zarubin A., Zenz S., Zghiche A., Zhang H., Zhang J., Zhang Y., Zhang Z., Acar, B, Adamov, G, Adloff, C, Afanasiev, S, Akchurin, N, Akgun, B, Khan, F, Alhusseini, M, Alison, J, Alpana, A, Altopp, G, Alyari, M, An, S, Anagul, S, Andreev, I, Aspell, P, Atakisi, I, Bach, O, Baden, A, Bakas, G, Bakshi, A, Bannerjee, S, Bargassa, P, Barney, D, Beaudette, F, Beaujean, F, Becheva, E, Becker, A, Behera, P, Belloni, A, Bergauer, T, Besancon, M, Bhattacharya, S, Bhowmik, D, Bilki, B, Bloch, P, Bodek, A, Bonanomi, M, Bonnemaison, A, Bonomally, S, Borg, J, Bouyjou, F, Bower, N, Braga, D, Brashear, J, Brondolin, E, Bryant, P, Buchot Perraguin, A, Bueghly, J, Burkle, B, Butler-Nalin, A, Bychkova, O, Callier, S, Calvet, D, Cao, X, Cappati, A, Caraway, B, Caregari, S, Cauchois, A, Ceard, L, Cekmecelioglu, Y, Cerci, S, Cerminara, G, Chadeeva, M, Charitonidis, N, Chatterjee, R, Chen, Y, Chen, Z, Cheng, H, Cheng, K, Chernichenko, S, Cheung, H, Chien, C, Choudhury, S, Coko, D, Collura, G, Couderc, F, Danilov, M, Dannheim, D, Daoud, W, Dauncey, P, David, A, Davies, G, Davignon, O, Day, E, De Barbaro, P, De Guio, F, de La Taille, C, De Silva, M, Debbins, P, Defranchis, M, Delagnes, E, Deltoro Berrio, J, Derylo, G, Dias de Almeida, P, Diaz, D, Dinaucourt, P, Dittmann, J, Dragicevic, M, Dugad, S, Dulucq, F, Dumanoglu, I, Dutta, V, Dutta, S, Dunser, M, Eckdahl, J, Edberg, T, El Berni, M, Elias, F, Eno, S, Ershov, Y, Everaerts, P, Extier, S, Fahim, F, Fallon, C, Fedi, G, Fontana Santos Alves, B, Frahm, E, Franzoni, G, Freeman, J, French, T, Gandhi, P, Ganjour, S, Gao, X, Garcia-Bellido, A, Gastaldi, F, Gecse, Z, Geerebaert, Y, Gerwig, H, Gevin, O, Ghosh, S, Gilbert, A, Gilbert, W, Gill, K, Gingu, C, Gninenko, S, Golunov, A, Golutvin, I, Gonzalez, T, Gorbounov, N, Gouskos, L, Gray, A, Gu, Y, Guilloux, F, Guler, Y, Gulmez, E, Guo, J, Gurpinar Guler, E, Hammer, M, Hassanshahi, H, Hatakeyama, K, Heering, A, Hegde, V, Heintz, U, Hinton, N, Hirschauer, J, Hoff, J, Hou, W, Hou, X, Hua, H, Incandela, J, Irshad, A, Isik, C, Jain, S, Jheng, H, Joshi, U, Kachanov, V, Kalinin, A, Kalipoliti, L, Kaminskiy, A, Kapoor, A, Kara, O, Karneyeu, A, Kaya, M, Kaya, O, Kayis Topaksu, A, Khukhunaishvili, A, Kieseler, J, Kilpatrick, M, Kim, S, Koetz, K, Kolberg, T, Koseyan, O, Kristic, A, Krohn, M, Kruger, K, Kulagin, N, Kulis, S, Kunori, S, Kuo, C, Kuryatkov, V, Kyre, S, Lai, Y, Lamichhane, K, Landsberg, G, Lange, C, Langford, J, Lee, M, Levin, A, Li, A, Li, B, Li, J, Li, Y, Liao, H, Lincoln, D, Linssen, L, Lipton, R, Liu, Y, Lobanov, A, Lu, R, Lupi, M, Lysova, I, Magnan, A, Magniette, F, Mahjoub, A, Maier, A, Malakhov, A, Mallios, S, Mannelli, M, Mans, J, Marchioro, A, Martelli, A, Martinez, G, Masterson, P, Meng, B, Mengke, T, Mestvirishvili, A, Mirza, I, Moccia, S, Mohanty, G, Monti, F, Morrissey, I, Murthy, S, Music, J, Musienko, Y, Nabili, S, Nagar, A, Nguyen, M, Nikitenko, A, Noonan, D, Noy, M, Nurdan, K, Ochando, C, Odegard, B, Odell, N, Okawa, H, Onel, Y, Ortez, W, Ozegovic, J, Ozkorucuklu, S, Paganis, E, Pagenkopf, D, Palladino, V, Pandey, S, Pantaleo, F, Papageorgakis, C, Papakrivopoulos, I, Parshook, J, Pastika, N, Paulini, M, Paulitsch, P, Peltola, T, Pereira Gomes, R, Perkins, H, Petiot, P, Pierre-Emile, T, Pitters, F, Popova, E, Prosper, H, Prvan, M, Puljak, I, Qu, H, Quast, T, Quinn, R, Quinnan, M, Ramos Garcia, M, Rao, K, Rapacz, K, Raux, L, Reichenbach, G, Reinecke, M, Revering, M, Roberts, A, Romanteau, T, Rose, A, Rovere, M, Roy, A, Rubinov, P, Rusack, R, Rusinov, V, Ryjov, V, Sahin, M, Salerno, R, Sanchez Rodriguez, A, Saradhy, R, Sarkar, T, Sarkisla, M, Sauvan, J, Schmidt, I, Schmitt, M, Scott, E, Seez, C, Sefkow, F, Sharma, S, Shein, I, Shenai, A, Shukla, R, Sicking, E, Sieberer, P, Silva, P, Simsek, A, Sirois, Y, Smirnov, V, Sozbilir, U, Spencer, E, Steen, A, Strait, J, Strobbe, N, Su, J, Sukhov, E, Sun, L, Sunar Cerci, D, Syal, C, Tali, B, Tan, C, Tao, J, Tastan, I, Tatli, T, Thaus, R, Tekten, S, Thienpont, D, Tiras, E, Titov, M, Tlisov, D, Tok, U, Troska, J, Tsai, L, Tsamalaidze, Z, Tsipolitis, G, Tsirou, A, Tyurin, N, Undleeb, S, Urbanski, D, Ustinov, V, Uzunian, A, Van de Klundert, M, Varela, J, Velasco, M, Viazlo, O, Vicente Barreto Pinto, M, Vichoudis, P, Virdee, T, Vizinho de Oliveira, R, Voelker, J, Voirin, E, Vojinovic, M, Wade, A, Wang, C, Wang, F, Wang, X, Wang, Z, Wayne, M, Webb, S, Whitbeck, A, White, D, Wickwire, R, Wilson, J, Winter, D, Wu, H, Wu, L, Wulansatiti Nursanto, M, Yeh, C, Yohay, R, Yu, D, Yu, G, Yu, S, Yuan, C, Yumiceva, F, Yusuff, I, Zacharopoulou, A, Zamiatin, N, Zarubin, A, Zenz, S, Zghiche, A, Zhang, H, Zhang, J, Zhang, Y, Zhang, Z, Acar B., Adamov G., Adloff C., Afanasiev S., Akchurin N., Akgun B., Khan F., Alhusseini M., Alison J., Alpana A., Altopp G., Alyari M., An S., Anagul S., Andreev I., Aspell P., Atakisi I., Bach O., Baden A., Bakas G., Bakshi A., Bannerjee S., Bargassa P., Barney D., Beaudette F., Beaujean F., Becheva E., Becker A., Behera P., Belloni A., Bergauer T., Besancon M., Bhattacharya S., Bhowmik D., Bilki B., Bloch P., Bodek A., Bonanomi M., Bonnemaison A., Bonomally S., Borg J., Bouyjou F., Bower N., Braga D., Brashear J., Brondolin E., Bryant P., Buchot Perraguin A., Bueghly J., Burkle B., Butler-Nalin A., Bychkova O., Callier S., Calvet D., Cao X., Cappati A., Caraway B., Caregari S., Cauchois A., Ceard L., Cekmecelioglu Y., Cerci S., Cerminara G., Chadeeva M., Charitonidis N., Chatterjee R., Chen Y., Chen Z., Cheng H., Cheng K., Chernichenko S., Cheung H., Chien C., Choudhury S., Coko D., Collura G., Couderc F., Danilov M., Dannheim D., Daoud W., Dauncey P., David A., Davies G., Davignon O., Day E., De Barbaro P., De Guio F., de La Taille C., De Silva M., Debbins P., Defranchis M., Delagnes E., Deltoro Berrio J., Derylo G., Dias de Almeida P., Diaz D., Dinaucourt P., Dittmann J., Dragicevic M., Dugad S., Dulucq F., Dumanoglu I., Dutta V., Dutta S., Dunser M., Eckdahl J., Edberg T., El Berni M., Elias F., Eno S., Ershov Y., Everaerts P., Extier S., Fahim F., Fallon C., Fedi G., Fontana Santos Alves B., Frahm E., Franzoni G., Freeman J., French T., Gandhi P., Ganjour S., Gao X., Garcia-Bellido A., Gastaldi F., Gecse Z., Geerebaert Y., Gerwig H., Gevin O., Ghosh S., Gilbert A., Gilbert W., Gill K., Gingu C., Gninenko S., Golunov A., Golutvin I., Gonzalez T., Gorbounov N., Gouskos L., Gray A., Gu Y., Guilloux F., Guler Y., Gulmez E., Guo J., Gurpinar Guler E., Hammer M., Hassanshahi H., Hatakeyama K., Heering A., Hegde V., Heintz U., Hinton N., Hirschauer J., Hoff J., Hou W. -S., Hou X., Hua H., Incandela J., Irshad A., Isik C., Jain S., Jheng H., Joshi U., Kachanov V., Kalinin A., Kalipoliti L., Kaminskiy A., Kapoor A., Kara O., Karneyeu A., Kaya M., Kaya O., Kayis Topaksu A., Khukhunaishvili A., Kieseler J., Kilpatrick M., Kim S., Koetz K., Kolberg T., Koseyan O., Kristic A., Krohn M., Kruger K., Kulagin N., Kulis S., Kunori S., Kuo C., Kuryatkov V., Kyre S., Lai Y., Lamichhane K., Landsberg G., Lange C., Langford J., Lee M., Levin A., Li A., Li B., Li J., Li Y., Liao H., Lincoln D., Linssen L., Lipton R., Liu Y., Lobanov A., Lu R. -S., Lupi M., Lysova I., Magnan A. -M., Magniette F., Mahjoub A., Maier A., Malakhov A., Mallios S., Mannelli M., Mans J., Marchioro A., Martelli A., Martinez G., Masterson P., Meng B., Mengke T., Mestvirishvili A., Mirza I., Moccia S., Mohanty G., Monti F., Morrissey I., Murthy S., Music J., Musienko Y., Nabili S., Nagar A., Nguyen M., Nikitenko A., Noonan D., Noy M., Nurdan K., Ochando C., Odegard B., Odell N., Okawa H., Onel Y., Ortez W., Ozegovic J., Ozkorucuklu S., Paganis E., Pagenkopf D., Palladino V., Pandey S., Pantaleo F., Papageorgakis C., Papakrivopoulos I., Parshook J., Pastika N., Paulini M., Paulitsch P., Peltola T., Pereira Gomes R., Perkins H., Petiot P., Pierre-Emile T., Pitters F., Popova E., Prosper H., Prvan M., Puljak I., Qu H., Quast T., Quinn R., Quinnan M., Ramos Garcia M., Rao K., Rapacz K., Raux L., Reichenbach G., Reinecke M., Revering M., Roberts A., Romanteau T., Rose A., Rovere M., Roy A., Rubinov P., Rusack R., Rusinov V., Ryjov V., Sahin M., Salerno R., Sanchez Rodriguez A., Saradhy R., Sarkar T., Sarkisla M., Sauvan J., Schmidt I., Schmitt M., Scott E., Seez C., Sefkow F., Sharma S., Shein I., Shenai A., Shukla R., Sicking E., Sieberer P., Silva P., Simsek A., Sirois Y., Smirnov V., Sozbilir U., Spencer E., Steen A., Strait J., Strobbe N., Su J., Sukhov E., Sun L., Sunar Cerci D., Syal C., Tali B., Tan C., Tao J., Tastan I., Tatli T., Thaus R., Tekten S., Thienpont D., Tiras E., Titov M., Tlisov D., Tok U., Troska J., Tsai L. -S., Tsamalaidze Z., Tsipolitis G., Tsirou A., Tyurin N., Undleeb S., Urbanski D., Ustinov V., Uzunian A., Van de Klundert M., Varela J., Velasco M., Viazlo O., Vicente Barreto Pinto M., Vichoudis P., Virdee T., Vizinho de Oliveira R., Voelker J., Voirin E., Vojinovic M., Wade A., Wang C., Wang F., Wang X., Wang Z., Wayne M., Webb S., Whitbeck A., White D., Wickwire R., Wilson J., Winter D., Wu H., Wu L., Wulansatiti Nursanto M., Yeh C., Yohay R., Yu D., Yu G., Yu S., Yuan C., Yumiceva F., Yusuff I., Zacharopoulou A., Zamiatin N., Zarubin A., Zenz S., Zghiche A., Zhang H., Zhang J., Zhang Y., and Zhang Z.
- Abstract
This paper describes the experience with the calibration, reconstruction and evaluation of the timing capabilities of the CMS HGCAL prototype in the beam tests in 2018. The calibration procedure includes multiple steps and corrections ranging from tens of nanoseconds to a few hundred picoseconds. The timing performance is studied using signals from positron beam particles with energies between 20 GeV and 300 GeV. The performance is studied as a function of particle energy against an external timing reference as well as standalone by comparing the two different halves of the prototype. The timing resolution is found to be 60 ps for single-channel measurements and better than 20 ps for full showers at the highest energies, setting excellent perspectives for the HGCAL calorimeter performance at the HL-LHC.
- Published
- 2024
46. Insight-HXMT observations of the New Black Hole Candidate MAXI J1535-571: timing analysis
- Author
-
Huang, Y., Qu, J. L., Zhang, S. N., Bu, Q. C., Chen, Y. P., Tao, L., Zhang, S., Lu, F. J., Li, T. P., Song, L. M., Xu, Y. P., Cao, X. L., Chen, Y., Liu, C. Z., Chang, H. -K., Yu, W. f., Weng, S. S., Hou, X., Kong, A. K. H., Xie, F. G., Zhang, G. B., ZHOU, J. F., Chang, Z., Chen, G., Chen, L., Chen, T. X., Chen, Y. B., Cui, W., Cui, W. W., Deng, J. K., Dong, Y. W., Du, Y. Y., Fu, M. X., Gao, G. H., Gao, H., Gao, M., Ge, M. Y., Gu, Y. D., Guan, J., Gungor, C., Guo, C. C., Han, D. W., Hu, W., Huo, J., Ji, J. F., Jia, S. M., Jiang, L. H., Jiang, W. C., Jin, J., Jin, Y. J., Li, B., Li, C. K., Li, G., Li, M. S., Li, W., Li, X., Li, X. B., Li, X. F., Li, Y. G., Li, Z. J., Li, Z. W., Liang, X. H., Liao, J. Y., Liu, G. Q., Liu, H. W., Liu, S. Z., Liu, X. J., Liu, Y., Liu, Y. N., Lu, B., Lu, X. F., Luo, T., Ma, X., Meng, B., Nang, Y., Nie, J. Y., Ou, G, Sai, N., Shang, R. C., Sun, L., Tan, Y., Tao, W., Tuo, Y. L., Wang, G. F., Wang, H. Y., Wang, J., Wang, W. S., Wang, Y. S., Wen, X. Y., Wu, B. B., Wu, M., Xiao, G. C., Xiong, S. L., Xu, H., Yan, L. L., Yang, J. W., Yang, S., Yang, Y. J., Zhang, A. M., Zhang, C. L., Zhang, C. M., Zhang, F., Zhang, H. M., Zhang, J., Zhang, Q., Zhang, T., Zhang, W., Zhang, W. C., Zhang, W. Z., Zhang, Y., Zhang, Y. F., Zhang, Y. J., Zhang, Z., Zhang, Z. L., Zhao, H. S., Zhao, J. L., Zhao, X. F., Zheng, S. J., Zhu, Y., Zhu, Y. X., and Zou, C. L.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
We present the X-ray timing results of the new black hole candidate (BHC) MAXI J1535-571 during its 2017 outburst from Hard X-ray Modulation Telescope (\emph{Insight}-HXMT) observations taken from 2017 September 6 to 23. Following the definitions given by \citet{Belloni2010}, we find that the source exhibits state transitions from Low/Hard state (LHS) to Hard Intermediate state (HIMS) and eventually to Soft Intermediate state (SIMS). Quasi-periodic oscillations (QPOs) are found in the intermediate states, which suggest different types of QPOs. With the large effective area of \emph{Insight}-HXMT at high energies, we are able to present the energy dependence of the QPO amplitude and centroid frequency up to 100 keV which is rarely explored by previous satellites. We also find that the phase lag at the type-C QPOs centroid frequency is negative (soft lags) and strongly correlated with the centroid frequency. By assuming a geometrical origin of type-C QPOs, the source is consistent with being a high inclination system., Comment: 12 pages, 11 figures, Sumbitted to ApJ
- Published
- 2018
- Full Text
- View/download PDF
47. Performance variability and implications for yield prediction of rooftop PV systems – Analysis of 246 identical systems
- Author
-
Meng, B., Loonen, R.C.G.M., and Hensen, J.L.M.
- Published
- 2022
- Full Text
- View/download PDF
48. Negative Magnetization Effect in Distorted Honeycomb Ni4Nb2O9 Ceramics
- Author
-
Meng, B., Ji, X. T., Chen, X. H., Fu, Q. S., Li, C. L., Chakrabarti, C., Qiu, Y., and Yuan, S. L.
- Published
- 2022
- Full Text
- View/download PDF
49. The data acquisition algorithm designed for the SiPM-based detectors of GECAM satellite
- Author
-
Liu, Y. Q., Gong, K., Li, X. Q., Wen, X. Y., An, Z. H., Cai, C., Chang, Z., Chen, G., Chen, C., Du, Y. Y., Gao, M., Gao, R., Guo, D. Y., He, J. J., Hou, D. J., Li, Y. G., Li, C. Y., Li, G., Li, L., Li, X. F., Li, M. S., Liang, X. H., Liu, X. J., Lu, F. J., Lu, H., Meng, B., Peng, W. X., Shi, F., Sun, X. L., Wang, H., Wang, J. Z., Wang, Y. S., Wang, H. Z., Wen, X., Xiao, S., Xiong, S. L., Xu, Y. B., Xu, Y. P., Yang, S., Yang, J. W., Yi, Q. B., Zhang, Fan, Zhang, D. L., Zhang, S. N., Zhang, C. Y., Zhang, C. M., Zhang, Fei, Zhao, X. Y., Zhao, Y., and Zhou, X.
- Published
- 2022
- Full Text
- View/download PDF
50. The design and performance of charged particle detector onboard the GECAM mission
- Author
-
Xu, Y. B., Li, X. Q., Sun, X. L., Yang, S., Wang, H., Peng, W. X., Liang, X. H., Gong, K., Liu, Y. Q., Guo, D. Y., Zhao, X. Y., Li, C. Y., An, Z. H., He, J. J., Liu, X. J., Wen, X. Y., Xiong, S. L., Zhang, Fan, Zhang, D. L., Zhang, C. Y., Cai, C., Chang, Z., Chen, G., Chen, C., Du, Y. Y., Gao, M., Gao, R., Hou, D. J., Li, Y. G., Li, G., Li, L., Li, X. F., Li, M. S., Lu, F. J., Lu, H., Meng, B., Shi, F., Wang, J. Z., Wang, Y. S., Wang, H. Z., Wen, X., Xiao, S., Xu, Y. P., Yang, J. W., Yi, Q. B., Zhang, S. N., Zhang, C. M., Zhang, F., Zhao, Y., and Zhou, X.
- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.