Steven Nedellec, Baptiste Ameline, Fabienne Rolling, Guylène Le Meur, Nathalie Provost, Jack-Yves Deschamps, Véronique Blouin, Lyse Libeau, Marine Biget, Michel Weber, Alexandra Mendes-Madeira, Marie-Anne Colle, Kizito-Tshitoko Tshilenge, Philippe Moullier, Virginie Pichard, Laboratoire de Thérapie Génique Translationnelle des Maladies Génétiques (Inserm UMR 1089), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Nantes (UN), Service d'ophtalmologie [CHU Nantes], Centre hospitalier universitaire de Nantes (CHU Nantes), Structure fédérative de recherche François Bonamy (SFR François Bonamy), Université de Nantes (UN)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche en Santé de l'Université de Nantes (IRS-UN), ONIRIS, Ecole Nationale Vétérinaire, Agroalimentaire et de l'alimentation Nantes-Atlantique (ONIRIS), Physiopathologie Animale et bioThérapie du muscle et du système nerveux (INRA UMR703 PAnTher), Institut National de la Recherche Agronomique (INRA)-Ecole Nationale Vétérinaire de Nantes-ONIRIS, Department of Molecular Genetics and Microbiology [Gainesville, FL, USA] (Center for NeuroGenetics ), University of Florida [Gainesville], This work was supported by unrestricted grants from the Association Française contre les Myopathies, the INSERM, the Fondation pour la Thérapie Génique en Pays de la Loire, and the Agence Nationale pour la Recherche., Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Nantes - UFR de Médecine et des Techniques Médicales (UFR MEDECINE), Université de Nantes (UN)-Université de Nantes (UN), Physiopathologie Animale et bioThérapie du muscle et du système nerveux (PAnTher), Institut National de la Recherche Agronomique (INRA)-Ecole Nationale Vétérinaire, Agroalimentaire et de l'alimentation Nantes-Atlantique (ONIRIS), University of Florida [Gainesville] (UF), JAULIN, Nicolas, École nationale vétérinaire, agroalimentaire et de l'alimentation Nantes-Atlantique (ONIRIS), and Institut National de la Recherche Agronomique (INRA)-École nationale vétérinaire, agroalimentaire et de l'alimentation Nantes-Atlantique (ONIRIS)
International audience; Recombinant adeno-associated virus (AAV) has emerged as a promising vector for retinal gene delivery to restore visual function in certain forms of inherited retinal dystrophies. Several studies in rodent models have shown that intravitreal injection of the AAV2/2 vector is the optimal route for efficient retinal ganglion cell (RGC) transduction. However, translation of these findings to larger species, including humans, is complicated by anatomical differences in the eye, a key difference being the comparatively smaller volume of the vitreous chamber in rodents. Here, we address the role of the vitreous body as a potential barrier to AAV2/2 diffusion and transduction in the RGCs of dogs and macaques, two of the most relevant preclinical models. We intravitreally administered the AAV2/2 vector carrying the CMV-eGFP reporter cassette in dog and macaque eyes, either directly into the vitreous chamber or after complete vitrectomy, a surgical procedure that removes the vitreous body. Our findings suggest that the vitreous body appears to trap the injected vector, thus impairing the diffusion and transduction of AAV2/2 to inner retinal neurons. We show that vitrectomy before intravitreal vector injection is an effective means of overcoming this physical barrier, improving the transduction of RGCs in dog and macaque retinas. These findings support the use of vitrectomy in clinical trials of intravitreal gene transfer techniques targeting inner retinal neurons.