1. TreeSeg—A Toolbox for Fully Automated Tree Crown Segmentation Based on High-Resolution Multispectral UAV Data
- Author
-
Sönke Speckenwirth, Melanie Brandmeier, and Sebastian Paczkowski
- Subjects
tree crown segmentation ,forestry ,toolbox ,GIS ,UAV ,vegetation indices ,Science - Abstract
Single-tree segmentation on multispectral UAV images shows significant potential for effective forest management such as automating forest inventories or detecting damage and diseases when using an additional classifier. We propose an automated workflow for segmentation on high-resolution data and provide our trained models in a Toolbox for ArcGIS Pro on our GitHub repository for other researchers. The database used for this study consists of multispectral UAV data (RGB, NIR and red edge bands) of a forest area in Germany consisting of a mix of tree species consisting of five deciduous trees and three conifer tree species in the matured closed canopy stage at approximately 90 years. Information of NIR and Red Edge bands are evaluated for tree segmentation using different vegetation indices (VIs) in comparison to only using RGB information. We trained Faster R-CNN, Mask R-CNN, TensorMask and SAM in several experiments and evaluated model performance on different data combinations. All models with the exception of SAM show good performance on our test data with the Faster R-CNN model trained on the red and green bands and the Normalized Difference Red Edge Index (NDRE) achieving best results with an F1-Score of 83.5% and an Intersection over Union of 65.3% on highly detailed labels. All models are provided in our TreeSeg toolbox and allow the user to apply the pre-trained models on new data.
- Published
- 2024
- Full Text
- View/download PDF