Yaginuma, Kei, Takahashi, Kazuhiro, Hoshi, Seiji, Joho, Taiki, Shimoyama, Saki, Hasegawa, Naoko, Hasegawa, Koki, Zhao, Songji, Ukon, Naoyuki, Makabe, Syunta, Meguro, Satoru, Onagi, Akifumi, Matsuoka, Kanako, Ogawa, Soichiro, Uemura, Motohide, Yamashita, Tomoki, Suzuki, Hiroyuki, Uehara, Tomoya, and Kojima, Yoshiyuki
Purpose: Prostate-specific membrane antigen (PSMA)-targeted alpha therapy is considered a promising alternative treatment for metastatic castration-resistant prostate cancer (mCRPC). Though astatine-211 (211At) is potentially useful alpha-emitter producible by cyclotrons, its clinical application has been limited by instability and a tendency to deastatination in vivo. To overcome these challenges, we developed [211At]At-NpG-PSMA, a novel PSMA ligand with a neopentyl-glycol structure that enhances in vivo stability against deastatination. This study aimed to evaluate the stability, anti-tumour effect, and safety of [211At]At-NpG-PSMA in mice.Xenograft models were prepared by subcutaneous transplantation of PSMA-positive PC-3 PIP cells into BALB/c nu/nu mice. [211At]At-NpG-PSMA was administered to assess biodistribution, and the anti-tumour effect was evaluated at doses of 0.32, 1.00 and 1.93 MBq in comparison with saline. Histopathological examinations were performed to evaluate damage to normal organs.[211At]At-NpG-PSMA demonstrated high tumour uptake (42.0 ± 13.1%ID/g at 3 h) with minimal uptake in non-target tissues, including thyroid, stomach and salivary grands (0.28 ± 0.20%ID, 0.71 ± 0.12%ID/g and 0.88 ± 0.10%ID/g at 3 h, respectively). A dose-dependent anti-tumour effect was observed, with tumour volumes increasing by 796.0 ± 437.6% in the control versus 161.0 ± 213.4%, -76.4 ± 19.2% and − 59.5 ± 41.6% in the 0.32, 1.00 and 1.93 MBq groups, respectively, by day 15. Mild renal tubule regeneration was noted in the 1.00 MBq group.[211At]At-NpG-PSMA demonstrated significant stability in vivo and anti-tumour effects with minimal side effects, indicating its potential as a new therapeutic drug for PSMA-targeted alpha therapy in mCRPC.Methods: Prostate-specific membrane antigen (PSMA)-targeted alpha therapy is considered a promising alternative treatment for metastatic castration-resistant prostate cancer (mCRPC). Though astatine-211 (211At) is potentially useful alpha-emitter producible by cyclotrons, its clinical application has been limited by instability and a tendency to deastatination in vivo. To overcome these challenges, we developed [211At]At-NpG-PSMA, a novel PSMA ligand with a neopentyl-glycol structure that enhances in vivo stability against deastatination. This study aimed to evaluate the stability, anti-tumour effect, and safety of [211At]At-NpG-PSMA in mice.Xenograft models were prepared by subcutaneous transplantation of PSMA-positive PC-3 PIP cells into BALB/c nu/nu mice. [211At]At-NpG-PSMA was administered to assess biodistribution, and the anti-tumour effect was evaluated at doses of 0.32, 1.00 and 1.93 MBq in comparison with saline. Histopathological examinations were performed to evaluate damage to normal organs.[211At]At-NpG-PSMA demonstrated high tumour uptake (42.0 ± 13.1%ID/g at 3 h) with minimal uptake in non-target tissues, including thyroid, stomach and salivary grands (0.28 ± 0.20%ID, 0.71 ± 0.12%ID/g and 0.88 ± 0.10%ID/g at 3 h, respectively). A dose-dependent anti-tumour effect was observed, with tumour volumes increasing by 796.0 ± 437.6% in the control versus 161.0 ± 213.4%, -76.4 ± 19.2% and − 59.5 ± 41.6% in the 0.32, 1.00 and 1.93 MBq groups, respectively, by day 15. Mild renal tubule regeneration was noted in the 1.00 MBq group.[211At]At-NpG-PSMA demonstrated significant stability in vivo and anti-tumour effects with minimal side effects, indicating its potential as a new therapeutic drug for PSMA-targeted alpha therapy in mCRPC.Results: Prostate-specific membrane antigen (PSMA)-targeted alpha therapy is considered a promising alternative treatment for metastatic castration-resistant prostate cancer (mCRPC). Though astatine-211 (211At) is potentially useful alpha-emitter producible by cyclotrons, its clinical application has been limited by instability and a tendency to deastatination in vivo. To overcome these challenges, we developed [211At]At-NpG-PSMA, a novel PSMA ligand with a neopentyl-glycol structure that enhances in vivo stability against deastatination. This study aimed to evaluate the stability, anti-tumour effect, and safety of [211At]At-NpG-PSMA in mice.Xenograft models were prepared by subcutaneous transplantation of PSMA-positive PC-3 PIP cells into BALB/c nu/nu mice. [211At]At-NpG-PSMA was administered to assess biodistribution, and the anti-tumour effect was evaluated at doses of 0.32, 1.00 and 1.93 MBq in comparison with saline. Histopathological examinations were performed to evaluate damage to normal organs.[211At]At-NpG-PSMA demonstrated high tumour uptake (42.0 ± 13.1%ID/g at 3 h) with minimal uptake in non-target tissues, including thyroid, stomach and salivary grands (0.28 ± 0.20%ID, 0.71 ± 0.12%ID/g and 0.88 ± 0.10%ID/g at 3 h, respectively). A dose-dependent anti-tumour effect was observed, with tumour volumes increasing by 796.0 ± 437.6% in the control versus 161.0 ± 213.4%, -76.4 ± 19.2% and − 59.5 ± 41.6% in the 0.32, 1.00 and 1.93 MBq groups, respectively, by day 15. Mild renal tubule regeneration was noted in the 1.00 MBq group.[211At]At-NpG-PSMA demonstrated significant stability in vivo and anti-tumour effects with minimal side effects, indicating its potential as a new therapeutic drug for PSMA-targeted alpha therapy in mCRPC.Conclusion: Prostate-specific membrane antigen (PSMA)-targeted alpha therapy is considered a promising alternative treatment for metastatic castration-resistant prostate cancer (mCRPC). Though astatine-211 (211At) is potentially useful alpha-emitter producible by cyclotrons, its clinical application has been limited by instability and a tendency to deastatination in vivo. To overcome these challenges, we developed [211At]At-NpG-PSMA, a novel PSMA ligand with a neopentyl-glycol structure that enhances in vivo stability against deastatination. This study aimed to evaluate the stability, anti-tumour effect, and safety of [211At]At-NpG-PSMA in mice.Xenograft models were prepared by subcutaneous transplantation of PSMA-positive PC-3 PIP cells into BALB/c nu/nu mice. [211At]At-NpG-PSMA was administered to assess biodistribution, and the anti-tumour effect was evaluated at doses of 0.32, 1.00 and 1.93 MBq in comparison with saline. Histopathological examinations were performed to evaluate damage to normal organs.[211At]At-NpG-PSMA demonstrated high tumour uptake (42.0 ± 13.1%ID/g at 3 h) with minimal uptake in non-target tissues, including thyroid, stomach and salivary grands (0.28 ± 0.20%ID, 0.71 ± 0.12%ID/g and 0.88 ± 0.10%ID/g at 3 h, respectively). A dose-dependent anti-tumour effect was observed, with tumour volumes increasing by 796.0 ± 437.6% in the control versus 161.0 ± 213.4%, -76.4 ± 19.2% and − 59.5 ± 41.6% in the 0.32, 1.00 and 1.93 MBq groups, respectively, by day 15. Mild renal tubule regeneration was noted in the 1.00 MBq group.[211At]At-NpG-PSMA demonstrated significant stability in vivo and anti-tumour effects with minimal side effects, indicating its potential as a new therapeutic drug for PSMA-targeted alpha therapy in mCRPC. [ABSTRACT FROM AUTHOR]