9 results on '"Mechanism of action (Biochemistry)"'
Search Results
2. Understanding the molecular mechanism of ion and amino acid transport in neurons
- Author
-
Baronina, Agnese and Carpenter, Elisabeth
- Subjects
572 ,Membrane proteins ,Mechanism of action (Biochemistry) ,X-ray crystallography ,Molecular structure ,Ligand binding (Biochemistry) - Abstract
In this thesis I aimed to understand how two membrane proteins, a solute carrier transporter and an ion channel, function in neuronal membranes. I used structural and biophysical methods to identify the molecular elements involved in the substrate selectivity and transport regulation. EAAT3, a member of SLC1 family, is a glutamate transporter. It is expressed ubiquitously in brain but is thought to play distinct roles in different areas of the brain. EAAT3 malfunction is linked to several neurological diseases and disorders, making it a therapeutic target. Due to its complex regulation, EAAT3 activity could be modulated at various levels. The lack of EAAT3-specific inhibitors has hindered our understanding of EAAT3 involvement in cellular processes with the efforts so far focusing on ligand-based approaches. To study the basis of substrate selectivity in the SLC1 family, I solved two structures of EAAT3 at 3.3 Å resolution with bound inhibitors using the cryo-EM method. I report two novel inhibitor binding modes, expanding the current knowledge of the substrate binding site and how small molecules inhibitors interact with this site within the SLC1 family. To determine the kinetic parameters of ligand binding in vitro, I established a proteoliposome reconstitution system for detergent-purified EAAT3 and showed that the protein is functional and transports substrates with affinities consistent with results from cell-based studies reported in the literature. TREK-2 is a member of the K2P potassium channel family, expressed in the CNS and implicated in neuropathic pain. The polymodal regulation of TREK-2 is not well understood, despite available 3D structures in two conformations. Here I describe functional binders (nanobodies) which I used to investigate the mechanism underlying TREK-2 regulation. I used X-ray crystallography to determine the structures of TREK-2 with bound activatory and inactivatory nanobodies at 2.4 Å and 3.5 Å resolution, respectively. Both nanobodies bind to the channel from the extracellular side but interact with different domains to elicit the opposite effects on the channel conductivity. These structures provide us with new insights into TREK-2 channel regulation.
- Published
- 2020
3. New leads against drug-resistant organisms : shifting the focus in discovery towards rapid phenotypic screening and mechanism of action
- Author
-
Winter, Heather Lyn and Winter, Heather Lyn
- Subjects
- Anti-infective agents., Natural products., Drug resistance., Mechanism of action (Biochemistry), Phenotype., Anti-infective agents., Drug resistance., Mechanism of action (Biochemistry), Natural products., Phenotype.
- Published
- 2022
4. The Role of Host Cell DNA Methylation in the Immune Response to Bacterial Infection
- Author
-
Wanhai Qin, Brendon P. Scicluna, and Tom van der Poll
- Subjects
0301 basic medicine ,Methyltransferase ,Transcription, Genetic ,Mechanism of action (Biochemistry) ,Immunology ,review ,mechanism ,Biology ,immune response ,Dioxygenases ,Epigenesis, Genetic ,03 medical and health sciences ,chemistry.chemical_compound ,0302 clinical medicine ,Immune system ,DNA -- Analysis ,Gene expression ,Animals ,Humans ,Immunology and Allergy ,Epigenetics ,Immune response ,bacteria ,DNA Modification Methylases ,DNA methylation ,Bacteria ,Information resources -- Reviews ,Bacterial Infections ,Methylation ,RC581-607 ,infection ,Gastrointestinal Microbiome ,Cell biology ,030104 developmental biology ,chemistry ,030220 oncology & carcinogenesis ,Host-Pathogen Interactions ,Immunologic diseases. Allergy ,Infection ,Reprogramming ,DNA - Abstract
Host cells undergo complex transcriptional reprogramming upon infection. Epigenetic changes play a key role in the immune response to bacteria, among which DNA modifications that include methylation have received much attention in recent years. The extent of DNA methylation is well known to regulate gene expression. Whilst historically DNA methylation was considered to be a stable epigenetic modification, accumulating evidence indicates that DNA methylation patterns can be altered rapidly upon exposure of cells to changing environments and pathogens. Furthermore, the action of proteins regulating DNA methylation, particularly DNA methyltransferases and ten-eleven translocation methylcytosine dioxygenases, may be modulated, at least in part, by bacteria. This review discusses the principles of DNA methylation, and recent insights about the regulation of host DNA methylation during bacterial infection., peer-reviewed
- Published
- 2021
- Full Text
- View/download PDF
5. Antimicrobial activity of cyclic-monomeric and dimeric derivatives of the snail-derived peptide Cm-p5 against viral and multidrug-resistant bacterial strains
- Author
-
Steffen Stenger, Jan Münch, Janis A. Müller, Rüdiger Groß, Caterina Prelli Bozzo, Heinz Fabian Raber, Carina Conzelmann, Mark Grieshober, Armando A. Rodríguez Alfonso, Fabian Zech, Frank Rosenau, Octavio L. Franco, Alexander N. Zelikin, Hilda Garay, Daniel G. Rivera, Lia Raluca Olari, Fidel Morales-Vicente, Erbio Diaz Pico, Franziska Krüger, Melaine González-García, Dennis Kubiczek, Ludger Ständker, Barbara Spellerberg, Anselmo J. Otero-González, European Union (EU), and Horizon 2020
- Subjects
0301 basic medicine ,MECHANISM ,Herpesvirus 2, Human ,Antibiotics ,medicine.disease_cause ,Biochemistry ,Zika virus ,antimicrobial peptides ,DDC 570 / Life sciences ,antibacterial activity ,Drug Resistance, Multiple, Bacterial ,Candida albicans ,chemical derivatives ,ROLES ,biology ,Abwehrmechanismus ,Chemistry ,multiresistant microorganisms ,Antimicrobial ,QR1-502 ,Anti-Bacterial Agents ,Cm-p5 ,Infektion ,Schutzanpassung ,Infection ,Dimerization ,STRATEGIES ,Cell Survival ,medicine.drug_class ,030106 microbiology ,Antimicrobial peptides ,Mechanism of action (Biochemistry) ,Microbial Sensitivity Tests ,Gram-Positive Bacteria ,Microbiology ,Antiviral Agents ,Article ,Cell Line ,03 medical and health sciences ,ddc:570 ,Gram-Negative Bacteria ,medicine ,Animals ,Humans ,Amino Acid Sequence ,Molecular Biology ,Peptide antibiotics ,SARS-CoV-2 ,Pseudomonas aeruginosa ,biology.organism_classification ,Multiple drug resistance ,030104 developmental biology ,Antibacterial agents ,Streptococcus agalactiae ,Chemical derivatives Introduction ,Antimicrobial Cationic Peptides ,Enterococcus faecium - Abstract
Cm-p5 is a snail-derived antimicrobial peptide, which demonstrated antifungal activity against the pathogenic strains of Candida albicans. Previously we synthetized a cyclic monomer as well as a parallel and an antiparallel dimer of Cm-p5 with improved antifungal activity. Considering the alarming increase of microbial resistance to conventional antibiotics, here we evaluated the antimicrobial activity of these derivatives against multiresistant and problematic bacteria and against important viral agents. The three peptides showed a moderate activity against Pseudomonas aeruginosa, Klebsiella pneumoniae Extended Spectrum β-Lactamase (ESBL), and Streptococcus agalactiae, with MIC values >, 100 µg/mL. They exerted a considerable activity with MIC values between 25–50 µg/mL against Acinetobacter baumanii and Enterococcus faecium. In addition, the two dimers showed a moderate activity against Pseudomonas aeruginosa PA14. The three Cm-p5 derivatives inhibited a virulent extracellular strain of Mycobacterium tuberculosis, in a dose-dependent manner. Moreover, they inhibited Herpes Simplex Virus 2 (HSV-2) infection in a concentration-dependent manner, but had no effect on infection by the Zika Virus (ZIKV) or pseudoparticles of Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2). At concentrations of >, 100 µg/mL, the three new Cm-p5 derivatives showed toxicity on different eukaryotic cells tested. Considering a certain cell toxicity but a potential interesting activity against the multiresistant strains of bacteria and HSV-2, our compounds require future structural optimization.
- Published
- 2021
- Full Text
- View/download PDF
6. Drug-Membrane Interactions : Analysis, Drug Distribution, Modeling
- Author
-
Joachim K. Seydel, Michael Wiese, Joachim K. Seydel, and Michael Wiese
- Subjects
- Bilayer lipid membranes--Effect of drugs on, Drugs--Mechanism of action, Drugs--Structure-activity relationships, Pharmacokinetics, Mechanism of action (Biochemistry)
- Abstract
Barrier, reservoir, target site - those are but some of the possible functions of biological lipid membranes in the complex interplay of drugs with the organism. A detailed knowledge of lipid membranes and of the various modes of drug-membrane interaction is therefore the prerequisite for a better understanding of drug action. Many of today's pharmaceuticals are amphiphilic or catamphiphilic, enabling them to interact with biological membranes. Crucial membrane properties are surveyed and techniques to elucidate drug-membrane interactions presented, including computer-aided predictions. Effects of membrane interaction on drug action and drug distribution are discussed, and numerous examples are given. This unique reference volume builds on the authors'long experience in the study of drug-membrane interaction. Recommended reading for everyone involved in pharmaceutical research.
- Published
- 2002
7. Discovering the mechanism of action of new drugs using transcriptional profile analysis followed by preclinical studies in acute leukemias
- Author
-
Cury, Nathália Moreno, 1986, Yunes, José Andrés, 1967, Lisoni, Flávia Cristina Rodrigues, Nonato, Fabiana Regina, Ruiz, Ana Lucia Tasca Gois, Jotta, Patricia Yoshioka, Universidade Estadual de Campinas. Instituto de Biologia, Programa de Pós-Graduação em Genética e Biologia Molecular, and UNIVERSIDADE ESTADUAL DE CAMPINAS
- Subjects
Descoberta de drogas ,Acute leukemia ,Drug discovery ,Mechanism of action (Biochemistry) ,Leucemia aguda ,Mecanismo de ação (Bioquímica) - Abstract
Orientador: José Andres Yunes Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Biologia Resumo: A química medicinal é uma área em crescimento no Brasil que depende de uma equipe multidisciplinar. Muitos grupos tem trabalhado na síntese de novas drogas com potencial uso em oncologia. Entretanto, ainda são poucos os compostos cujo mecanismo de ação tenha sido elucidado. Geralmente os trabalhos com novas drogas para oncologia resumem-se à análise de citotoxicidade in vitro dos compostos contra células em cultura. Nesse contexto, a presente tese teve por objetivo descobrir o mecanismo de ação de três novas classes de drogas seguido de estudos pré-clínicos utilizando a droga mais eficaz de cada classe. Testes padrão de citotoxicidade nos permitiram selecionar os melhores compostos de cada uma das classes denominados, composto 12, indol 20 e epóxi. Efeitos na viabilidade e apoptose celular bem como as alterações no perfil transcriptômico de células leucêmicas tratadas com esses compostos foram caracterizados. A análise dos dados de expressão gênica na plataforma GSEA permitiu apontar os processos celulares e/ou vias metabólicas e de sinalização afetadas pelas drogas, enquanto que a análise na plataforma CMap permitiu identificar drogas análogas, com mecanismo de ação já conhecidos. Ambos compostos 12 e indol 20 foram caracterizados como agentes desestabilizantes de tubulina, os quais exercem seus efeitos antimitóticos ao interferir com a dinâmica da tubulina, promovendo à parada do ciclo celular em G2/M e consequente indução de apoptose. Estudos bioquímicos de ligação à tubulina e posteriormente a cristalografia do complexo tubulina-composto 12 permitiu verificar a ligação do mesmo ao sítio da colchicina na ?-tubulina. O composto 12 liga-se à tubulina por meio de interações hidrofóbicas e uma única ligação de hidrogênio, diferentemente de outros inibidores de microtúbulos que se ligam ao mesmo sítio através de duas ou mais ligações de hidrogênio. Nos estudos pré-clinicos o composto 12 demonstrou atividade anti-leucêmica em doses abaixo de 1 mg/kg, e nenhuma toxicidade aguda quando administrado intraperitonealmente em doses repetidas de 10 mg/kg. Além disso, foi demonstrado a eficácia do composto 12 contra células leucêmicas que apresentam o fenótipo de resistência a múltiplas drogas tanto in vitro quanto in vivo. O composto indol 20, também mostrou seletividade contra células leucêmicas, mas sua eficácia no modelo animal da leucemia foi menos acentuada comparada ao composto 12. Uma particularidade encontrada para o indol 20 foi a indução de diferenciação de células de leucemia promielocitica aguda HL60. Já o composto epóxi induziu estresse eletrofilico nas células leucêmicas com consequente depleção de glutationa celular e regulação positiva de genes relacionados a resposta ao estresse oxidativo mediada por NRF2. Além disso o epóxi causou a formação de aductos de DNA com consequente quebras cromossômicas, assim como descrito para agentes alquilantes. Em conclusão a metodologia adotada na presente tese mostrou-se válida para a caracterização do mecanismo de ação de três novos compostos visando o desenvolvimento de novos fármacos para o tratamento das leucemias agudas Abstract: Medical chemistry is a growing area in Brazil that depends on a multidisciplinary team. Many groups have been working on the synthesis of new drugs with potential use in oncology. However, the majority of these studies describes only the in vitro cytotoxic activity of these compounds against cancer culture cells, but not the elucidation of their mechanism of action. In this context, the present research aimed to discover the mechanism of action of three new classes of drugs followed by preclinical studies using the most effective drug of each class. Standard cytotoxicity tests allowed us to choose the best compounds of each class, which are called, compound 12, indole 20 and epoxy. The effects of these compounds on cellular viability and apoptosis as well as the transcriptional profile of leukemia cells treated with them were characterized. Gene expression data analysis in GSEA platform allowed us to investigate cellular processes and / or metabolic and signaling pathways affected by the drugs, while analyzes on CMap platform indicated analogous drugs whose mechanisms of action are already known. Both compounds 12 and indole 20 were characterized as tubulin destabilizing agents whose antimitotic effects are due to the tubulin dynamics interference leading to cell cycle arrest in G2 / M and consequent induction of apoptosis. Biochemical studies and subsequent crystallography of the tubulin-compound 12 complex evidenced their interaction in the colchicine binding site of ?-tubulin. Compound 12 binds to tubulin through hydrophobic interactions and a single hydrogen bond, unlike other microtubule inhibitors that bind to the same pocket through two or more hydrogen bonds. In preclinical studies, compound 12 demonstrated anti-leukemia activity at doses lower than 1 mg / kg, with no acute toxicity when given intraperitoneally in repeated doses of 10 mg / kg. In addition, we showed the efficacy of compound 12 against leukemia cells expressing the multi-drug resistance phenotype both in vitro and in vivo. Indole 20 compound also showed its own efficacy against leukemia cells, however, it was lower in the leukemia animal model when compared to compound 12’ efficacy. One particularity found for indole 20 was its ability to induce differentiation of acute promyelocytic leukemia cells, HL60. The epoxy compound induced electrophilic stress in leukemia cells with consequent cellular glutathione depletion and positive regulation of genes involved in the NRF2-mediated oxidative stress response. In addition, epoxy caused DNA adducts formation leading to chromosomal breaks, as described for alkylating agents. In conclusion, the methodology adopted in the present thesis proved to be valid for the characterization of the mechanism of action of three new compounds aiming the development of new drugs for the treatment of acute leukemias Doutorado Genética Animal e Evolução Doutora em Genética e Biologia Molecular CAPES 001 FAPESP 2014/08247-8
- Published
- 2019
8. Identificação do alvo primário da violaceína em Staphylococcus aureus e Bacillus subtilis
- Author
-
Ana Carolina Guimarães Cauz, Brocchi, Marcelo, 1967, Baldini, Regina Lucia, Alvarez-Martinez, Cristina Elisa, Nakazato, Gerson, Silva Neto, José Freire da, Universidade Estadual de Campinas. Instituto de Biologia, Programa de Pós-Graduação em Genética e Biologia Molecular, and UNIVERSIDADE ESTADUAL DE CAMPINAS
- Subjects
Staphylococcus aureus ,Bactérias gram-positivas ,Mechanism of action (Biochemistry) ,Violaceina ,Gram-positive bacteria ,Mecanismo de ação (Bioquímica) ,Violacein - Abstract
Orientador: Marcelo Brocchi Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Biologia Resumo: A violaceína é um pigmento violeta derivado do triptofano e produzido por bactérias ambientais que apresenta múltiplas atividades biológicas, incluindo forte inibição de patógenos Gram-positivos. Neste trabalho, aplicamos uma combinação de abordagens experimentais para identificar o mecanismo de ação da violaceína sobre bactérias Gram-positivas, utilizando S. aureus e B. subtillis. Ensaios de microscopia de fluorescência mostraram que a violaceína permeabiliza rápida e drasticamente células de B. subtlis e S. aureus. A permeabilização celular foi acompanhada pelo aparecimento de descontinuidades visíveis ou rasgos na membrana citoplasmática, mas não afetou a parede celular. Utilizando experimentos in vitro, mostramos que a violaceína se liga diretamente aos lipossomos feitos com lipídios comerciais e bacterianos e perturba a sua estrutura e permeabilidade. Além disso, simulações de dinâmica molecular foram empregadas para revelar como a violaceína se insere nas bicamadas lipídicas. Dessa forma, nossos resultados combinados demonstram que a membrana citoplasmática é o alvo primário da violaceína em bactérias Gram-positivas. As implicações deste achado para o desenvolvimento da violaceína como agente terapêutico são discutidas Abstract: Violacein is a tryptophan-derived purple pigment produced by environmental bacteria which displays multiple biological activities, including strong inhibition of Gram-positive pathogens. Here we applied a combination of experimental approaches to identify the mechanism by which violacein kills Gram-positive bacteria using S. aureus and B. subtillis. Fluorescence microscopy showed that violacein quickly and dramatically permeabilizes B. subtilis and S. aureus cells. Cell permeabilization was accompanied by the appearance of visible discontinuities or rips in the cytoplasmic membrane, but it did not affect the cell wall. Using in vitro experiments, we showed that violacein binds directly to liposomes made with commercial and bacterial phospholipids and perturbs their structure and permeability. Furthermore, molecular dynamics simulations were employed to reveal how violacein inserts itself into lipid bilayers. Thus, our combined results demonstrate that the cytoplasmic membrane is the primary target of violacein in bacteria. The implications of this finding for the development of violacein as a therapeutic agent are discussed Doutorado Microbiologia Doutor em Genética e Biologia Molecular CAPES 001
- Published
- 2019
9. Atividade antiplasmodial e mecanismo de ação da violaceína em Plasmodium falciparum
- Author
-
Tavella, Tatyana Almeida, 1990, Costa, Fabio Trindade Maranhão, 1972, Bilsland, Elizabeth, 1973, Brocchi, Marcelo, Aguiar, Anna Caroline Campos, Garcia, Célia Regina da Silva, Wrenger, Carsten, Universidade Estadual de Campinas. Instituto de Biologia, Programa de Pós-Graduação em Genética e Biologia Molecular, and UNIVERSIDADE ESTADUAL DE CAMPINAS
- Subjects
Molecular chaperones ,HSP70 heat-shock proteins ,Proteínas de choque térmico HSP70 ,Mechanism of action (Biochemistry) ,Violaceina ,Malária ,Mecanismo de ação (Bioquímica) ,Chaperonas moleculares ,Violacein ,Malaria - Abstract
Orientadores: Fabio Trindade Maranhão Costa, Elizabeth Bilsland Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Biologia Resumo: Na malária, parasitas do gênero Plasmodium precisam lidar com diferentes tipos de estresse para estabelecer infecções bem sucedidas. As espécies tóxicas reativas de oxigênio e o heme livre (ferro / ferrroprotoporfirina IX) gerados como resultado da degradação da hemoglobina representam uma ameaça à sobrevivência do parasita. Além disso, o protozoário enfrenta um choque térmico de aproximadamente 10°C durante a transmissão do mosquito anofelino para o hospedeiro humano, enfrentando variações constantes de temperatura decorrentes de episódios de febre do hospedeiro infectado. Assim, é compreensível que genes do sistema chaperônico componham cerca de 2% do seu genoma. Moléculas orgânicas derivadas do metabolismo secundário de microorganismos são fontes preciosas de "probes", ou sondas naturais que nos permitem entender a função de proteínas específicas e vias importantes dentro de um contexto biológico. Nos últimos 200 anos, os produtos naturais ocuparam um lugar de destaque no tratamento e controle da malária, com os principais antimaláricos da história sendo direta ou indiretamente derivados de produtos naturais. A violaceína é um composto natural de coloração púrpura, produzido pelo metabolismo secundário de bactérias gram-negativas (e.g. Chromobacterium violaceum). Apesar de centenas de estudos publicados na literatura reportando sua atividade biológica in vitro e in vivo contra células cancerosas e diferentes patógenos como vírus, bactérias, fungos e protozoários, incluindo a capacidade de controlar a malária em camundongos, um mecanismo de ação que explique a toxicidade da violaceína em uma gama de organismos distintos permanece desconhecido. No presente trabalho utilizamos o Chemical Genomic Profiling, ou HIP (Happloinsufficiency proffiling) em modelo de levedura para elucidar o mecanismo de ação da violaceína. A estratégia abordada nos forneceu uma lista com 6 potenciais hits para o composto, sendo 2 deles cochaperonas da HSP90. Quando observamos o crescimento de todas as leveduras heterozigotas para genes componentes do sistema chaperônico, nota-se uma suceptibilidade comum ao tratamento com o composto, sugerindo que a violaceína possa afetar a via das chaperonas de maneira geral. Nós investigamos a capacidade da violaceína de interagir com 3 chaperonas principais em Plasmodium: PfHsp90, TriC e PfHsp70. Consistente com os dados encontrados, o composto mostrou-se capaz de se ligar e termoestabilizar o domínio N-terminal da PfHSP90 e inibir completamente a atividade ATPásica da PfHSP70 em doses baixas, comprometendo sua capacidade de prevenir a formação de agregados proteicos em aproximadamente 70% em doses equimolares de proteína e composto (Hsp70: violaceina), além de induzir a aceleração da agregação de um modo independente de chaperonas. Outras características típicas de inibidores de chaperonas também foram observadas em parasitos tratados com violaceína, como o unfolding de proteínas e intensa degradação proteica via proteasoma. Apesar da intensa proteólise em parasitos tratados com violaceína, a síntese protéica não foi inibida, possivelmente na tentativa de compensar a perda de proteínas essenciais pelo proteasoma. No entanto, o processo de síntese proteica é altamente dependente de chaperonas para que seja bem sucedido, reforçando o colapso da proteostase induzido pela violaceína. Curiosamente, gametócitos falciparum maduros (Estágio V), os responsáveis pela transmissão da doença, são mais suceptíveis a ação da violaceína do que estágios assexuados. Esse dado reforça que estratégias que afetam o turnover de proteínas parecem ser importantes para o bloqueio da transmissão da malária Abstract: Parasites of Plasmodium genus must deal with different types of stress to establish the malarial infection. The toxic reactive species of oxygen and free heme (iron / ferriprotoporphyrin IX) generated as a result of haemoglobin degradation represent a threat to parasite survival. In addition, the protozoa faces a heat shock of approximately 10°C during the transmission from the anopheline mosquito to human host, experiencing constant temperature variations due to patients¿ episodes of fever. Thus, it is understandable that chaperone system genes make up about 2% of parasite genome. Organic molecules derived from the secondary metabolism of microorganisms are precious sources of natural probes that allow us to understand function of specific proteins and important pathways within a biological context. In the last 200 years, natural products have been prominent in malaria chemotherapy and control, with the major antimalarials in history being directly or indirectly derived from natural products. Violacein is a naturally occurring purple-colored compound produced by the secondary metabolism of gram-negative bacteria (e.g. Chromobacterium violaceum). Although hundreds of studies published in the literature report its biological activity in vitro and in vivo against cancer cells and different pathogens such as viruses, bacteria, fungi and protozoa, including the ability to control malaria in mice; a mechanism of action that fulfills violacein general toxicity against a wide variety of organisms remains unknown. In the present work, we used the Chemical Genomic Profiling (CGP), or HIP approach using yeast model to elucidate the mechanism of action of violacein. Interestingly, the strategy provided us a list of 6 possible hits, 2 of which are cochaperones of Hsp90. When we analyze fitness defect scores for all yeast strains carrying heterozygous genes for components of the chaperone system (178 genes out of ~6000), we can observe a common susceptibility to the compound, providing a strong indication that violacein might be affecting the chaperone system as a whole. We have investigated violacein interaction with three major components of chaperone system: PfHsp90, PfTRiC and PfHsp70. In agreement with our CGP data, the compound was able to bind to PfHSP90 and completely inhibit PfHSP70 activity at low doses, in a way to compromise, in about 70%, its ability to prevent protein aggregates at equimolar doses of protein and compound. Violacein was also shown to induce acceleration of aggregation in a chaperone independent manner. In addition, other typical characteristics of chaperone inhibitors have been observed in parasites treated with violacein, such as protein unfolding and intense proteasome degradation. Curiously, we were unable to detect activation of the Unfolded Protein Response, as eIf2-? remained unphosphorylated. Regardless of intense proteolysis, protein synthesis was not inhibited, possibly in an attempt to compensate for the loss of essential proteins by the proteasome. However, the protein synthesis itself is a process highly dependent on chaperones to succeed, reinforcing parasite proteostasis collapse induced by violacein. Interestingly, mature falciparum gametocytes (Stage V), those responsible for transmitting the disease, are more susceptible to violacein than asexual stages. This data reinforces that strategies targeting protein turnover seem to be important for blocking malaria transmission Doutorado Imunologia Doutora em Genética e Biologia Molecular CAPES 001 FAPESP 2012/165254-2 ; 2017/18611-7
- Published
- 2019
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.