7 results on '"Mechanics of fracture"'
Search Results
2. Análise da propagação da fratura em modelos coesivos com o método dos elementos de contorno
- Author
-
Brisola, Gabriela Martins Souza, 1985, Palermo Junior, Leandro, 1960, Trautwein, Leandro Mouta, Telles, Jose Claudio de Faria, Universidade Estadual de Campinas. Faculdade de Engenharia Civil, Arquitetura e Urbanismo, Programa de Pós-Graduação em Engenharia Civil, and UNIVERSIDADE ESTADUAL DE CAMPINAS
- Subjects
Fissuras ,Mecânica da fratura ,Métodos de elementos de contorno ,Boundary element method ,Fissures ,Fractures ,Fraturas ,Mechanics of fracture - Abstract
Orientador: Leandro Palermo Junior Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Civil, Arquitetura e Urbanismo Resumo: Este trabalho apresenta uma análise numérica pelo Método dos Elementos de Contorno Dual (MEC Dual), da propagação de fraturas em modelos coesivos bidimensionais. O método emprega a equação integral de contorno de forças de superfície em conjunto com a equação integral de contorno de deslocamentos, na região da fissura. O modelo de fissura fictícia é adotado no sentido de simular numericamente as forças atrativas na região de descontinuidade. A propagação da fissura na direção perpendicular à tensão principal máxima ocorre quando a tensão na ponta da fissura fictícia excede a máxima tensão resistente à tração do concreto. O fenômeno de amolecimento do concreto será tratado com as leis constitutivas do tipo linear e adotando uma ou duas retas para a curva tensão-abertura da fissura na fase de amolecimento. O modo I de abertura de fissura é estudado com uma viga de concreto solicitada à flexão em três pontos. O operador diferencial tangente é empregado no núcleo da hipersingular da equação integral de forças de superfície do MEC Dual para reduzir a singularidade e é avaliada a eficiência do uso de elementos quadráticos contínuos ao longo da fissura. Os exemplos numéricos para a análise da fissura coesiva são comparados a resultados da literatura, os quais foram retratados através de ensaios experimentais e numéricos. Os resultados obtidos evidenciam a eficiência da formulação proposta, corroborando aos estudos de problemas em fissuras em materiais quase frágeis Abstract: A numerical implementation of the Dual Boundary Element Method, for the analysis of twodimensional crack problems in cohesive materials is presented. The dual equations of the method are the displacement and the traction boundary integral equations, while the displacement equation is applied on one of the crack surfaces and the traction equation on the other. The fictitious crack model is used to simulate the fracture zone with forces acting on crack surface. When the force at the fictitious crack tip exceeds the maximum tensile strength of the concrete, the crack will propagate in the direction perpendicular to the principal stress. During the fracture process, the softening constitutive law for stress-crack opening displacement curve is linear with one or two straight lines. Three-point bending specimens were used to check the numerical results for crack opening mode I. The tangent operator technique is introduced in the hyper-singular kernel of the traction integral equation to reduce the order of the singularity, so the efficiency of continuous quadratic elements along the crack is analyzed. The numerical examples for cohesive crack are compared with those in the literature, which specimens were used in experimental and numerical studies. Obtained results evidenced the efficiency of the proposed formulation, collaborating to the study of crack problems in quasi-brittle materials Mestrado Estruturas e Geotécnica Mestra em Engenharia Civil
- Published
- 2021
- Full Text
- View/download PDF
3. Nonlinear acoustic approach to material characterisation of polymers and composites in tensile tests
- Author
-
Solodov, I., Pfleiderer, K., Gerhard, H., and Busse, G.
- Subjects
- *
POLYMERS , *GLASS fibers , *STRAINS & stresses (Mechanics) , *FRACTURE mechanics - Abstract
The paper reports on experimental study of elastic nonlinearity of polymers and glass fibre-reinforced (GFR-) composites in a wide range of tensile stress applied (up to a fracture limit). Focused slanted transmission mode (FSTM) of air-coupled ultrasound is adapted for remote generation and detection of flexural waves in the samples of plastics. Local noncontact measurements of flexural wave velocity as a function of static strain are used to calculate the second-order nonlinearity parameters
β2 and study their behaviour through a loading cycle. Molecular untangling and crazing phenomena are identified, respectively, with maxima of positive and negativeβ2 in thermoplastics. In composites, mechanics of fibre-matrix interaction is considered for brittle and plastic fractures. Hysteresis in velocity variation during loading–unloading cycle is used as an indicator of residual defect accumulation. [Copyright &y& Elsevier]- Published
- 2004
- Full Text
- View/download PDF
4. Analysis of Two Collinear Cracks in a Piezoelectric Layer Bonded to Two Half Spaces Subjected to Anti-plane Shear.
- Author
-
Zhou, Zhen-Gong, Chen, Jun-Ying, and Wang, Biao
- Abstract
In this paper, the behavior of two collinear anti-plane shear cracks in a piezoelectric layer bonded to two half spaces is investigated by a new method for the impermeable crack face conditions. The cracks are parallel to the interfaces in the mid-plane of the piezoelectric layer. By using the Fourier transform, the problem can be solved with two pairs of triple integral equations. These equations are solved using the Schmidt method. This process is quite different from that adopted previously. Numerical examples are provided to show the effect of the geometry of the interacting cracks and the piezoelectric constants of the material upon the stress intensity factor of the cracks. [ABSTRACT FROM AUTHOR]
- Published
- 2000
- Full Text
- View/download PDF
5. A XFEM based methodology for the structural analysis plates with bonded repairs
- Author
-
Ricardo Migueis Picado, Pavanello, Renato, 1959, Meirelles, Pablo Siqueira, 1956, Proença, Sergio Persival Baroncini, Antoun Netto, Theodoro, Bittencourt, Marco Lúcio, Sollero, Paulo, Universidade Estadual de Campinas. Faculdade de Engenharia Mecânica, Programa de Pós-Graduação em Engenharia Mecânica, and UNIVERSIDADE ESTADUAL DE CAMPINAS
- Subjects
Corrosion ,Engenharia de estruturas - Manutenção e reparos ,Finite element method ,Mecânica da fratura ,Corrosão ,Structural design ,Colagem ,Collage ,Projeto estrutural ,Método dos elementos finitos ,Mechanics of fracture ,Structural engineering - Maintenance and repairs - Abstract
Orientadores: Renato Pavanello, Pablo Siqueira Meirelles Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica Resumo: Reparos colados representam uma opção eficiente e de baixo custo para restauração da resistência perdida e para a minimização dos efeitos devidos a danos em estruturas metálicas. Reparos fabricados em materiais compósitos têm sido utilizados com sucesso no restauro estrutural de aeronaves e navios. Projetos bem sucedidos de reparos colados dependem do conhecimento preciso das tensões induzidas pela presença do reparo. As distribuições de tensão podem ser obtidas através de expressões analíticas ou através de métodos numéricos, como o método dos elementos finitos (FEM), por exemplo. Expressões analíticas são, geralmente, mais simples de usar, porém não geometrias e materiais mais simples. O FEM é adequado para geometrias e leis de materiais complexas, porém necessita de malhas em conformidade com as descontinuidades e refinadas no entorno das singularidades. Análises de reparos colados através do FEM, normalmente requerem malhas tri-dimensionais refinadas no entorno de trincas, regiões sob corrosão e na fina camada de adesivo, demandando trabalho significativo para a preparação do modelo. Esse trabalho apresenta uma nova metodologia baseada na teoria do XFEM, que permite a representação de uma trinca genérica, de uma região corroída, de uma camada de adesivo e de uma camada de reparo de material ortotrópico na malha bi-dimensional do substrato intacto. A posição e as dimensões de trincas, dos contornos de regiões corroídas e da camada de reparo ortotrópico são totalmente independentes da representação da malha do substrato na condição intacta. Assim, como são as espessuras das camadas de adesivo e de reparo ortotrópico. Dessa forma, não é necessário retrabalhar a malha intacta para representar os defeitos ou o reparo colado. O trabalho se baseia no regime elástico de materiais isotrópicos para as camadas de substrato e de adesivo e de materiais ortotrópicos para a camada do reparo. Uma chapa metálica bi-dimensional quadrilateral com dimensões finitas contendo diversas configurações de trincas e de regiões corroídas, de espessura de adesivo e de geometrias e posição de reparos ortotrópicos será investigada na presente abordagem. Para chapas trincadas, o desempenho dos reparos será avaliado em termos da constante de intensidade de tensões ($K_I$). Para chapas corroídas, a constante de concentração de tensões ($k_t$) será utilizada Abstract: Bonded repairs represent an efficient and cost-effective option to restore lost strength and minimize damage effects on metallic structures. Composite patches have been successfully used for structural repairs in aircrafts and ships. Successful bonded repair designs strongly depends on knowing the stresses induced by the presence of the patch in the substrate. Stress fields may be obtained either by analytical formulations or by numerical methods, like the finite element method (FEM). Analytical expressions are, generally, simpler to use, but are limited to simple geometries and material laws. FEM is suited for complex geometries and materials laws, but requires meshes conforming to discontinuities, high refinement near singularities and near high gradient areas. Analysis of bonded patches, using the standard FEM, normally requires refined three-dimensional meshes, therefore signficant amount of work in the model setup phase is demanded. This work presents a new mehodology based on the XFEM theory, that allows the representation of a generic crack, a corroded area, an adhesive layer, and a bonded patch repair in the two-dimensional mesh of the intact substrate. Crack size and position, shape and thickness of the patch, and adhesive layer thickness may be represented independently of the mesh. Re-meshing to represent variations in crack size and position, patch dimensions and position, and adhesive thickness is not necessary. A finite dimension two-dimensional metalic isotropic plate with several geometric configurations of cracks, lower thickess areas,ortotropic bonded patches is investigated to prove eficacy of this approach. For cracked plates, the results for unrepaired and repaired plates are compared in terms of the stress intensification factor. For corroded platres, the stress intensification constant ($k_t$) will be used Doutorado Mecânica de Sólidos e Projeto Mecânico Doutor em Engenharia Mecânica
- Published
- 2018
6. Внедрение метода конечно-дискретных элементов в программный комплекс Abaqus/Explicit для моделирования деформирования и разрушения пород
- Author
-
Protosenya, Anatoliy, Karasev, Maxim, Ochkurov, Valery, The research has been funded by the grant of the Russian Scientific Fund (project No. 16-17-00117), and Работы выполнена при поддержке гранта Научного Российского Фонда (проект № 16-17-00117)
- Subjects
підземне будівництво ,порода ,механіка руйнування ,метод кінцево-дискретних елементів ,подземное строительство ,механика разрушения ,метод конечно-дискретных элементов ,underground construction ,rock ,mechanics of fracture ,method of finite-discrete elements ,UDC 624.1 - Abstract
Розглянуто питання створення моделі дискретно-суцільного середовища для опису процесів деформування і руйнування гірської породи. Запропоновано методику впровадження методу кінцево-дискретних елементів в рамках програмного комплексу для виконання розрахунків на міцність Abaqus. Розглянуто приклади чисельного моделювання навантаження зразка гірської породи і прогнозу розвитку геомеханічних процесів в околиці породного оголення, The paper has considered development of a model within the framework of the method of finite-discrete elements for describing processes of rock deformation and fracture. Analysis of the methods of mathematical modeling of geomechanical processes which makes it possible to take into account the medium damage or fracture was presented. A physical model of rock fracture was proposed. It considers the fracture process as formation of microcracks of separation and shear or their combination. Examples of numerical modeling of loading a rock sample by the scheme of uniaxial compression and splitting by compression along generatrixes and in conditions of volume compression were considered. Formulation and results of simulation of development of a stress-strain state in the vicinity of the rock outcrop within the framework of the method of finite-discrete elements were presented.Within the framework of the study, an algorithm of implementing the method of finite-discrete elements in the Abaqus/Explicit software complex for strength calculations including all main stages of forming the numerical model from generation of an elemental grid to specification of boundary conditions has been worked out. A software solution for generation of the elemental grid was developed and capabilities of the Abaqus/Explicit software complex were expanded. This solution allows one to generate elemental grids for bodies of arbitrary shapes taking into account presence of surfaces of weakening within the body, both in flat and spatial formulations. The capabilities of the Abaqus/Explicit software complex were expanded in the field of modeling rock strength under the conditions of volumetric compression. According to the results of the performed studies, it was established that modeling of fracture formation (formation of shear and separation cracks) at the microlevel has allowed us to reliably represent processes of rock deformation and fracture. The possibility of using the method of finite-discrete elements for prediction of development of geomechanical processes in the vicinity of underground structures was presented.The presented study results allow us to extend the scope of the method of finite-discrete elements to solve the problems of geomechanics and form the basis for application of this method in solving engineering problems, Рассмотрены вопросы создания модели дискретно-сплошной среды для описания процессов деформирования и разрушения горной породы. Предложена методика внедрения метода конечно-дискретных элементов в рамках программного комплекса для выполнения прочностных расчетов Abaqus. Рассмотрены примеры численного моделирования нагружения образца горной породы и прогноза развития геомеханических процессов в окрестности породного обнажения
- Published
- 2017
7. Cam kumaş takviyeli termoplastik kompozitlerin mekanik özellikleri ve kırılma davranışları
- Author
-
Ekrem, Mürsel, Avcı, Ahmet, Enstitüler, Fen Bilimleri Enstitüsü, Makina Mühendisliği Ana Bilim Dalı, and Makine Mühendisliği Anabilim Dalı
- Subjects
J integrali ,Merkez çatlağı ,J Integral ,Polimer-matris kompozitler ,Mechanical Engineering ,Kırılma mekaniği ,Polymer-matrix composites ,Makine Mühendisliği ,Central fracture ,Stress-intensity factor ,Mechanics of fracture ,Gerilme şiddet faktörü - Abstract
Bu çalışmada, merkezine farklı açılarda boydan boya çatlak açılmış cam elyaf takviyeli termoplastik kompozit malzemenin, sabit yük altında kırılma ve hasar davranışı incelenmiştir. Bu çalışmada, numunelerin merkezine farklı açılarda ve boydan boya çatlak açılmış cam elyaf takviyeli termoplastik kompozit malzemenin, sabit yük altında kırılma ve hasar davranışı incelenmiştir. Deneyler sırasında çatlak ilerlemesi, çatlak ağzı açılma miktarı, çatlak ucundaki gerilme şiddet faktörleri ve kırılma tokluğu incelenmiştir. Çatlak ilerlemesi ve ağzı açılma miktarları, çatlak geometrisi ile ilgili bir hasar parametresi olarak kullanılmıştır. Sonuçlar da, gerilim şiddet faktörü ve J integral metodu ile kontrol edilmiştir. Yük-uzama, yük-çatlak açılma miktarı, enerji boşalma miktarı-çatlak açılma miktarı, gerilme şiddet faktörü-çatlak ilerlemesi grafikleri , bir malzeme özeliği gibi düşünülerek çizilmiştir, In this study, the fracture and damage behaviour of glass-fiber reinforced thermoplastic composite under stable load with central fractures at different angles and from one to another is investigated. The central fractures at different angels are emphasized. During the experiments, the enlargement of fracture,the amount of the opening at the mouth of the fracture, the stres- intensity factors at the end of fracture and fracture toughness have been investigated. Fracture enlargement and the amounts of opening at the mouth of the fractures are used as damage parameter related to fracture geometry. The results are checked by using stress-intensity factor and J integral method. Load -extension, load- the amount of fracture opening, energy discharge amount-the amount of fracture opening, stress-intensity factor- fracture enlargement graphs are drawn as the features of metarial.
- Published
- 2006
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.