1. Meta-Analysis of COVID-19 BAL Single-Cell RNA Sequencing Reveals Alveolar Epithelial Transitions and Unique Alveolar Epithelial Cell Fates.
- Author
-
Karmaus PWF, Tata A, Meacham JM, Day F, Thrower D, Tata PR, and Fessler MB
- Subjects
- Humans, Lung, Epithelial Cells metabolism, Sequence Analysis, RNA, Alveolar Epithelial Cells, COVID-19 genetics, COVID-19 metabolism
- Abstract
Single-cell RNA sequencing (scRNA-seq) of BAL cells has provided insights into coronavirus disease (COVID-19). However, reports have been limited by small patient cohorts. We performed a meta-analysis of BAL scRNA-seq data from healthy control subjects ( n = 13) and patients with COVID-19 ( n = 20), sourced from six independent studies (167,280 high-quality cells in total). Consistent with the source reports, increases in infiltrating leukocyte subtypes were noted, several with type I IFN signatures and unique gene expression signatures associated with transcellular chemokine signaling. Noting dramatic reductions of inferred NKX2-1 and NR4A1 activity in alveolar epithelial type II (AT-II) cells, we modeled pseudotemporal AT-II-to-AT-I progression. This revealed changes in inferred AT-II cell metabolic activity, increased transitional cells, and a previously undescribed AT-I state. This cell state was conspicuously marked by the induction of genes of the epidermal differentiation complex, including the cornified envelope protein SPRR3 (small proline-rich protein 3), upregulation of multiple KRT (keratin) genes, inferred mitochondrial dysfunction, and cell death signatures including apoptosis and ferroptosis. Immunohistochemistry of lungs from patients with COVID-19 confirmed upregulation and colocalization of KRT13 and SPRR3 in the distal airspaces. Forced overexpression of SPRR3 in human alveolar epithelial cells ex vivo did not activate caspase-3 or upregulate KRT13, suggesting that SPRR3 marks an AT-I cornification program in COVID-19 but is not sufficient for phenotypic changes.
- Published
- 2023
- Full Text
- View/download PDF